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Abstract. A subalgebra A(X) of C(X) is said to be a β-subalgebra if it is closed under bounded inversion
and the space of its maximal ideals equipped with the hull-kernel topology is homeomorphic to βX with
a homeomorphism which leaves X pointwise fixed. Kharbhih and Dutta in [Closure formula for ideals
in intermediate rings, Appl. Gen. Topol. 21 (2) (2020), 195-200] showed that the closure of every ideal
I of an intermediate ring with the m-topology, briefly, the m-closure of I, equals the intersection of all
maximal ideals in A(X) containing I. In this paper, we extend this fact to the class of β-subalgebras which
is shown to be a larger class than intermediate rings. We also study a more extended class of subrings than
β-subalgebras, namely, LBI-subalgebras, and characterize the conditions under which an LBI-subalgebra
is a β-subalgebra. Moreover, some known facts in the context of C(X) and intermediate rings of C(X) are
generalized to β-subalgebras.

1. Introduction

Throughout this article all topological spaces are assumed to be completely regular and Hausdorff. For
a given topological space X, C(X) denotes the algebra of all real-valued continuous functions on X, C∗(X)
denotes the subalgebra of C(X) consisting of all bounded elements. A subalgebra A(X) of C(X) is called
intermediate, if C∗(X) ⊆ A(X).

For a topological space X, βX denotes the Stone-Cˇech compactification of X. It is well-known that every
f ∈ C(X) has a continuous extension f ∗ from βX toR∗ (the one-point compactification ofR). For an element
f of a subalgebra A(X), we denote by SA( f ) the set {p ∈ βX : ( f1)∗(p) = 0;∀1 ∈ A(X)}. This mapping was
first introduced and applied to study subalgebras of C(X) in [18], and then was applied in [12] to establish
a topological characterization of z-ideals in a class of subalgebras of C(X), namely, LBI-subalgebras. It also
was used in [13], [14], [15], [16], [14], and [17] to study the intermediate rings of C(X). It is easy to show that
SA( f )∩SA(1) = SA( f 2+12), SA( f )∪SA(1) = SA( f1), and SA( f n) = SA( f ) for each n ∈N. Also, SC( f ) = clβXZ( f ),
SC∗ ( f ) = Z( f β), clβXZ( f ) ⊆ SA( f ) ⊆ Z( f ∗), SA( f ) ∩X = Z( f ), and intβXSA( f ) = intβXclβXZ( f ) for each f ∈ A(X).
For p ∈ βX, { f ∈ A(X) : p ∈ SA( f )} is denoted by Mp

A. Obviously, Mx
A = { f ∈ A(X) : x ∈ Z( f )} for each x ∈ X.

Mp
C and Mp

C∗ are simply denoted by Mp and M∗p, respectively.
A subalgebra A(X) of C(X) is called intermediate, if C∗(X) ⊆ A(X). Following [18], a subalgebra A(X) is

said to be β-determining if {Z( f ∗) : f ∈ A(X)} separates points from closed sets in βX, and is said to be a
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β-subalgebra if the mapping p 7→ Mp
A is a homeomorphism from βX to Max(A(X)) (the space of maximal

ideals of A(X) endowed with the hull-kernel topology). Also, A(X) is called closed under inversion if
f−1
∈ A(X), whenever f ∈ A(X) with Z( f ) = ∅ and is called closed under bounded inversion if f−1

∈ A(X),
whenever f ∈ A(X) is bounded away from zero. Furthermore, A(X) is said to be closed under local bounded
inversion, briefly, an LBI-subalgebra, if there exists 1 ∈ A(X) such that f1|X−Z = 1, whenever f ∈ A(X) with
f > δ > 0 on X−Z, where Z ∈ Z(X) is a zero-set. It is proved in [18, Theorem 2.8] that A(X) is a β-subalgebra
if and only if A(X) is β-determining and closed under bounded inversion. Also, it is shown in Theorem
2.1 of [5] that in the class of uniformly closed subalgebras, bounded invertibility is equivalent to locally
bounded invertibility, and both are equivalent to the subalgebra to be a lattice ordered ring. We give more
properties of these subalgebras in the next section.

Edwin Hewitt in [9], first introduced and studied the notion of m-topology on C(X). The basic open
sets for the neighborhood system of every f ∈ C(X) in this topology are the sets of the form B( f ,u) = {1 ∈
C(X) : | f − 1| ≤ u} where u is a positive unit in C(X). Hewitt in the same paper proved that every maximal
ideal in C(X) is closed under m-topology, briefly, is m-closed. Gillman et al. in [8] generalized this fact and
showed that every m-closed ideal in C(X) is an intersection of maximal ideals. This fact was also shown
by Shirota in [23]. It was shown that C(X) with the m-topology is a topological ring. It is also known
that in any topological ring, the closure of a proper ideal is either a proper ideal or the whole ring, see
[7, 2M.1]. The m-topology on subrings of C(X) has been studied by several authors. Gillman et al in [8]
studied C∗(X) as a subspace of C(X) with the m-topology and showed that the closed ideals in C∗(X) coincide
with the intersections of maximal ideals in this ring. Acharyya et al and Veisi independently studied the
m-topology on the functionally countable subalgebra of C(X); Cc(X), and introduced mc-topology in [2] and
[24], respectively. They showed that mc-closed ideals in Cc(X) are precisely the intersections of maximal
ideals in Cc(X). Kharbhih and Dutta in [10] studied this topology on intermediate rings of C(X) and proved
that in such rings, m-closed ideals are precisely the intersections of maximal ideals. They applied the
mappingZA in intermediate rings previously defined and studied in [20], to achieve their main result.

In this paper, we first study LBI and β-subrings of C(X) and give some properties of these rings. It is
shown that every β-subalgebra is an LBI-subalgebra, however, the converse of this fact does not necessarily
hold; a class of counterexamples is provided. Moreover, the conditions under which these two classes of
subrings coincide are characterized. We then extend the topological description of the mappingZA, which
was previously established in [12, Theorem 2.1] for intermediate rings, to the β-subalgebras. Using this, it is
shown that, similar to intermediate rings, β-ideals (the ideals I for whichZ−1

A ZA[I] = I) are intersections of
maximal ideals in β-subalgebras. We then study the m-topology on β-subrings and show that the m-closed
ideals in such rings are precisely the β-ideals, and hence are the intersections of maximal ideals. We note
that, in this paper, subrings are assumed to be unitary and hence, all subalgebras contain the real numbers
as constant functions.

2. More on LBI and β-subalgebras

It is easy to see that Mp
A, for each p ∈ βX, is a prime ideal in an arbitrary subalgebra A(X) of C(X) which is

not necessarily maximal. In fact, every maximal ideal in A(X) is of the form Mp
A for some p ∈ βX if and only

if A(X) is closed under bounded inversion ([18, Proposition 2.7]). Hence, in such subalgebras, an element
f is invertible if and only if SA( f ) = ∅. Consequently, the ideals Mp

A are neither necessarily maximal nor
necessarily distinct. It was established in [12, Lemma 2.1] that in the class of LBI-subalgebras, each ideal
Mp

A would be maximal. Also, according to [18, Proposition 2.6], the ideals Mp
A are all distinct if and only if

A(X) is a β-subalgebra. The next proposition investigates some equivalent conditions on an LBI-subalgebra
to be a β-subalgebra.

Proposition 2.1. Let A(X) be an LBI-subalgbera of C(X). The following statements are equivalent:

1. A(X) is a β-subalgebra.
2. The collection {SA( f ) : f ∈ A(X)} constitutes a base for the closed subsets in βX.
3. A(X) separates zero-sets in X.
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Proof. 1⇔2) An easy consequence of [18, Theorem 2.8].
2⇒3) Let Z1 and Z2 be two disjoint zero-sets in X. It follows that clβXZ1 ∩ clβXZ2 = ∅ and hence, by the

hypothesis, there exists f ∈ A(X) such that clβXZ1 ⊆ SA( f ) and clβXZ2 ∩ SA( f ) = ∅. By the properties of βX,
there exists Z ∈ Z(X), such that SA( f ) ⊆ intβXclβXZ and clβXZ2∩clβXZ = ∅. Hence, SA( f )∩(βX−intβXclβXZ) = ∅.
We denote the set βX − intβXclβXZ briefly by F. It follows that for each p ∈ F, there exits 1p ∈ A(X) such that
( f1p)∗(p) , 0 which means there exists a neighborhood Up of p in βX such that, without lose of generality,
f1p ≥ 1 on Up ∩ X. Evidently, F ⊆ ∪p∈F Up. Hence, as F is compact, there exist p1, ..., pn ∈ F such that
F ⊆ ∪n

i=1Upi . We set 1 = 12
p1
+ ... + 12

pn
and U = Up1 ∪ ... ∪Upn . It follows that f 21 ≥ 1 on U ∩ X and hence on

X−Z, since X−Z ⊆ U∩X. Now, as A(X) is an LBI-subalgebra, there exists h ∈ A(X) such that ( f 21h))|X−Z = 1.
Now, if we set k = f 2.1.h, then k ∈ A(X), k(Z1) = {0}, since Z1 ⊆ Z( f ), and k(Z2) = {1}, since Z2 ⊆ X − Z.

3⇒2) Let F be a closed set in βX and p < F. Hence, there exist f , 1 ∈ C(X) such that p ∈ clβXZ( f ),
F ⊆ clβXZ(1), and clβXZ( f ) ∩ clβXZ(1) = ∅. It follows that Z( f ) ∩ Z(1) = ∅, and hence, by the hypothesis,
there exists h ∈ A(X) such that h(Z( f )) = {1} and h(Z(1)) = {0}. We set k = 2h

1+h2 . As A(X) is an LBI-
subalgebra, we clearly have k ∈ A∗(X), k(Z( f )) = {1}, and k(Z(1)) = {0}. Obviously it is inferred that
clβXZ(1) ⊆ clβXZ(k) ⊆ SA(k), and clβXZ( f ) ⊆ clβXk−1({1}) ⊆ βX − SA(k). Therefore, k ∈ A(X), p < SA(k), and
F ⊆ SA(k). Note that, for each p ∈ clβXk−1({1}), we have hβ(p) = 1 which implies p < SA(k).

We next show that every β-subalgebra is an LBI-subalgebra. To this aim, we need the next lemma which
investigates a characterization of the subalgebras closed under bounded inversion in terms of the mapping
SA.

Lemma 2.2. The following statements are equivalent for a subalgebra A(X):

1. f is invertible in A(X) if and only if SA( f ) = ∅.
2. A(X) is closed under bounded inversion.

Proof. 1⇒2) Let M be a maximal ideal in A(X) and f ∈ M. Assume on the contrary that M , Mp
A for each

p ∈ βX. Hence, for each p ∈ βX, there exists fp ∈ M such that fp < Mp
A; i.e., p < SA( fp). It follows that

{βX− SA( fp)}p∈βX constitutes an open cover for βX. Thus, there exist p1, ..., pn in βX such that {βX−SA( fpi )}
n
i=1

covers βX. This implies that f = f 2
p1
+ ... + f 2

pn
∈M and SA( f ) = ∅which leads to a contradiction with regard

to the hypothesis.
2⇒1) If SA( f ) = ∅, then f < Mp

A for each p ∈ βX which by [18, Proposition 2.7], means that f misses
every maximal ideal in A(X), and thus f−1

∈ A(X). Moreover, it is obvious that whenever f−1
∈ A(X), then

SA( f ) = ∅.

Proposition 2.3. Every β-subalgebra is an LBI-subalgebra.

Proof. If f ∈ A(X) with f ≥ 1 on X − Z for some Z ∈ Z(X), then Z( f ∗) ∩ clβX(X − Z) = ∅, and hence,
by Proposition 2.1, there exists 1 ∈ A(X) such that clβX(X − E) ⊆ SA(1) and Z( f ∗) ∩ SA(1) = ∅. Thus,
SA( f 2+12) = SA( f )∩SA(1) = ∅, which by the fact that every β-subalgebra is closed under bounded inversion
(see [18, Theorem 2.8]), and Lemma 2.2, imply that f 2 + 12 is invertible in A(X). Hence, there exists h ∈ A(X)
such that ( f 2 + 12)h = 1. Obviously, ( f 2 + 12)h|X−E = f ( f h)|X−E = 1.

It should be emphasized that the converse of Proposition 2.3 does not necessarily hold, see Remark 2.4.

Remark 2.4. The subrings of the form I + R and Iu + R , where I is an ideal in C(X) and Iu denotes the
closure of I under the uniform topology on C(X), were first introduced and studied by Rudd in [22]. These
subalgebras then were again extensively studied by Azarpanah et al. in [4]. It was asserted in [22, Remark
4.1] that I +R, for each ideal I ∈ C(X), is closed under inversion. However, the same fact does not hold for
Iu + R, in general, see [22, Example 4.2]. According to [22, Lemma 2.2], the subalgebras Iu + R are closed
under bounded inversion. It was also proved in [5, Theorem 2.1] that a uniformly closed subalgebra of C(X)
is an LBI-subalgebra if and only if it is closed under bounded inversion. Hence, the subalgebras Iu +R are
all LBI-subalgebras of C(X) as they are uniformly closed; in fact, (I +R)u = Iu +R according to [22, Remark
2.13]. A straightforward proof shows that the subalgebras I + R and Iu + R are β-subalgebras if and only
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if I = Mp for some p ∈ βX. Consequently, whenever X is a non-pseudocompact space (i.e., C(X) , C∗(X) or
equivalently βX , υX where υX denotes the Hewitt realcompactification of X), then (Mp

∩Mq)u + R, for
each p, q ∈ βX − υX, is an LBI-subalgebra which is not a β-subalgebra. Also, Mp +R, for each p ∈ βX − υX,
is a β-subalgebra which is not an intermediate ring.

In the final result of this section, we provide a generalization of [13, Theorem 2.3] to the β-subalgebras.
It was shown in the mentioned theorem that the equality SA( f ) = clβXZ( f ), for each f ∈ A(X), characterizes
C(X) among its intermediate rings. We note that an intermediate ring A(X) is closed under inversion if and
only if it coincides with C(X).

Proposition 2.5. Let A(X) be a β-subalgebra of C(X). Then A(X) is closed under inversion if and only if SA( f ) =
clβXZ( f ) for each f ∈ A(X).

Proof. The sufficiency is obvious. For the necessity, assume on the contrary that there exists f ∈ A(X)
such that clβXZ( f ) , SA( f ). Then there exists p ∈ SA( f ) − clβXZ( f ), and thus, by the hypothesis and
Proposition 2.1, there exists 1 ∈ A(X) such that p ∈ SA(1) and SA(1) ∩ clβXZ( f ) = ∅. It follows that
Z( f 2 + 12) = Z( f )∩Z(1) = ∅, and hence, by the hypothesis, f 2 + 12 is a unit of A(X) which by Proposition 2.3
implies that SA( f ) ∩ SA(1) = SA( f 2 + 12) = ∅; a contradiction.

3. An m-closure formula for ideals of β-subalgebras

In [10], the mapping ZA was applied to obtain the m-closure formula for ideals of intermediate rings.
This mapping was first introduced in [20] to characterize maximal ideals of intermediate rings, asZA( f ) =
{E ∈ Z(X) : ∃1 ∈ A(X), f1|X−E = 1}. This mapping has been extensively used in the context of subrings of
C(X), see for example [19] and [21]. The notion of β-ideals in intermediate rings introduced and studied in
[6] as the ideals I for whichZ−1

A ZA(I) = I, whereZ−1
A (F ) means { f ∈ A(X) : ZA( f ) ⊆ F } for a z-filter F . It

was established in [10] that m-closed ideals in intermediate rings are precisely β-ideals.
A topological description of the mappingZA in terms of the mapping SA was investigated in Theorem

2.1 of [15];ZA( f ) = {Z ∈ Z(X) : SA( f ) ⊆ intβXclβXZ( f )} for each f ∈ A(X). Using the mentioned description, it
is easy to see that β-ideals in intermediate rings are simply intersections of maximal ideals. Hence, a β-ideal
in an intermediate ring A(X) is a z-ideal in A(X). We next extend the mentioned topological description of
ZA to the β-subalgebras and then show that in such subalgebras β-ideals are also precisely the intersections
of maximal ideals; we need the following lemma.

Lemma 3.1. The following statements hold for a β-subalgebra A(X).

1. For any two disjoint closed sets F1 and F2 in X, there exists f ∈ A(X), such that F1∩SA( f ) = ∅ and F2 ⊆ SA( f ).
2. For each two disjoint closed sets F1,F2 inβX, there exists f ∈ A(X) such that F1 ⊆ intβXSA( f ) and F2∩SA( f ) = ∅.

Proof. (1) Straightforward.
(2) For each p ∈ F1, we have p < F2, and hence, there exists 1p ∈ C∗(X) such that p ∈ intβXZ(1βp) and

Z(1βp) ∩ F2 = ∅. Thus, there exists fp ∈ A(X) such that Z(1βp) ⊆ SA( fp) and SA( fp) ∩ F2 = ∅. It follows

that p ∈ intβXZ(1βp) ⊆ SA( fp), and thus F1 ⊆
⋃

p∈F1
intβXSA( fp). Hence, there exist p1, .., pn ∈ F1 such that

F1 ⊆
⋃n

i=1 intβXSA( fpi ). We set f = f1... fn. It follows that f ∈ A(X), F1 ⊆ intβXSA( f ) and SA( f ) ∩ F2 = ∅.

Theorem 3.2. For each element f of a β-subalgebra A(X), we have

ZA( f ) = {Z ∈ Z(X) : SA( f ) ⊆ intβXclβXZ}.

Proof. Similar to the proof of [15, Theorem 2.1], we can easily prove that for each E ∈ ZA( f ), SA( f ) ⊆
intβXclβXZ; i.e., ZA( f ) ⊆ {Z ∈ Z(X) : SA( f ) ⊆ intβXclβXZ}. For the reverse inclusion, let Z ∈ Z(X) and
SA( f ) ⊆ intβXclβXZ. Hence, SA( f ) ∩ (βX − intβXclβXZ) = ∅. By Lemma 3.1, there exists 1 ∈ A(X) such
that SA( f ) ∩ SA(1) = ∅ and (βX − intβXclβXZ) ⊆ intβXSA(1). As by Proposition 2.1, every β-subalgebra is
an LBI-subalgebra, f 2 + 12 is a unit in A(X), and hence, ( f 2 + 12)h = 1 for some h ∈ A(X). Therefore,
( f ( f h))|X−Z = (( f 2 + 12)h)|X−Z = 1; i.e., Z ∈ ZA( f ).
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Using Theorem 3.2, we can easily observe thatZ−1
A (Up) =Mp

A for each p ∈ βX, which is clearly a maximal
ideal in A(X). Indeed, if ZA( f ) ⊆ Up, and p < SA( f ), then there exists Z ∈ Z(X) such that p < clβXZ and
SA( f ) ⊆ intβXclβXZ which implies Z ∈ ZA( f ), but Z < Up; a contradiction. Hence, Z−1

A (Up) ⊆ Mp
A, and the

reverse inclusion is evident. Note thatUp denotes the z-ultrafilter {Z ∈ Z(X) : p ∈ clβXZ} on X. This fact can
be extended to arbitrary z-filters as it is shown in the next proposition. Note that

⋂
Z∈F clβXZ is designated

by F for a z-filter F on X.

Proposition 3.3. Let A(X) be a β-subalgebra and F be a z-filter on X. ThenZ−1
A (F ) =

⋂
p∈F Mp

A.

Proof. From Theorem 3.2, it easily follows thatZA( f ) = SA( f ) for each f ∈ A(X). Now, if f ∈ Z−1
A (F ), then

ZA( f ) ⊆ F , and hence, F ⊆ ZA( f ) = SA( f ). This means that f ∈Mp
A for each p ∈ F which proves the left to

right inclusion. For the reverse one, let f ∈
⋂

p∈F Mp
A. It follows thatF ⊆ SA( f ). Therefore, if E ∈ ZA( f ), then,

by Theorem 3.2, F ⊆ SA( f ) ⊆ intβXclβXE. This implies that βX − intβXclβXE ⊆ βX − F =
⋃

Z∈F (βX − clβXZ).
Thus, there exists Z0 ∈ F , such that clβXZ0 ⊆ clβXE which clearly implies E ∈ F . This means ZA( f ) ⊆ F ;
i.e., f ∈ Z−1

A (F ).

From Theorem 3.2 and Proposition 3.3, the next statement follows. Note that, by a straightforward way,
we can observe thatZA[I] = θA(I) whereZA[I] =

⋃
f∈IZA( f ) and θA(I) =

⋂
f∈I SA( f ).

Theorem 3.4. Let I be an ideal in a β-subalgebra A(X). ThenZ−1
A ZA[I] =

⋂
p∈θA(I)

Mp
A.

We infer that, not only in intermediate rings but also in β-subalgebras, β-ideals are precisely the inter-
sections of maximal ideals.

It is a known fact in C(X) that whenever Z(1) ⊆ intXZ( f ), then f = 1h for some h ∈ C(X) (see [7, 1D.1]).
The next theorem extends this fact to the β-subalgebras of C(X) using the mapping SA.

Theorem 3.5. Let A(X) be a β-subalgebra of C(X) and f , 1 ∈ A(X). If SA(1) ⊆ intβXSA( f ), then f = 1h, for some
h ∈ A(X).

Proof. The proof is similar to Theorem 3.2. As SA(1) ⊆ intβXSA( f ), we have SA(1) ∩ (βX − intβXSA( f )) = ∅.
Thus, there exists k ∈ A(X) such that SA(k) ∩ SA(1) = ∅ and (βX − intβXSA( f )) ⊆ SA(k). It follows that k2 + 12

is a unit of A(X), and hence, there exists l ∈ A(X) such that (12 + k2)l = 1. If we set h = f .1.l, then, as
X − Z( f ) ⊆ Z(k), we have 1h = f12l = f (12 + k2)l = f .

It is asserted in [7, 7O] that whenever I is an ideal in C(X), and f ∈ C(X) is such that clβXZ( f ) is a
neighborhood of θ(I) (=

⋂
f∈I clβXZ( f )), then f ∈ I. A countable analogue of this fact was proved in Theorem

3.4 of [2] for ideals of Cc(X); i.e, whenever I is an ideal in Cc(X) and θCc (I) ⊆ intβ◦Xclβ◦XZ( f ) where f ∈ Cc(X),
then f ∈ I. We next investigate a generalized version of this fact to the β-subalgebras of C(X).

Theorem 3.6. Let I be an ideal in a β-subalgebra A(X). If f ∈ A(X) and θA(I) ⊆ intβXSA( f ), then f ∈ I.

Proof. As θA(I) ⊆ intβXSA( f ), βX − intβXSA( f ) ⊆ βX − θA(I) =
⋃
1∈I(βX − SA(1)), and hence, there exist

11, ..., 1n ∈ I such that βX − intβXSA( f ) ⊆
⋃n

i=1(βX − SA(1n)) = βX −
⋂n

i=1 SA(1i) = βX − SA(12
1 + ... + 1

2
n). By

setting 1 = 12
1 + ... + 1

2
n, we will have 1 ∈ I and SA(1) ⊆ intβXSA( f ). Therefore, by Theorem 3.5, there exists

h ∈ A(X) such that f = 1h which means f ∈ I.

Theorem 3.7. Let A(X) be a β-subalgebra. For each 1 ∈ A(X) and each positive unit u ∈ A(X), there exists f ∈ A(X)
such that |1 − f | ≤ u and SA(1) ⊆ intβXSA( f ).

Proof. We first show that there exists f ∈ A(X) such that |1 − f | ≤ 1 and SA(1) ⊆ intβXSA( f ). We set
A = 1−1([− 1

4 ,
1
4 ]) and B = 1−1((−∞,− 1

3 ] ∪ [ 1
3 ,∞)). It is obvious that A and B are two disjoint zero-sets

in X and hence clβXA ∩ clβXB = ∅. As A(X) is a β-ring, by Lemma 3.1, there exists h ∈ A(X) such that
clβXA ⊆ intβXSA(h) and SA(h) ∩ clβXB = ∅. It follows that B and Z(h) are two disjoint zero-sets in X, and
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thus by Proposition 2.1, there exists k ∈ A∗(X), such that |k| ≤ 1, k(Z(h)) = {0} and k(B) = {1}. It follows
that SA(1) ⊆ clβXA ⊆ intβXSA(h) = intβXclβXZ(h) ⊆ intβXclβXZ(k) = intβXSA(k). We set f = 1k. It follows that
SA(1) ⊆ intβXSA( f ) and |1 − f | ≤ 1, since, for each x ∈ B, |1(x) − f (x)| = |1(x)(1 − k(x))| = 0, and for each x < B,
|1(x) − f (x)| = |1(x)||1 − k(x)| ≤ 2

3 ≤ 1. Now, let u be a positive unit in A(X). From the above discussion, it
follows that there exists h ∈ A(X) such that | 1u − h| ≤ 1. Hence, by setting f = h

u , we have | 1u − f | = 1
u |1− h| ≤ 1

and hence |1 − f | ≤ u.

As stated in [7, 2M.1], in a topological ring, the closure of an ideal is either an ideal or the whole ring.
Hence, for each p ∈ βX, every maximal ideal in a β-subalgebra A(X) is m-closed, since, otherwise, we will
have (Mp)m = A(X), which means 1 ∈ (Mp)m. Hence, there exists some f ∈ BA(1, 1

2 ) ∩Mp
A and this means

| f − 1| < 1
2 which implies f > 1

2 , and hence, Z( f ∗) = ∅. This is a contradiction as we have f ∈ Mp
A; i.e.,

p ∈ SA( f ) ⊆ Z( f ∗). The next theorem characterizes m-closed ideals in β-rings.

Theorem 3.8. Let I be an ideal in a β-subalgebra A(X). Then Im =
⋂

p∈θA(I) Mp
A.

Proof. Since each Mp
A is m-closed in A(X), it follows that Im

⊆
⋂

p∈θA(I) Mp
A. For the reverse inclusion, let

f ∈
⋂

p∈θA(I) Mp
A. It follows that θA(I) ⊆ SA( f ). We show that BA( f ,u) ∩ I , ∅ for each positive unit

u ∈ A(X). Let u be a given positive unit in A(X). By Theorem 3.7, there exists 1 ∈ A(X) such that | f − 1| ≤ u
and SA( f ) ⊆ intβXSA(1) which implies θA(I) ⊆ intβXSA(1). Using Theorem 3.6, we have 1 ∈ I, and hence
BA( f ,u) ∩ I , ∅.

The following corollary evidently follows from Theorem 3.4 and 3.8.

Corollary 3.9. The m-closed ideals in β-subalgebras are exactly β-ideals.

In Proposition 3.2 of [11], it was proved that a proper intermediate ring could never be a regular
ring (in the sense of Von-Neumann). We provide a generalized version of this fact by showing that a
proper β-subalgebra not closed under inversion could never be regular. We need the following lemma,
an extension of [7, Theorem 7.13] to β-rings with an analogous proof. We designate by Op

A, the ideal
{ f ∈ A(X) : p ∈ intβXSA( f )} in A(X) for each p ∈ βX. As intβXSA( f ) = intβXclβXZ( f ) for each f ∈ A(X), we have
Op

A = Op
∩ A(X) where Op = Op

C(X).

Lemma 3.10. The following statements hold for a β-subalgebra A(X).
1. f ∈ Op

A if and only if f1 = 0 for some 1 <Mp
A.

2. An ideal I in A(X) is contained in a unique maximal ideal Mp
A if and only if Op

A ⊆ I.
3. For a prime ideal P in A(X), there exists a unique p ∈ βX, such that Op

A ⊆ P ⊆Mp
A.

Theorem 3.11. Let A(X) be a β-subalgebra in which every ideal is m-closed. Then A(X) is closed under inversion.

Proof. Assume on the contrary that A(X) is not closed under inversion. Hence, by Corollary 2.5, there
exists f ∈ A(X) such that SA( f ) , clβXZ( f ). For p ∈ SA( f ) − clβXZ( f ), we have f ∈ Mp

A, however, f < Op
A;

i.e., Op
A , Mp

A. But, by Lemma 3.10, Mp
A is the only maximal ideal in A(X) containing Op

A, which, by the
hypothesis and Theorem 3.8, implies that Op

A = Mp
A. This contradiction shows that A(X) must be closed

under inversion.

It immediately follows from Theorem 3.11 that whenever A(X) is an intermediate ring in which every
ideal is m-closed, or equivalently, wheneverA(X) is a regular ring, then A(X) = C(X) [10, Remark 2.12].
Remark 3.12. We note that from regularity of a β-subalgebra A(X) we can not necessarily infer that X is a
P-space. There may exist a space X and a β-subalgebra A(X) such that X is not a P-space, however, every
ideal in A(X) is m-closed. For example, consider the space Σ constructed in [7, 4M]; Σ = N ∪ {σ} where
σ < N, all points of N are isolated, and neighborhoods of σ are the sets U ∪ {σ} where U is an element of
a free ultrafilter U on N. It is easy to see that Σ is a realcompact space, βΣ = βN, and according to [1,
Proposition 1.2], every point of βΣ − Σ is a P-point of Σ. i.e., Op =Mp. Let Ap(Σ) =Mp +R. Then, as stated
in Remark 2.4, Ap(Σ) is a β-subalgebra of C(Σ). Also, by Theorem 1.10 in [3], Mp, for each p ∈ βΣ − Σ, is
a P-ideal in C(Σ), and hence, by Proposition 2.10 in [4], Ap(Σ) is a regular ring. It obviousely follows that
every ideal in Ap(Σ) is m-closed. However, as stated in [7, 4M.4], Σ is not a P-space.
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