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Abstract. Three edges e;, e; and e; in a graph G are consecutive if they form a cycle of length 3 or a path in
this order. A k-injective edge coloring of a graph G is an edge coloring of G, (not necessarily proper), such
that if edges e;, e;, e5 are consecutive, then e; and e; receive distinct colors. The minimum k for which Ghas a
k-injective edge coloring is called the injective edge chromatic index, denoted by x(G) [4]. In this article, the
injective edge chromatic index of the resultant graphs by the operations union, join, Cartesian product and
corona product of G and H are determined, where G and H are different classes of graphs. Also for any two
arbitrary graphs G and H, bounds for x/(G + H) and x/(G () H) are obtained. Moreover the injective edge
coloring problem restricted to (2,3, r)-triregular graph, (2,4, r)-triregular graph and (2, r)-biregular graph,
r > 3 are also been demonstrated to be NP-complete.

1. Introduction

All graphs considered in this article are simple, finite and undirected. The sets V and E represent the
vertex set and edge set of a graph G and the symbols A(G), w(G) and N(u) denote the maximum degree,
clique number of a graph and neighborhood set of a vertex u € V(G) respectively. For further graph-theoretic
notations and terminologies refer [12] and [15].

An injective coloring of G is a coloring of the vertices of G such that for every vertex v € V(G), all the
neighbors of v are assigned distinct colors, i.e., if x and y are two distinct neighbors of v, then c(x) # c(y).
The smallest integer k such that G has an injective k -coloring is the injective chromatic number of G,
denoted by x;(G). Injective coloring of graphs was introduced by Hahn et al. in [11] and was originated
from complexity theory on random access machines, and can be applied in the theory of error correcting
codes [11]. In the same paper, they proved that, for k > 3, it is NP-complete to decide whether the injective

chromatic number of a graph is at most k. Since then, many researchers studied on this coloring number
and found many beautiful results.

2020 Mathematics Subject Classification. 05C15; 05C76; 03D15

Keywords. injective edge chromatic index; union; join; Cartesian product; corona; complexity; triregular graphs.
Received: 14 June 2022; Accepted: 15 November 2022

Communicated by Paola Bonacini

The research of Bhanupriya C K is supported by DST, Government of India under the scheme ‘FIST’(No. SR/FST/MS-1/2019/40)

and financial assistance given by Ministry of Human Resource Development, Government of India.
* Corresponding author: Charles Dominic

Email addresses: ckbhanupriya@gmail.com (Bhanupriya C K), charlesdominicpu@gmail.com, cd22129@essex.ac.uk (Charles
Dominic), sunitha@nitc.ac.in (Sunitha M S)



Bhanupriya C K et al. / Filomat 37:12 (2023), 3963-3983 3964

Similar to the injective coloring, an edge version of the injective coloring was introduced by Cardoso et
al. in [3]. An Injective edge coloring (i-edge coloring) of a graph G is a coloring, ¢ : E(G) — C, such that if e;, e,
and ez are consecutive edges in G, then c(e;) # c(e3). The injective edge coloring number or the injective
edge chromatic index of a graph G, x/(G), is the minimum number of colors permitted in an i-edge coloring.
In the same paper, they gave the exact values of the injective edge coloring number for several classes of
graphs, such as path, complete bipartite graph, complete graph and so on. And further, they also gave
some bounds on injective edge coloring number of some graph and proved that checking whether x/(G) = k
is NP-complete.

A graph G is called an @’ edge injective colorable (or perfect EIC-) graph if x/(G) = «’, see [16]. In [16],
Yue et al. constructed some perfect EIC-graphs, and gave a sharp bound of the injective coloring number
of a 2-connected graph with some forbidden conditions. Also, they characterize some perfect EIC-graph
classes. Moreover, Bu and Qi [1] and Ferdjallah [6] studied the injective edge coloring of sparse graphs in
terms of the maximum average degree. Also, the injective edge coloring of subcubic graphs is well studied
by Ferdjallah in [7] the authors also obtained the upper bounds for injective edge chromatic index and
presented the relationships of the injective edge-coloring with other colorings of graphs.

In [13] Kostochka et al. provided, how large can be the injective edge chromatic index of G in terms of
the maximum degree of G when there is a restriction on girth and/or chromatic number of G. They also
compare the bounds with analogous bounds on the strong chromatic index. In the same year, Y Li and
L Chen [14] gave the injective edge coloring numbers of generalized Petersen graphs P(n,1) and P(n, 2).
They determined the exact values of injective edge coloring numbers for P(n, 1) with n > 3, and for P(n, 2)
with 4 < n < 7. For n > 8, they gave that 4 < x/(P(n,2)) < 5. In [8], Foucaud et al. proved that injective
3-Edge-Coloring is NP-complete, even for triangle-free cubic graphs, planar subcubic graphs of arbitrarily
large girth, and planar bipartite subcubic graphs of girth 6. Injective 4-Edge-Coloring remains NP-complete
for cubic graphs. Also provided is that for any k > 45, injective k-Edge-Coloring remains NP-complete even
for graphs of maximum degree at most 5 V3k. Further given that injective k-Edge-Coloring is linear-time
solvable on graphs of bounded tree width. Moreover, they proved that all planar bipartite subcubic graphs
of girth at least 16 are injectively 3-edge-colorable and any graph of maximum degree at most  is injectively
k-edge-colorable.

Some results which are useful in this article are given as follows.

Proposition 1.1 ([3]). Let P,(C,) be a path (cycle) of order n, K, , be a complete bipartite graph, and W, be a wheel
graph on n vertices. Then

i X{(Py) =2, forn >4,

o, 2ifn= 0mod 4,

it 2(Co) = 3 otherwise

iii. X(Kin) = min{m, n} and
6 if nis even,

iv. Forn >4, x/(W,) =4 if nisodd and n —1=0mod 4,
S5ifnisoddandn -1 # 0 mod 4.

Proposition 1.2 ([3]). If H is a subgraph of a connected graph G, then x(H) < x/(G).

2. Results on injective edge coloring

The definition of the bi-star graph B, is the graph obtained from Kj by joining m pendant edges to one
end and #n pendant edges to the other end of K,. The union G = G; U G, of two graphs with disjoint vertex
sets V1 and V; and edge sets E; and E; is the graph with vertex set V = V; U V; and edge set E = E; U E;.

Corollary 2.1. For any bi-star graph G = B(m, n), x}(G) = 2.
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Corollary 2.2. Let G = U;”zl(G]-). Then x(G) = max{x'(G;) : j =1,2,3,--- ,m}.

In this section, the exact values of the injective edge chromatic index of the join of various kinds of
graphs and a lower bound for the injective edge chromatic index of the join of two arbitrary graphs are
discussed. In general, natural numbers are used as colors of edges. From [12] the join of G; and G,, denoted
by G1 + Gy, has vertex set V = V; UV, and edge set E = E;UE, U {xy : x € V1, € V,}. Also we have
Gi1 + Gy = G1 UGy [5]. Now moving to some results on G + H, let uy,us,-- -, u, be the vertices of G and
U1,02,+, Uy be the vertices of H. In Figure 2.1, ujuj, u;v, vo; form consecutive edges. Where u;u, is an
edge in G and v;v; is an edge in H. Thus we can say that no color of the edges in G can be the color of edges
in H. Therefore the lower bound of injective edge chromatic index of G + H.

Proposition 2.3. x/(G + H) > x/(G) + x/(H).

Proposition 2.4. x/(G1 + G2) = max{x.(G1), x}(G2)}-

Figure 2.1 Figure 2.2 Figure 2.3
In particular we have, K,, + K, = Ky4n and K, + K, = Kinn [12]. In general a complete k-partite graph
Kh,fz,"',fk = K[».l + Kfz + e+ Ktk [10]

—(W”)(me_l) where m,n > 1.

Proposition 2.5. x/(K; + Ky) =
Proposition 2.6. Xf(K_n + K_m) = min{m, n} where m,n > 1.
Proposition 2.7. )(1’.(I<_t1 + K_tz +---+ K_tk) =min{ty, tp, - , b} wheret; > 1,1 <i <k

A fan graph F,, , is defined as the graph join K,, + P, where K,, is the empty graph on m nodes and P, is the
path graph on n nodes (see [10]). Next results are on the join of K,,, K, P, and C,.

Theorem 2.8. x/(K, + K,)=n+ @ where m,n > 1.

Proof. Let uy,uy,--- ,u, be the vertices of K, and v1,vy,---,v,, be the vertices of K. As the vertices
uy,uy, -+ , U, forman induced complete subgraph of K, +K,,, the edgesu;u;, i # j,i,j=1,2,--- ,narecolored
with distinct "(”2_ Y colors. Now the edges w;utj, ujvg, vgu; in Figure 2.2 and w;uj, ujvg, vgu; in Figure 2.3 form
consecutive edges and so no color of u;u; can be the color of v, i,5,1 =1,2,--- ,nand k=1,2,--- ,m. Next
we can see that vyu;, uuj,ujv1, i,j = 1,2,--- ,n form consecutive edges. Thus the edges viu;, i =1,2,--- ,n
are colored with a new set of n colors. The same set of colors are used to color the edges vyu;, k =2,3,--- ,m

andi=1,2,---,n. Thatis for a fixed k,1 < k < m, the edges viu; is colored with color @ +i,1<i<n.

This gives the injective edge chromatic index of K, + K_m O
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Theorem 2.9. x/(K, + Py) = w13t yhere n > 1, m > 3.

Proof. Let uy,uy,--- ,u, be the vertices of K, and vy, vy, -+ ,v,, be the vertices of P,,. From Proposition 2.3,

it is clear that x(Ky + Pu) > x/(Ky) + X7 (Pw) = @ + 2. First color the edges u;uj and vvy, i,j=1,2,--- ,n
and k, 1 =1,2,--- ,m with distinct @ + 2 colors. Now from Figure 2.2 and Figure 2.3 we can see that, no
color the edges u;u; and v;v; can be the color of w,vs, i,5,r = 1,2,--- ,nand k,I,s = 1,2,--- ,m. Also for a
fixed k, the vertices v, u; and u; form an induced K3 for any i # j, thus the edges viu; and viu; are colored
with distinct colors. Further, the edges 0, 0xUk11 and vy form consecutive edges, thus no color of vyu;
can be the color of vx41u;. Now color the edges u;v;,i=1,2,--- ,n,j=1,2,--- ,mas follows.

n2—n+4

2

n+n+4
2

+1.
+1.

e For an odd k, the edge vju; is colored with color
e For an even k, the edge v is colored with color

n

Thus distinct 2n colors are needed to color the edges u;v,. Hence Xi(Ky + Pp) = @ +2+2n=

24 3n+4

honts 2” . g
C . . "(Py) +2mif 2m < n,
Theorem 2.10. For a fan graph F,,, the injective edge chromatic index is, X'(Fy,n) = Xj( & . /
Xi(Py) +nifn<2m.

Proof. We have F,, = Ky + P,. Let uy,ua, -,y be the vertices of K,, and vy,vs, -+ , v, be the vertices of
P,. Since the edges Ui}, VjV+1 and Vj+1l; form consecutive edges, no color of u;vj can be the color of UiDjs1.
Similarly, u;v;, vjux, and uzv; form consecutive edges, no color of ©;v; can be the color of u;v;. Also, no color
of the edges v;v;;1 (the edges of P,;) can be the color of ;0. Since the vertices u;, v; and v} form an induced
Kj3. With these arguments color the edges in each case.
Case 1. Assume that 2m < n.

e For a fixed i color the edges u;v; with color 2i — 1 for odd j and color 2i for even j. Thus 2m distinct
colors are used to color the edges u;v;
e Now color the edges v;v;,1 (the edges of P,) with new set of x’(P,) colors.

Case 2. Assume that n < 2m.
e For a fixed j color the edges v;u; with the color j. Thus n distinct colors are used to color the edges
u,'vj.
e Now color the edges v;v;.1 (the edges of P,,) with a new set of x/(P,) colors.

The above coloring procedure produces the injective edge chromatic index of the graph F,,, .. O

Iustration 2.11. Injective edge coloring of Fo5 and Fs .

HColor 1 MColor 2 MColor 3 = Color 4 BColor 5 EColor 1 MColor 2
EColor 6 Color 3
Figure 2.4: Injective Edge Coloring of F 5 Figure 2.5: Injective Edge

Coloring of F3,
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@ + X(Cy) + 21 if m even,

Theorem 2.12. Forn > 1and m > 3, x'(K,, + C,) = - ;
Xi (K =+ Cn) {@ + X}(C) + 3 if m odd.

Proof. Let uy,uy,--- ,u, be the vertices of K, and vy, vy, -+ ,v,, be the vertices of C,,. First color the edges
uiuj, i,j = 1,2,--- ,n of K, with distinct @ colors and color the edges vy, k,I = 1,2,--- ,m of C,, with
X:(Cy) new colors. From Figure 2.2 and Figure 2.3 we can see that no color of the edges u;u; (edges of K,,)
and vy (edges of C,,) can be the color of the edges u;ux (the edges joining vertices of K, and C,,). Now
for a fixed i, the vertices v;, u; and u; form an induced K3, thus the edges v;u;, j = 1,2,--- ,n, colored with
distinct n colors. Also for an edge v;v; of Cy,, the edges v;uy and vju; are colored with distinct colors, since
urv; — v;v; — vju; form consecutive edges. Now color the edges u;vy as follows.

Case 1. Assume that m is odd.

e Fori=2k+1,i<m,the edges vu; are colored with color ;.
e Fori =2k, i < m, the edges v;u; are colored with color n + j.
e Color the edges v,u; with the colors 2n + j

Case 2. Assume that m is even.

e Fori=2k+1,i < m, the edges v;u; are colored with color ;.
e Fori =2k, i <m, the edges vju; are colored with color  + j.

The coloring described above produces the injective edge chromatic index of K, + C,,. O
Theorem 2.13. x[(P, + Py) = 2min{m,n} + x[(Py) + x;(Pn) where m,n > 2.

Proof. Let uy,uy,- -+, u, be the vertices of P, and vy,vy, -+ , v, be the vertices of P,,. First color the edges
uiuj, i,j=1,2,--- ,n with x’(P,) colors and the edges v;v;, k,I = 1,2,--- ,m with x/(P;,) colors.

Now let m < n. We start with the coloring of v1u;, j = 1,2,--- ,n. The vertices vy, u; and u;;1 form an induced
K3, thus the edges viu; and vqu;,q are colored with two distinct colors. Similarly for a fixed k, the edges
vk, 1 = 1,2,--- ,n are colored with two distinct colors. Now ©v,u;, u;v; and vju; form consecutive edges.
Therefore no v,u; and vuj, r # 1, 1,1=1,2,--+- ,mandi,j=1,2,--- ,n have the same colors. Hence the edges
u;v;j are colored as follows.

e Color the edges vyu; with color 1 and 2 alternatively, fori =1,2,--- ,n
e Color the edges v,u; with color 3 and 4 alternatively, fori=1,2,--- ,n

e Color the edges v,,u; with color 2m — 1 and 2m alternatively, fori =1,2,--- ,n
The coloring described above produces the injective edge chromatic index of P, + P,. O

Illustration 2.14. Consider the graph P, + Py, with m < n.

EColor1 mColor2 mColor3 mColor 4 mColor 5 mColor 6mColor 7 © Color 8
Color 9 mColor 10mColor 11mColor 12

Figure 2.6: Injective edge coloring of P, + Py,
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X:(Cy) + Xi(Cp) + 2 min{m,n} if m and n are even,
"(Cp "(Cy) + 3 min{m,n} i d dd,
Theorem 2.15. For any m, 1 > 3, '(Cy + Co) = Xi(Cu) + X/(C) + m.zn{m n}if mandnare o
! X;(Cy) + X;(Cy) + 2nif meven, nodd and 2n < 3m,
X;(Cn) + X;(Cy) + 3m if m even, n odd and 3m < 2n.

Proof. Let uy,uy,--+ ,u, be the vertices of C, and vy,v,---,v, be the vertices of C,,. The edges u;uj,
i,j=1,2,--- ,nare colored with x’(C,) colors and the edges v v, k,1=1,2,---,m are colored with X (Cm)
colors. From Figure 2.2 and Figure 2.3, we can see that no color of the edges u;u; (edges of C,) and v;v;
(edges of C,;) can be the color of the edges u;vx (the edges joining vertices of C, and C,,). For a fixed i, the
vertices u;,vj and vj;1 form an induced K3. So the edges u;v,1 < j < m, are colored with at least two colors.
Also the edges vju;, uju;i1 and w10, form consecutive edges. Thus no color of the edges u;v; is the color of
the edges u;.1vr. With these arguments, the following cases describe the coloring of the edges u;v -

Case 1. Assume that m and n are even and m < n.

e Forodd i, 1 <i<n, color the edges u;v; with color j, j=1,2,--- ,m.
e Foreveni, 1 <i<n,color the edges u;v; with colorm +j,j=1,2,--- ,m.

Case 2. Assume that m and n are odd and m < n.

e Foroddi, 1 <i<n,color the edges u;v; with color j, j=1,2,--- ,m.
e Foreveni, 1 <i<n,color the edges u;v; with colorm +j,j=1,2,--- ,m.
e For i = n, color the edges u;v; with color 2m +j, j=1,2,--- ,m.

Case 3. Assume that m even, n odd and 2n < 3m.

e Forodd j, 1 < j <m, color the edges vju; with colori,i =1,2,--- ,n.
e Foreven j, 1 < j <m, color the edges vju; with colorn +1i,i=1,2,--- ,m.

Case 4. Assume that m even, n odd and 3m < 2n.

e Forodd i, 1 <i<n,color the edges u;v; with color j, j =1,2,--- ,m.
e Foreveni, 1 <i<n,color the edges u;v; with colorm +j,j=1,2,--- ,m.
e For i =n, color the edges u;v; with color 2m +j,j=1,2,--- ,m.

The coloring described above produces the injective edge chromatic index of C,+C,,. O

Recall the definition of an n-Ladder graph [10] as L, = P,0OP,, where P, is a path of length n. Now the
vertices of L, be uq,uy,- -+ ,u, for the first copy of P, and 1,41, U4, - -+ , Uz, for the second copy of P,,. The
next theorem gives the injective edge chromatic index of join of any two ladder graphs L, and L,,.

Proposition 2.16 ([4]). x/(L1) =1, xi(Lz) = 2 and x'(L,) = 3 for all n > 3.
Theorem 2.17. x/(L, + L) = x;(Ln) + X;(Lw) + 4 for all m, n.

Proof. Without loss of generality assume thatm < n. Letuy, ua, -+, tty, Uns1, Unso, - -+, Uzy be the vertices of L,
andletv:, 02, , Uy, Upit1, Ums2, -, U2m be the vertices of Ly, By Proposition 2.3, x/(Ly+Lu) = x;(Ln)+X;(Lm)-
Now color the edges of L, and L,, with X; (L) + X; (L) colors.

Claim 1: No color of the edges u;u; (edges of L,) is the color of the edges uv; for i, j,k = 1,2,---,2n and
1=1,2,---,2m.

For, let u,u; be an edge of L, with color ¢; (say). Now the vertices u,, us and v; form an induced K3, thus the
color ¢; cannot be assigned as the color of u,v; or usv;, for =1,2,--- ,2m. Also, the edges u,us, u;v; and vju;
form consecutive edges, thus the color ¢; cannot be assigned as the color of vju; for 1 <i < 2n,i # r,s and
1<1<2m.

Claim 2: For a fixed i, at least two colors are needed to color the edges ujv;, 1 <1 < 2m.
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Let v;vx be an edge of L,,. Then the vertices u;, v; and v form an induced K3 in the graph L, + L,,. Thus the
edges u;v; and ;v must receive distinct colors.

Also note that if there is an edge u;u;, then no color of the edges u;u; can be the color of the edges u;v; for
1 <1, t <2m, for, the edges vju;, u;u; and u;v; form consecutive edges.

From the above statement, together with Claim 1 and 2, it can be concluded that at least four colors are
needed to color the edges u4v;. Now providing an injective edge coloring using x/(Lx) + x/(Ln) + 4 colors
shows that x/(L, + L) = x/(Ln) + X/(Ln) + 4. The coloring is as follows.

e Fori=1,3,5,--,i<nandi=n+2n+4,n+6,---,i <2n.
— Color the edges ;v with color 1 fork =1,3,5,--- ,k<nandk=n+2,n+4,n+6,---,k <2n.
— Color the edges u;vx with color 2, fork =2,4,6,---,k<nandk=n+1,n+3,n+5,---,k <2n.
e Fori=2,4,6,---,i<nandi=n+1,n+3,n+5,---,i <2n.
— Color the edges ;v with color 3 fork =1,3,5,--- ,k<nandk=n+2,n+4,n+6,---,k <2n.
— Color the edges u;vx with color 4, for k =2,4,6,---,k<nandk=n+1,n+3,n+5,---,k <2n.

e Color the edges u;u; of L, with X;(Ln) colors.
e Color the edges vyv; of Ly, with x7(L;,) colors.

O

In the next section, some results on injective edge chromatic index of Cartesian product of different
classes of graphs are obtained. Recall from [12] that the Cartesian product of G and G,, denoted by G1 X Go,
has vertex set V1 X V, and two vertices u = (11, up) and v = (v1, v2) are adjacent in G; X G, whenever u; = v;
and u; adjacent to v, or u, = v, and u; adjacent to v;. Some results on the injective edge chromatic index
of P,0P,, are available in [4]. The following are few results on Cartesian product of P,,, C, and K,, we have
obtained.

3ifn=3, m=2,

P ition 2.18 ([4]). x/(P,0OP,,) =
roposition ([4D. x/(P,oPy,) {4ifm, w4

The Prism graph [10], denoted by Y, is a graph corresponding to the skeleton of an n-prism and also Y, is
isomorphic to the graph Cartesian product P,OC,,. Further P,O0C,, is isomorphic to the generalized Petersen
graph P(n,1). The injective edge chromatic index of the generalized Petersen graph P(n, 1) is given below.

3ifn= 0mod 6,

) Moreover, x/(P(3,1)) = 6, x/(P(4,1)) = 4
4 otherwise. ! i

Proposition 2.19 ([14]). Ifn > 6, x!(P(n,1)) = {
and x!(P(5,1)) = 5.
Theorem 2.20. Injective edge chromatic index of P,,0C,, is obtained as follows

3ifn= 0mod 6,

. Moreover, x/(P,0C3) = 6, x/(P,0C4) = 4 and y/(P,0Cs) =
4 otherwise. ! ! :

1. Forn > 5, x/(P,0C,) = {

5.
2. For even n, x'(P;0C,) = 4. Moreover x(P;0C;3) = 6 and x(P30Cs) = 5.
3. X{(P,OC3) =6if m > 2.
4. x/(P,0Cy) =4ifn=0mod 4 and m > 3.

Proof.

1. First part of the theorem directly follows from Proposition 2.19.
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2. In general the graph P;0C, consists of 3 cycles Ci,i=1,2,3, where Cl is the th copy of C,, (with Cl has
vertices u1,uy, -+ , Uy, C has vertices v1,vs,--- ,v, and C> has vertices wy, wy, -+ ,w,) and the paths
u —v; —w;, i=1,2,3.
Case 1. Assume that n is even.
Here the graph P30P; is a subgraph of Ps0C, with x/(P30P,) = 4 (Proposition 2.18). Thus x’(P;0C,) >
4. Now providing an injective edge coloring of P;0C, with 4 colors shows that x}(P;0C,) = 4. The
coloring in each cases are given below.
Subcase i. n = 0 mod 4.

Color the edges ujuy, upus, - - - , u,u1 with colors 1 and 2 in the pattern 1,1,2,2,1,1, - - -.
Color the edges v,v3,v3v4, - - - , V401, V102, With colors 3 and 4 in the pattern 3,3,4,4,3,3,---.
Color the edges wiw,, wows, - - - , w,wq with colors 1 and 2 in the pattern 2,2,1,1,2,2,---.
Fori=1,5,9,---, color the edges u;v; and v;w; with color 4.

Fori=2,6,10,--, color the edges u;v; and v;w; with colors 1 and 2 respectively.
Fori=3,7,11,---, color the edges u;v; and v;w; with color 3.

Fori=4,8,12,---, color the edges u;v; and v;w; with colors 2 and 1 respectively.

Subcase ii. 7 = 2 mod 4.

o Color the edges u,-1u, and u,u; with color4and fori=1,2,--- ,n -2, color the edges u;u;,; with
the colors 1 and 2 in the order 1,1,2,2,---.

o Color the edges v,-2vU-1, V410, v,v1 and v1v, with color 1,1,2 and 2 respectively and for i =
2,3,---,n =23, color the edges v;v;,; with the colors 3 and 4 in the order 3,3,4,4,---.

o Color the edges w,—3w;,—2, Wy—2Wy—1, Wy—1Wy, Wyw1, w1w, and wrws with colors 4,4,3,3,4 and 4
respectively and fori = 3,4,--- ,n — 4, color the edges w;w;,; with the colors 1 and 2 in the order
1,1,2,2,---.

o If the adjacent edges u;u; and u;uy are of same color, assign this color to the edge u;v;.

o If the adjacent edges v;v; and v;u; are of same color, assign this color to the edges u;v; and vjw;.

e If the adjacent edges w;w; and w;wy are of same color, assign this color to the edge v;w;.

Case 2. Assume thatn = 3,5.

The graph P(3,1) is a subgraph of P;0C; and from Proposition 2.19, x/(P30C3) > 6. Now Figure 2.7
provides an injective edge coloring of P30C; with 6 colors, which shows that x/(P30C3) = 6. Similarly,
from Proposition 11, x/(P;0Cs) > 5 and Figure 2.8 provides an injective edge coloring of P30Cs with
5 colors.

B Color1 HEColor2 Color 3 Color4 HColor5 M Color 6

Figure 2.7: Injective edge coloring of P30C3 Figure 2.8: Injective edge coloring of P;0Cs
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3. Here the graph P,,0C; consists of m cycles Ci, i = 1,2,--- ,m, where C} is the i" copy of C3 (C} has
vertices u}, 1}, and u}) and the paths u} —u?—ud—---—u", j=1,2,3. The Injective edge chromatic
index of P,0C; and P30C; follows from Theorem 2.20(1,2). Now for m > 3, the graph P;0C; is a
subgraph of P,,0C; with x/(P;0C;) = 6 and by Proposition 1.2, x/(P,,0C3) > 6. Now providing an
injective edge coloring of P,,0C; with 6 colors shows that x/(P,,0C3) = 6. The coloring is as follows.

e Fori=1,7,13,---, color the edges u!u}, uyul and uju’ with the colors 1,2 and 3 respectively.

e Fori=2,8,14,---, color the edges uiu;, uéué and ugui with the colors 4,5 and 6 respectively.

e Fori=3,9,15,---, color the edges u}u}, uyul and uju’ with the colors 2,3 and 1 respectively.

e Fori=4,10,16,--, color the edges uéug, uéué and uéui with the colors 5, 6 and 4 respectively.

e Fori=5,11,17,---, color the edges u/u}, ubu} and uju’ with the colors 3,1 and 2 respectively.

e Fori=6,12,18,---, color the edges u‘iué, uéug and uéui with the colors 6,4 and 5 respectively.

e Color the edges uju?, u'" with colors 1,4,2,5,3,6 up to uSu
order of the colors after u$u7 up to the remaining.

2 3,4
uguy, Uy, U

7
17

m-1

1 repeat the same

3,4 um—l

U2Uz -

3
1
6
1
e Color the edges uju3, uu3, usuy,--- ,uly~'u) with colors 2,5,3,6,1,4 up to usu;
6
2
3
3
8

ou5, repeat the same

order of the colors after u$u7 up to the remaining.

7

1,2 3,4 -1
ul 3

e Color the edges u;us3, ugu , Uzlly, -+, uy” uy with colors 3,6,1,4,2,5 up to ugu

order of the colors after u$u] up to the remaining.

repeat the same

4. In general the graph P,,0C, consists of m cycles Cﬁq, i=1,2,---,m, where qu is the it copy of C, (Cf7
has vertices u!,ub, -+ ,u}) and the paths u} - u? - u?’ ==, j=1,2,3,--- ,n. Here for n > 3, the
graph P30P; is a subgraph of P,,0C, with x!(P30P,) = 4 (Proposition 2.18). Thus x’(P,0C,) > 4. Now
providing an injective edge coloring of P, 0C, with 4 colors shows that x;(P,,0C,) = 4. The coloring
is as follows.

e Fori=1,5,9,---,colortheedges u ub, ubu, - -- ,ulul withcolors1and 2inthepattern1,1,2,2,1,1,- -

e Fori =2,6,10,---, color the edges ujul, uiu’, - ,ulul,uiu’, with colors 3 and 4 in the pattern
3,3,4,4,3,3,---.

e For i = 3,7,11,---, color the edges u'ul, uyu},--- ,ulu’ with colors 1 and 2 in the pattern
221,1,2,2, .

e Fori =4,8,12,---, color the edges u;ué, ugufy ‘e ,u@ui,uiué, with colors 3 and 4 in the pattern
4,4,3,3,4,4,---.

e For j = 1,5,9,---, color the edges u}u]?, u]?u?,'-- ,u;”‘lu;," with colors 3 and 4 in the pattern
4,4,3,3,4,4,---.

e For j = 2,6,10, -, color the edges u}u?, u?u?,--- ,u;."‘lu;" with colors 1 and 2 in the pattern
1,2,2,1,1,2,2,---.

e For j = 3,7,11,---, color the edges u}u?, u?u?,m ,u;”’lu;ﬁ with colors 3 and 4 in the pattern
3,3,4,4,3,3,---.

e For j = 4,8,12,---, color the edges u}u?, u?u}’.’,~-- ,uT‘luT with colors 1 and 2 in the pattern
21,1,2,2,1,1,2,2,---.

Iustration 2.21. Injective edge coloring of P4O0C4 with four colors is illustrated below.
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M Color1 M Color?2 Color 3 Color 4
Figure 2.9: Injective edge coloring of P40Cy

From [9], we have the corona of two graphs G; and G, (where G; has p; vertices and g; edges) as the
graph G = G; © G, obtained by taking one copy of G; and p; copies of G,, and then joining by an edge the
i vertex of G; to every vertex in the i copy of G,. Some results on the injective edge chromatic index of
few classes of corona products are given as the following.

Figure 2.10 Figure 2.11
Theorem 2.22. For any two connected nonempty graphs G and H, x/(G () H) > x/(H) + 2.

Proof. Letuy,uy, -+ ,u, bethe vertices of Gand vi1, vpp, - - -, Vi be the vertices of ith copyofHfori=1,2,--- ,n.
Let vjv;; be an arbitrary edge of H. Then the vertices u;, vy and v; form an induced K3 (Figure 2.10). Also,
vy — Ui — Uj — vjs form paths of length 4 (Figure 2.11). Thus the color of v;v; cannot be the color of u;v;s for
s =1,2,--- ,m. Also since the vertices u;, vy and v; form an induced K3, the edges u;vy and u;v; colored
with distinct 2 colors other than y/(H) colors. O

4ifmmn=2,3,

Th 2.23. If m,n > 2, then x(P Py) = .
eorert f m,n e i(Pn O Pn) {5 otherwise.
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Proof. Let uq,up,--- ,u, be the vertices of P, and vj1,vip, -+ ,vi be the vertices of jth copy of P, for
i=1,2,---,n.

For Figure 2.12, Figure 2.13, Figure 2.14 and Figure 2.15

Ml Colorl HColor2 HEColor3 Color 4 Color 4

Figure 2.12: P, ()P, Figure2.13: P,(~)P;  Figure 2.14: P3(-)P; Figure2.15: #

Case 1. Assume thatm =n = 2.

The vertices v11,v12 and u#; form an induced Kj of P, @Pz. Thus the edges u1v11, w112 and v11v1, are
colored with the distinct colors 1,2 and 3 respectively. Now color the edge u1u, and u,v5 with color 1 and 3
respectively. Further vy —up —uy —v11, V22 — Up — Uy — V12 and vy — V21 — 1 form paths of length 4. Therefore
the edge 1,02, cannot be colored with the colors 1,2 and 3 (the colors of the edges 11011, #1712 and upvy1).
Thus color 4 is given to the edge u,v2. Thus x/(P2 @ P;) > 4 and the coloring in Figure 2.12 with 4 colors
shows that x/(P, () P2) = 4.

Case 2. Assume thatm =3 and n = 2, 3.

We have P, () P, asasubgraph of P, () P3 and P3 () P3. Now using Proposition 1.2, we have x/(P, (*) P3) >
4 and x/(P3 () P3) > 4. Also Figure 2.13 and Figure 2.14 provides an injective edge coloring with 4 colors.

Therefore x/(P> () P3) = x/(Ps () P3) = 4.

Case 3. Assume that m,n > 4.

Consider a subgraph . (Figure 2.15) of P, (*) P,,. Since P, () P; forms a subgraph of ./ first color those
edges in ¢ as in P, @ P3;. Next color the edge vy3vp4. Since voy — Va3 — V2 — V21, Uoa — U3 — Up — U2,
Upy — Up3 — Uy — Uz1 and vy — U3 — U — 11 form paths of length 4. Thus the edge ;3024 cannot be colored
with the colors 1,2, 3 and 4 (colors of the edges vxv21, Uz22, UpU21 and uyuy). Thus the edge vp3v24 is colored
with color 5, x/(7) > 5. Now the coloring depicted in Figure 2.15 is an injective edge coloring of /7 with 5

colors. Thus x/(#’) = 5. The graph # is the smallest subgraph of P, () P,, with injective edge chromatic
index 5. Now the following is an injective edge coloring of P, () P,, with 5 colors.

e The edges u1v;; are colored with color 1 for odd i and color 2 for eveni, 1 <i < m.
e The edges v11012, V12013, ** , V1gm—1)V1m With colors 3,3,4,4,3,3,4,4, - - - respectively.

e The edge u;u, is colored with color 1.
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e The edges u,vy; are colored with color 3 for odd i and color 4 for eveni, 1 <i < m.

e The edges 12102, V20023, - -+ , Vam—1)V2m With colors colors 2,2,5,5,2,2,5,5, - - - respectively.

O

Next moving to the injective edge coloring of G @ C,;, where G = P,, or C,,. Let uy,uy,---,u, be the
vertices of G and v;1, v, - - - , Uiy, be the vertices of " copy C;, of Cyy fori=1,2,--- ,n.

Lemma 2.24. Let graph G be either the path P, or the cycle C,,. Then for the graph G (-) Cyy,

i

i.
iii.
Proof.

i

ii.

iii.

No color of the edge v;jvij+1) can be the color of the edges uvy, and vice versa, for i = 1,2,---,n and
pk=1,2,---,m.

The edges u;vj,1=1,2,--- ,nand j =1,2,--- ,m are colored with two distinct colors when m is even.

The edges u;v;j, i =1,2,--- ,nand j =1,2,--- ,m are colored with three distinct colors when m is odd.

Without loss of generality assume j+1 as 1 when j = m. The vertices Vij, Vi(j+1) and u; forms an induced
K3. Also v;j — vjjy1) — u; — vy form a path of length 4, k # j, j + 1.

Since u;,v;; and vj(j+1) form an induced K3, the three edges are colored with distinct three colors. In
particular, the edges u;v;; and u;v;(j+1) are colored with 2 colors say color 1 and color 2. Now coloring
the edges u;v;; with color 1 for odd j and coloring the edges u;v;; with color 2 for even j provides an
injective edge coloring with 2 colors.

Since Uj, Vjj and Vi(j+1) form an induced K3, the three edges are colored with distinct three colors. In
particular, the edges u;v;; and u;v;(j+1) are colored with two colors say color 1 and color 2. Now coloring
the edges u;v;; with color 1 for odd j, j # m and coloring the edges u;v;; with color 2 for even j. Now
the vertices u;, v;,, and vj,—-1) form an induced K3 and similarly the vertices u;, v;, and v;; also form an
induces K3. Thus the edge u;v;,, cannot be colored with color 1 or color 2 (colors of the edges u;v;,-1)
and u;v;1). Thus the edge u;v;, is colored with color 3.

O

Xi(Pn) +4if m=0mod 4,

Theorem 2.25. If n > 2 and m > 3, then x|(P, () C) = { X/(Py) +5if m = 2 mod 4,

Xi(Py) +6if modd.

Proof. Let uy,uy, -+ ,u, be the vertices of P, and v, vp, -+, v be the vertices of i copy Ci, of C,, for
i=1,2,--,n

Case 1. Assume that m = 0 mod 4.

By Proposition 1.1(ii) x/(C},) = 2. Therefore two colors are needed to color the edges of Ci, and by Lemma
2.24(i) and Lemma 2.24(ii), new set of two colors are needed to color the edges u;v;. Color the edges u;v;;
and v;;vy as follows.

For an odd i

e Color the edges v;jvj(j+1), j = 1,2,- -+ ,m with colors 1 and 2 in the pattern 1,1,2,2,1,1,---.
e Color the edges u;v;; with color 3 when j is odd and with color 4 when j is even.

For an even i

e Color the edges v;vj(j+1), j = 1,2, -+ ,m with colors 3 and 4 in the pattern 3,3,4,4,3,3,---.
e Color the edges u;v;; with color 1 when j is odd and with color 2 when j is even.
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Now for any u;u;i.1, the paths w1 — u; — Vi3 — Vi, Ui1 — Wi — V3 — Vpp, Ui — Uis1 — Vis1)3 — U(i+1)a and u; — Ui —
Vi+1)3 — U(ir12 form paths of length 4 and the edges vi3vi4, Vi3V, V(i41)30(i+1)4 and V(i41)37(+1)2 have colors 1,2,3
and 4. Now the edges u;u;.1 of P, are colored with x/(P,) new colors. Hence (P, + Ci) = 4 + x;(Pn).
Case 2. Assume that m = 2 mod 4.

Here x!(Cy) = 3. Therefore color the edges v;jvj(j+1) of Ci. with 3 colors. Now by using Lemma 2.24(ii), the
edges u,v;; are colored with new set of two colors.

For an odd i

e Forj=1,2,--- ,m—2, color the edges v;;vj(j+1) with the colors 1 and 2 in a pattern 1,1,2,2,1,1,--- and
color the edges vj(u-1)vim and v;,,v;1 With color 3.
e Color the edges u;v; with color 4 for odd j, with color 5 for even j.

For an even i

e Forj=1,2,--- ,m—2, color the edges v;;vj(j;1) with the colors 4 and 5 in a pattern 4,4,5,5,4,4,--- and
color the edges vj(u-1)vim and v;,,v;1 With color 3.
e Color the edges u;v; with color 1 for odd j, with color 2 for even j.

Now for any u;uj.1, the paths i 1; — vz — Vi, Uir1t; — Vi3 — Vpp and Ui 1u; — Vi, — v form paths of length
4 and the edges vi3vi, Vi3V and v;,v; have colors 1 and 2 and 3. Similarly, w;uiy1 — V413 — Vge1)4 and
Uillit1 — Ur1)3 — U(i+1)2 form paths of length 4 and the edges vi3vi4, Vi3V have colors 4 and 5. Thus the edges
u;uiy1 cannot be colored with colors 1,2,3, 4 and 5. Now the edges u;u;1 of P, are colored with x’(P,) new
colors. Hence x/(P, + Cy) =5 + x[(Py)-

Case 3. Assume that m is odd.

Here x/(Cy;) = 3. Therefore color the edges v;;v;(j+1) of Cf,, with 3 colors. Now by using Lemma 2.24(iii), the
edges u;v;; are colored with new set of three colors.

Subcase i. m = 1 mod 4.

For an odd i

e Forj=1,2,--- ,m—3, color the edges v;;v;+1) with the colors 1 and 2 in a pattern 1,1,2,2,1,1,--- and
color the edge Vi(m—2)Vign-1), Vigm—1)Vim, VimVin With colors 1, 3,2 respectively.
e Color the edges u;v; with color 4 for j odd and j # m, with color 5 for even j and with color 6 for j = m.

For an even i

e Forj=1,2,--- ,m—3, color the edges v;;v;(+1) with the colors 4 and 5 in a pattern 4,4,5,5,4,4,--- and
color the edge vigu—2)Vign-1), Vign-1)Vim, VimVin With colors 4,6, 5 respectively.
e Color the edges u;v; with color 1 for j odd and j # m, with color 2 for even j and with color 3 for j = m.

Subcase ii. m = 3 mod 4.
For an odd i

e Forj=1,2,--- ,m—3, color the edges v;;v;(+1) with the colors 1 and 2 in a pattern 1,1,2,2,1,1,--- and
color the edge v;, v with color 3.
e Color the edges u;v; with color 4 for j odd and j # m, with color 5 for even j and with color 6 for j = m.

For an even i

e Forj=1,2,--- ,m—1, color the edges v;;v;(+1) with the colors 4 and 5 in a pattern 4,4,5,5,4,4,--- and
color the edge v;, v with color 6.
e Color the edges u;v; with color 1 for j odd and j # m, with color 2 for even j and with color 3 for j = m.

Now for any u;u;.1, the paths w1 u; — i3 — Via, Uir11i — Vi3 —Vjp, Wis1 Ui — Vi — Vi1 Wis1Ui — Viim—1) — Vi form paths of
length 4 and the edges vi3v4, V13012, Vimvi and vigu—1)vin have colors 1, 2 and 3. Similarly, uiui1 —v(1)3 = 0(ir1)4s
Uilli+1 — V(i+1)3 — U(i+1)2 and u;u;q — V(i+1)(m-1) — V(i+1)m form paths of length 4 and the edges Vi3V, U3V and
V(i+1)(m—1)V(i+1)m have colors 4, 5 and 6. Thus the edges u;u;;1 cannot be colored with colors 1,2,3, 4, 5 and 6.
Now the edges u;u;.1 of P, are colored with x!(P,) new colors. Hence x(P, + Cy) = 6 + x[(Py). O
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Let uq,uy, -+ ,u, be the vertices of C,, and vj1,vp, -+ , Vi be the vertices of it copy Ci of C, fori =
1,2,---,n. The following Lemma is on C, @ Cu.

Lemma 2.26. For the graph C,, () Cy,

i. Nocolorof theedgesin the set {u;vij, j = 1,2,--- ,m} can be the color of the edges in the set {uyvyj, j = 1,2, -- , m}
fork=i-1lork=i+1.

ii. When m is even, either three or four distinct colors cannot be the color of v;jvi(j.1y for each i.

iti. When m is odd, either four or five distinct colors cannot be the color of v;;vi(j+1) for each i.
Proof. Without loss of generality assume i+ 1as1wheni=nandi—1asn wheni=1.

i. Forany j,1=1,2, -+ ,m, vjj—u; — uj11 — U1y forms paths of length 4. Thus no color of the edges in the
set {u;vjj,j = 1,2,--- ,m} can be the color of the edges in the set {u1)v(i+1);,j = 1,2,--- ,m}. Similarly
vjj — U — ui-1 — U(;i-1y forms paths of length 4. Thus no color of the edges in the set {u;v;;,j = 1,2,--- ,m}
can be the color of the edges in the set {u_1)vi-1);,j = 1,2, ,m}.

ii. The color of u;_1u; and u;u;;1 cannot be the color of v;jv;(j11), since u;—1 — u; — v;j — vj(j+1) and U1 — 1 —
vjj — vi(j+1) form paths of length 4. Also by Lemma 2.24(i) and Lemma 2.24(ii) the two colors of u,v;;
cannot be the color of v;;v;j+1). Now if the edges u;_1u; and u;u;,1 are of same colors, then a total of
three colors cannot be the color of v;;v;j+1). And if the edges u;_1u; and u;u;,1 are of different colors,
then a total of four colors cannot be the color of v;;vj(js1).

iii. The color of u;_1u; and u;u;;1 cannot be the color of v;;v;(js1), since u;_1 — u; — v;j — vi(jr1y and w1 — u; —
vjj — vj(j+1) form paths of length 4. Also by Lemma 2.24(i) and Lemma 2.24(iii) the three colors of u,v;;
cannot be the color of v;;jv;j+1). Now if the edges u;_1u; and u;u;,1 are of same colors, then a total of
four colors cannot be the color of v;jv;j;1). And if the edges u;1u; and u;u;41 are of different colors,
then a total of five colors cannot be the color of v;;vj(j11).

|
6if m=0mod 4,
7if m=2mod 4,

8ifmis odd and n # 3,
9if mis odd andn = 3.

Theorem 2.27. For m,n > 3, x/(Cy () C) =

Proof. Let uy,uy,--- ,u, be the vertices of C, and vj1,vp, -+, Vi be the vertices of ith copy Cfﬂ of C,, for
i=1,2,---,n.

1. m =0 mod 4.
Here x!(Cy) = 2. Now by Lemma 2.24(ii), Lemma 2.24(iii) and Lemma 2.26(ii), we can see that at
least 6 colors are needed to color C, () C,,. Now providing an injective edge coloring with 6 colors
concludes.
Case 1. Assume that 7 = 0 mod 4.

e For odd i, color the edges v;;vj(j+1) with colors 1 and 2 in the pattern 1,1,2,2,1,1,---. Also color
the edges u;v;; with colors 3 for odd j and with color 4 for even j.

e For even i, color the edges v;;v;(j+1) with colors 3 and 4 in the pattern 3,3,4,4,3,3,---. Also color
the edges u;v;; with colors 1 for odd j and with color 2 for even j.

o For the edges ujuizq,1=1,2,--+ ,n, without loss of generality assume i + 1 = 1 when i = n. Color
the edges u;u;1 with colors 5 and 6 in the pattern 5,5, 6,6,5,5,---.

Case 2. Assume that n =1 mod 4.
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For odd i and i # n, color the edges u;v;; with colors 1 for odd j and with color 2 for even j.

For even i, color the edges u;v;; with colors 3 for odd j and with color 4 for even j.

For i = n, color the edges u;v;; with colors 5 for odd j and with color 6 for even j.

Fori=2,3,--- ,n -3, color the edges u;u;;; with colors 5 and 6 in the pattern 5,5, 6,6,5,5,---.
Color the edges uyuy, uguy,, uytty,—1 and u,—1u,—» with colors 3,2,4, and 1 respectively.

By Lemma 2.26(ii), either three or four colors cannot be the color of v;;vj(j11). Also xi(Cy) = 2
then the remaining two colors are used to color the edges v;;v;(+1), for each i.

Case 3. Assume that n = 2 mod 4.

Fori=1,2,--- ,n—2, color the edges u;u;,; with the colors 1 and 2 in the pattern1,1,2,2,1,1,---.
Color the edges u,-1u, and u,u; with color 3.

Color the edges u1v1; with color 2 for odd j and with color 5 for even j.

Color the edges uyv;; with color 1 for odd j and with color 4 for even j.

Fori=3,5,7,--- ,n -3, color the edges u;v;; with color 3 for odd j and with color 5 for even j.
Fori=4,6,8,--- ,n -2, color the edges u;v;; with color 2 for odd j and with color 4 for even j.
Color the edges u,-17(,-1); with color 1 for odd j and with color 5 for even j.

Color the edges u,v, i with color 3 for odd j and with color 4 for even j.

By Lemma 2.26(ii), either three or four colors cannot be the color of v;;v;(s1). Also Xi(Cn) =2
then the remaining two colors are used to color the edges v;;v;(j+1), for each i.

Case 4. Assume that n = 3 mod 4.

Fori=1,2,--- ,n -3, color the edges u;u;;; with colors 1 and 2 in the pattern 1,1,2,2,1,1,---.
Color the edges uuy, uytiy—1, up-1u,—2 with colors 2,3,1 respectively.

Color the edges u;v1; with color 5 for odd j and with color 6 for even j.

Color the edges u,2v(,-2); with color 1 for odd j and with color 4 for even j.

Color the edges u,,-19(;-1); with color 3 for odd j and with color 5 for even j.

Color the edges u,,v,,; with color 2 for odd j and with color 4 for even j.

Fori=2,6,10,---,i <n—1, color the edges u;v;; with color 1 for odd j and with color 3 for even

j.
e Fori=3,5,7,9,---,i <n-2, color the edges u;v;; with color 4 for odd j and with color 5 for even

e Fori=4,8,12,---,i < n, color the edges u;v;; with color 2 for odd j and with color 3 for even j.
e By Lemma 2.26(ii), either three or four colors cannot be the color of v;;vj(j11). Also xi(Cy) = 2
then the remaining two colors are used to color the edges v;;v;(j+1), for each i.

2. m =2 mod 4.
For C, at least two colors are needed for an injective edge coloring, therefore there are two edges
say uiuir1 and w1 with distinct two colors. Then by Lemma 2.26(ii), four colors cannot be the
color of v;jvj(j+1). Also xi(Cy) = 3. Thus a new set of three colors are needed to color the edges of

Cfﬂ. Hence x;(C, @ Cn) 2 7. Now providing an injective edge coloring with seven colors shows that
X/(Cy (O C) = 7. The coloring is given as follows.

Case 1. Assume that n = 0 mod 4.

e Fori=1,2,---,n,color the edges u;u;;; with color 1 and 2 in the pattern1,1,2,2,1,1, - - -. Without
loss of generality assume i+ 1as 1 wheni = n.
e Leti=2,6,10,---.
- Color the edges u;v;; with color 1 for odd j and with color 3 for even j.

- Forj=1,2,--- ,m-2, color the edges u;ju;(j;1) with color 2 and 4 in the pattern 2, 2,4,4,2,2, - - -
and color the edges uj(—1)Uin and u;,u; with color 5.
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o Leti=4,8,12,---.
— Color the edges u;v;; with color 2 for odd j and with color 3 for even ;.
- Forj=1,2,--- ,m=2, color the edges u;ju;(j:1) with color 1 and 4 in the pattern 1, 1,4,4,1,1, - - -
and color the edges (1)t and u;,u;y with color 5.
e Letibe odd.

— Color the edges u;v;; with color 4 for odd j and with color 5 for even ;.
- Forj=1,2,--- ,m-2, color the edges u;ju;(j+1) with color 3 and 6 in the pattern 3, 3, 6,6, 3,3, - - -
and color the edges u(u—1)Uim and u;,uy with color 7.

Case 2. Assume thatn =1 mod 4 and n = 3 mod 4.

For odd i and i # n, color the edges u;v;; with colors 1 for odd j and with color 2 for even j.

For even i, color the edges u;v;; with colors 3 for odd j and with color 4 for even j.

For i = n, color the edges u,v;; with colors 5 for odd j and with color 6 for even j.

Fori=2,3,--- ,n -3, color the edges u;u;;; with colors 5 and 6 in the pattern 5,5, 6,6,5,5,---.
color the edges uou1, uyuy, tyty—1 and u,_qu,— with colors 3,1,4, and 2 respectively.

By Lemma 2.26(ii), either three or four colors cannot be the color of v;;vj(j,1). Also x[(Cw) = 3
then the remaining three colors are used to color the edges v;;v;(j;1), for each i.

Case 3. Assume that n = 2 mod 4.

Fori=1,2,--- ,n—2, color the edges u;u;;; with the colors 1 and 2 in the pattern 1,1,2,2,1,1,---.
Color the edges u,-1u, and u,u; with color 3.

Color the edges u;v1; with color 2 for odd j and with color 6 for even ;.

Color the edges u,v,; with color 1 for odd j and with color 4 for even j.

Color the edges u,2v(;-2); with color 2 for odd j and with color 4 for even j.

Color the edges u,,-19(;-1); with color 1 for odd j and with color 6 for even j.

Color the edges u,,v,,; with color 4 for odd j and with color 5 for even j.

Fori=3,5,7,--+,n =3, color the edges u;v;; with color 5 for odd j and with color 6 for even j.
Fori=4,6,8,---,n — 4, color the edges u;v;; with color 3 for odd j and with color 4 for even j.
By Lemma 2.26(ii), either three or four colors cannot be the color of v;;v;;+1). Also x/(Cp) = 3
then the remaining three colors are used to color the edges v;;v;(+1), for each i.

3. moddand n # 3
Here x/(C,;) = 3. Also by Lemma 2.24(i), Lemma 2.24(iii) and Lemma 2.26(iii) x;(C, () Cu) = 8. Now
providing an injective edge coloring with eight colors shows that x/(C, (-) Cix) = 8. The coloring is
given as follows.

Case 1. Assume that n = 0 mod 4.

e For odd i, color the edges u;v;; with colors 1 when j is odd and j # m, with color 2 when j is even
and with color 3 when j = m.

e For even i, color the edges u;v;; with colors 4 when j is odd and j # m, with color 5 when j is
even and with color 6 when j = m.

e Color the edges u;u;.1 with color 7 and 8 in the pattern7,7,8,8,7,7,---.

e For odd i, color the edges of Cin with colors 4,5 and 6.

e For even i, color the edges of Ci with colors 1,2 and 3.

Case 2. Assume that n =1 mod 4.

e Fori=1,2,---,n -1, color the edges u;u;;1 with colors 1,2,3,4,1,2,3,4 and color the edge u,u
with color 5.
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e For i =n, color the edges u,;v;; with colors 2 when j is odd and j # m, with color 5 when j is even
and with color 7 when j = m.

e Fori =1, color the edges u;v;; with colors 1 when j is odd and j # m, with color 3 when j is even
and with color 8 when j = m.

e For i = 2, color the edges u;v;; with colors 2 when j is odd and j # m, with color 4 when j is even
and with color 6 when j = m.

e Fori=3,7,11,---, color the edges u;v;; with colors 3 when j is odd and j # m, with color 5 when
j is even and with color 7 when j = m.

e Fori=4,8,12,---, color the edges u,;v;; with colors 4 when j is odd and j # m, with color 6 when
j is even and with color 8 when j = m.

e Fori=5,9,13,--- andi < n -1, color the edges u;v;; with colors 1 when jis odd and j # m, with
color 5 when j is even and with color 7 when j = m.

e Fori=6,10,14,---, color the edges u;v;; with colors 2 when jis odd and j # m, with color 6 when
j is even and with color 8 when j = m.

e By Lemma 2.26(iii), either four or five colors cannot be the color of v;;v;(j+1). Also x;(Cy) = 3 thus
the remaining three colors are used to color the edges of C,, for each i.

Case 3. Assume that n = 2 mod 4.

e Fori=1,2,--- ,n-2, color the edges u;u;,; with the colors 1 and 2 in the pattern 1,1,2,2,1,1,---.

e Color the edges u,-1u, and u,u; with color 3.

e Fori =1, color the edges u;v;; with colors 2 when j is odd and j # m, with color 6 when j is even
and with color 7 when j = m.

e For i = n, color the edges u;v;; with colors 3 when jis odd and j # m, with color 4 when j is even
and with color 5 when j = m.

e Fori =n -1, color the edges u;v;; with colors 1 when j is odd and j # m, with color 6 when j is
even and with color 7 when j = m.

e Fori=2,6,10,---,i < n -1, color the edges u;v;; with colors 1 when j is odd and j # m, with
color 4 when j is even and with color 5 when j = m.

e Forioddand 3 <i < n -3, color the edges u;v;; with colors 3 when j is odd and j # m, with color
6 when j is even and with color 7 when j = m.

e Fori=4,8,12,---,i < n—1, color the edges u;v;; with colors 2 when j is odd and j # m, with
color 4 when j is even and with color 5 when j = m.

e By Lemma 2.26(iii), either four or five colors cannot be the color of v;;vj(j+1). Also x(Cy) = 3 thus

the remaining three colors are used to color the edges of Ci,, for each .

Case 4. Assume that n = 3 mod 4.

e Fori =1, color the edges u;v;; with colors 1 when j is odd and j # m, with color 2 when j is even
and with color 3 when j = m.

e For i =2, color the edges u;v;; with colors 4 when j is odd and j # m, with color 5 when j is even
and with color 6 when j = m.

e For i = n, color the edges u;v;; with colors 6 when j is odd and j # m, with color 7 when j is even
and with color 8 when j = m.

e Fori=3,7,11,---,i < n, color the edges u;v;; with colors 1 when jis odd and j # m, with color 2
when j is even and with color 7 when j = m.

e Foreveni, 4 <i<n,i<n,color the edges u;v;; with colors 3 when j is odd and j # m, with color
4 when j is even and with color 5 when j = m.

e Fori=5,9,13,---,i < n, color the edges u;v;; with colors 1 when j is odd and j # m, with color 2
when j is even and with color 6 when j = m.

e Color the edges uy—uy—1, Up—1Uy, Unti1, u1u, with colors 2,4,1 and 3 respectively and for i =
2,3,4,--- ,n =3, color the edges u;u;.1 with the colors 7 and 6 in the pattern 7,7,6,6,7,7,- - -.



Bhanupriya C K et al. / Filomat 37:12 (2023), 3963-3983 3980

By Lemma 2.26(iii), either four or five colors cannot be the color of v;;v;j+1). Also x/(C;,) = 3 then
the remaining three colors are used to color the edges of C,, for each i.

m’s

4. moddandn =3
By Lemma 2.24(iii) and Lemma 2.26(i), nine distinct colors are used to color the edges u;v;;,i=1,2,3
and j =1,2,--- ,m. Therefore x;(Cs @ Cu) 2 9. Now providing an injective edge coloring with nine
colors shows that x/(C3 () Cx) = 9. The coloring is given as follows.

For i = 1, color the edges u;v;; with color 1 when jis odd and j # m, with color 2 when j is even
and with color 3 when j = m.

For i = 2, color the edges u;v;; with color 4 when jis odd and j # m, with color 5 when j is even
and with color 6 when j = m.

For i = 3, color the edges u;v;; with color 7 when j is odd and j # m, with color 8 when j is even
and with color 9 when j = m.

Color the edges of the cycle C}, with colors 5,6 and 7.

Color the edges of the cycle C% with colors 1,2 and 3.

Color the edges of the cycle C3, with colors 2,3 and 4.

Color the edges uu, upuz and uzu; with colors 1, 4 and 5.

3. On the complexity of Injective edge coloring

In the literature, few authors have studied the complexity of the injective edge coloring problem [4, 8]. The
results are depicted as follows. First here describe the injective 3-edge coloring is NP-complete for some
classes of graphs in Figure 3.1.

Planar subcubic graphs with girth g > 3

Triangle free cubic graphs Subcubic graphs with girth g = 6

Figure 3.1: Injective 3-edge coloring is NP-complete

Also in [4, 8] the authors have proved that the injective k-edge coloring is NP-complete for the following

graphs.

e Graphs with maximum degree atmost 5 V3k.

e Graphs with maximum degree O( V).

And injective 4-edge coloring is NP-complete for cubic graphs. Further, the authors proved that injective
k-edge coloring is polynomial-time solvable for outer planar graphs and Ks-minor free planar graphs.

Here CHRIND () denotes the chromatic index problem restricted to graphs with property . A result on
the complexity of proper edge coloring of regular graphs is given as follows.

Theorem 3.1 ([2]). For each r > 3, CHRIND (r-regular graph) is NP-complete.
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By using Theorem 3.1, it is obtained that, the problem of checking whether the injective edge chromatic
index of a (2, 3, r)-triregular graph is r is NP-complete.

Definition 3.2. Let p,qand r be integers, 1 < p < q <r. A graph is said to be (p, q, r)-triregular graphs if its vertices
assume exactly three different values p,q and r.

Instance: A (2,3, r)-triregular graph G.
Question: Is x(G) = r?

Figure 3.2: Edge gadget E with an injective 3 edge coloring

To prove Theorem 3.3, we use the gadget E in Figure 3.2 same as in [8].

Theorem 3.3. For each v > 3, it is NP-complete to determine whether the injective edge chromatic index of a
(2,3, r)—triregular graph is r.

Proof. Let G be the input r-regular graph. The proof will be proceeded by two steps: first create a
(2,3, r)—triregular graph H from G, then we show that H has an injective r-edge coloring if and only if
G is properly r-edge colorable.

Create the graph H from G by removing all edges of G. For each edge uv of G, create a copy of a gadget
E and connect it to u and v. Add eight new vertices iy, juo, @uvs buo, Cuvs Puvs Guo and 7y, Also create the
following edges wiyo, Vivy, fuo juvs Juvluw, JuvCuos Auobuv, buvCuo, AuoPuo, Cuvuo, VuvGuo, Puofu a0 GuoTuo-

Let G be a graph on n vertices and m edges. On creating the graph H, corresponding to each edge eight
vertices are added, thus H has 8m + n vertices. In which n vertices have degree r, 6m vertices have degree 3
and 2m vertices have degree 2. Thus H becomes a (2, 3, r)— triregular graph.

Further, it is clear from [8] that G is proper r-edge colorable if and only if H is injectively r-edge colorable.
As r > 3, there are enough colors to color the edges of the edge gadget E added in place of each edge. O

Now by using the gadget # in Figure 3.3, here shows that it is NP-complete to determine the injective
edge chromatic index of (2,4, r)-triregular graph is .

Theorem 3.4. For each v > 3, it is NP-complete to determine whether the injective edge chromatic index of a
(2,4, r)—triregular graph is r.

Proof. Let G be the input r-regular graph. It will be proceeded in two steps: first create a (2,4, r)— triregular
graph H from G, then we show that H has an injective r-edge coloring if and only if G is properly r-edge
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Figure 3.3: Edge gadget ¥ with an injective 2 edge coloring

colorable.

Create the graph H from G by removing all edges of G. For each edge uv of G, create a copy of a gadget ¥
and connect it to # and v. Add four new vertices a,b, c and d. Also create the following edges ua, va, ad, ab, cd
and cb.

Let G be a graph on n vertices and m edges. On creating the graph H, corresponding to each edge four
vertices are added, thus H has 4m + n vertices. In which n vertices have degree r, 3m vertices have degree 2
and m vertices have degree 4. Thus H becomes a (2, 4, r)— triregular graph.

If G has an r-edge coloring c, then injectively r-edge color H by assigning to ua, va,ad and ab in H the color
c(uv); then extend the coloring to each gadget ¥ corresponding to each edge, by assigning any one of the
color from the remaining r — 1 colors to bc and cd.

Conversely, if H has an injective r-edge coloring, then color an edge uv of G with the color of the edge ua (or va)
of H. The coloring is proper since the color of ua and va are the same. O

Similarly for an r-edge colorable graph, construct a graph G’ by subdividing each edge uv to ux and xv
by adding a vertex x and assigning the same color of uv to ux and xv gives an injective r-coloring of G’. The
converse also follows similarly. The graph thus obtained is a (2, r)-biregular graph.

Corollary 3.5. For each r > 3, it is NP-complete to determine whether the injective edge chromatic index of a

(2, r)=biregular graph is r.

4. Conclusions

In this article, the injective edge chromatic index of different graph products are obtained. In particular,
the injective edge chromatic index of union of finite number of graphs, injective edge chromatic index of
join of G and H, where G, H = K, K;, P, Cy, L, and the injective edge chromatic index of Cartesian product
(or corona) of G and H are obtained for G,H = P,, C,. Also determined bounds for x/(G) for the resultant
graph G obtained by the operations join and corona. Furthermore, the injective edge colouring problem
with 7 > 3 has been shown to be NP-complete for (2, 3, r)-triregular graphs, (2,4, r)-triregular graphs, and
(2, r)-biregular graphs. It is also open to compute the exact values of the injective chromatic index x!(GOH)
and x/(G () H) for any two arbitrary graphs G and H and the complexity of other classes of graphs.
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