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Abstract. This manuscript deals with existence of common fixed points and coincidence points for set-
valued generalized f -contraction in the setting of metric space having graphical structure. This result
enables us to derive fixed points for set-valued generalized contractions on a metric space having directed
graph. The main theorem generalizes and improves several results in the literature. An invariant approx-
imation result on a normed linear space is derived from our main result. As an implementation of our
main result, we deduce the sufficient criteria for occurrence of solution for the Caputo fractional differential
equation.

1. Introduction

In the year 1989, Mizoguchi and Takahashi [14] extended the well known Nadler’s [15] theorem for
nonlinear set-valued map on a complete metric space. They [14] established that, a set-valued map F
from a metric space (Q, d) into (CB(Q),H) (where CB(Q) contains all non-void bounded closed subsets
of Q and H acts as a Hausdorff metric on CB(Q)) possess a fixed point if for each p, q lies in Q fulfills
H(Fp,Fq) ≤ k(d(p, q))d(p, q) where k ∈ W = {h : [0,∞) → [0, 1)| lim supr→t+ h(r) < 1,∀ 0 ≤ t < ∞}. Later, there
are various elegant extensions of this result, that can be found in [4, 10, 12, 17]. Subsequently, in the year of
2007, Berinde and Berinde [4] generalized the Mizoguchi-Takahashi’s [14] result for set-valued map in the
below stated manner.

Theorem 1.1. [4] Let us assume (Q, d) is complete and F : Q→ CB(Q) in order that for every p and q in Q,

H(Fp,Fq) ≤ k(d(p, q))d(p, q) +Md(q,Fp), (1)

where k ∈W and M is non-negative real number. Then the map F possess a fixed point.

On another side, many researchers are interested for seeking the coincidence points as well as common
fixed points for set-valued mappings. A several significant results towards this direction can be found in
[10, 12, 16, 18]. In 2007, Kamran [10] improved the above mentioned Theorem 1.1 through the concept of
set-valued common fixed point theory. The author [10] derived the succeeding result.
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Theorem 1.2. [10] Suppose the maps f : Q→ Q and F : Q→ CB(Q) in order that for every p, q lies in Q,

H(Fp,Fq) ≤ k(d( f p, f q))d( f p, f q) +Md( f q,Fp), (2)

where k ∈ W and M ≥ 0. Then there is an element q∗ having f q∗ ∈ Fq∗ if f Q is complete and for every q ∈ Q,
Fq ⊂ f Q. Moreover, q∗ = f q∗ ∈ Fq∗, whenever f f q∗ ∈ F f q∗ and f f q∗ = f q∗.

We note that, the above mentioned theorem deduces Theorem 1.1 due to Berinde-Berinde [4] by considering
f to be an identity map.

Jachymski [7] first studied the fixed points through the language of graph in the year 2008. He extended
the renowned Banach contraction principle via G-contraction on a complete metric space consists with a
directed graph G. This result enables the author [7] to extend and unify some fixed point theorems proved
in metric spaces as well as metric spaces having partial order. Followed by Jachymski [7], an extension of
Mizoguchi-Takahashi’s [14] result was derived by Sultana and Vetrivel [17] in the year 2014, on a metric
space consisting with a directed graph. The authors [17] demonstrated the below stated theorem.

Theorem 1.3. [17] Assume a complete metric space (Q, d) incorporates with a directed graph G and a map F : Q→
CB(Q) in order that for every p, q ∈ Q having (p, q) ∈ E(G) fulfills

(i) H(Fp,Fq) ≤ k(d(p, q))d(p, q) for k ∈W,
(ii) if v1 ∈ Fp and v2 ∈ Fq having d(v1, v2) ≤ d(p, q) implies (v1, v2) ∈ E(G).

Then F possess a fixed point if there is q0 ∈ Q and N ∈N in order that,

(a) [q0]N
G ∩ Fq0 , ∅,

(b) for any sequence {zn}n in Q with zn ∈ [zn−1]N
G ∩ Fzn−1 for every positive integer n and zn → z, then there is

{znk }k in order that for each k ∈N, (znk , z) ∈ E(G).

This result enables the authors [17] to derive the fixed point for set-valued uniformly local contraction. As
an application of the Theorem 1.3, the authors [17] also improved the Kelisky and Rivlin [11, Theorem 1]
result for Bernstein type nonlinear operator on a complete normed linear space. For more results on fixed
point using the perception of graph theory can be found in [5, 12].

In this present article, we improve the Theorem 1.2 due to Kamran [10] for set-valued mappings on
metric space having graphical structure. Our result enables us to extend the aforementioned Theorem 1.1
for mappings on a complete metric space consisting with graph. Moreover, the above Theorem 1.3 for
N = 1, follows from our main result. As an application of our result, we scrutinize the the occurrence of
a solution for a Caputo fractional differential equation. Furthermore, an invariant approximation result is
also established through the idea of common fixed point theory.

2. Preliminaries

In this part, we utilize some essential symbols and definition, which is needful all through this article.
Up to the end of this work we denote CB(Q) = {P : P ⊆ Q, and P is non-void bounded closed} and a below
sated function H which becomes a Hausdorffmetric on CB(Q). Consider U and V lies in CB(Q),

H(U,V) = max
{

sup
u∈U

d(u,V), sup
v∈V

d(v,U)
}

,

whereas the notation d(u,V) represents the infv∈V d(u, v) and similarly d(v,U). One immediate result is
followed from this definition.

Lemma 2.1. [10] Consider U, V ∈ CB(Q), then for s > 1, the occurrence of u in U having d(u, v) ≤ sH(U,V) for
every v ∈ V is guaranteed.



P. Maiti, A. Sultana / Filomat 37:11 (2023), 3671–3679 3673

On the other side, an element q∗ is described as a coincidence point for a couple of mappings f : Q→ Q
and F : Q → CB(Q), if { f q∗} ⊂ Fq∗. For the set-valued map F, fixed point of F is identified by Fix(F) = {q ∈
Q : q ∈ Fq} and an element q∗ is noted as a common fixed point for the maps f and F if q∗ = f q∗ ∈ Fq∗.
Additionally, map f is described as a F-weakly commuting [10] at an element y in Q if f f y ∈ F f y. Up to
the end, the collection of common fixed points and coincidence points for the maps f and F are expressed
by Fix( f ,F) and Coin( f ,F) respectively.

Now we introduce some basic terminology of graph theory, which is essential for this article. For the
metric space (Q, d), let us assume a directed graph G(V(G),E(G)), where the notation V(G) represents the
collection of all vertices, which is nothing but whole set Q and the collection of edges E(G) includes the
set ∆ = {(s, s) : (s, s) ∈ Q × Q}. Also this reflexive graph G does not possess any parallel edges. The
character G−1 represents the graph, where the edges are in opposite direction of the edges of G, in other
word E(G−1) = {(v,u) ∈ Q × Q : (u, v) ∈ E(G)}. Again we treat G̃ by means of, E(G̃) is symmetric. By this
ideology, E(G̃) = E(G) ∪ E(G−1).

For p, q ∈ Q, a path [7] between p and q in G of length J ∈N∪ {0} if there is a alternating sequence (zi)
J
i=0

in Q in order that z0 = p, zJ = q and (zi−1, zi) ∈ E(G) for each i ∈ {1, 2, · · · , J}. We represent

[p]1
G = {q ∈ Q : there is directed path from p to q}.

3. Main results

All through this part we consider the metric space (Q, d) incorporates with a directed graph G(V(G),E(G)),
whereas V(G) = Q, ∆ ⊆ E(G) and G has no parallel edges. Now we present our main theorem for ensuring
the common fixed point for the generalized set-valued contraction, which is described below.

Definition 3.1. For a given map f : Q → Q, a set-valued map F : Q → CB(Q) is defined as a generalized G f
contraction if for every p, q in Q having ( f p, f q) ∈ E(G):

(a) H(Fp,Fq) ≤ k(d( f p, f q))d( f p, f q) +Md( f q,Fp), where k ∈W and M ≥ 0,
(b) if f u ∈ Fp and f v ∈ Fq with d( f u, f v) ≤ d( f p, f q), then ( f u, f v) ∈ E(G).

Now our main theorem for generalized G f -contraction is stated below.

Theorem 3.2. Assume f : Q → Q in order that ( f Q, d) is complete. Suppose that F : Q → CB(Q) is generalized
G f contraction with Fq ⊂ f Q, for every q ∈ Q. Then the presence of q∗ ∈ Q having f q∗ ∈ Fq∗ can be ensured if the
following hold:

(i) F(q0) ∩ [ f q0]1
G , ∅ for some q0 ∈ Q;

(ii) if {zn}n ∈ Q with (zn, zn+1) ∈ E(G) for every positive integer n and zn converge to z, then there is {znt }t in order
that for every t ∈N, (znt , z) ∈ E(G).

Moreover, F and f possess a common fixed point whenever the map f is weakly commuting at q∗ along with f f q∗ = f q∗.

Proof. Due to the fact that F(q0) ∩ [ f q0]1
G , ∅ and Fq0 ⊂ f Q we obtain q1 ∈ Q with ( f q0, f q1) ∈ E(G). Now

using the Lemma 2.1, for ε1 =
1√

k(d( f q0, f q1))
> 1, there is q2 ∈ Q with f q2 ∈ F(q1) satisfying

d( f q1, f q2) ≤ ε1H(Fq0,Fq1)
≤ ε1[k(d( f q0, f q1))d( f q0, f q1) +Md( f q1,Fq0)]

≤

√
k(d( f q0, f q1))d( f q0, f q1) ≤ d( f q0, f q1).

As F is generalized G f -contraction and ( f x0, f x1) ∈ E(G) with f x1 ∈ Fx0, f x2 ∈ Fx1 then the last inequation
leads to ( f q1, f q2) ∈ E(G). Again for ε2 =

1√
k(d( f q1, f q2))

we get f q3 ∈ F(q2) fulfilling

d( f q2, f q3) ≤ ε2H(Fq1,Fq2)
≤ ε2[k(d( f q1, f q2))d( f q1, f q2) +Md( f q2,Fq1)]

≤

√
k(d( f q1, f q2))d( f q1, f q2) ≤ d( f q1, f q2).
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The previous inequality approaches to ( f q2, f q3) ∈ E(G). In this manner for each εn =
1√

k(d( f qn−1, f qn))
> 1 we

acquire f (qn+1) ∈ F(qn), which leads to

d( f qn, f qn+1) ≤ εnH(Fqn−1,Fqn)
≤ εn[k(d( f qn−1, f qn))d( f qn−1, f qn) +Md( f qn,Fqn−1)]

≤

√
k(d( f qn−1, f qn))d( f qn−1, f qn) (3)

≤ d( f qn−1, f qn).

Thus we can develop two sequences { f (qn)}n and {F(qn)}n, where f (qn) ∈ F(qn−1) and for each n ≥ 1,
( f qn−1, f qn) ∈ E(G). Again it is clearly observed that the sequence {dn}n, where dn = d( f pn, f pn+1) is monotone
decreasing and bounded below. Therefore it converges to some a ≥ 0. If a > 0, then from the equation (3),

a ≤
√

lim sup
dn−1→a

k(dn−1) a < a;

this is absurd. Hence dn → 0, while n→∞. Again for each n, form (3) it yields

d( f qn, f qn+1) ≤

n∏
i=0

√
k(d( f qi−1, f qi))d( f q0, f q1). (4)

Since k : [0,∞)→ [0, 1) with lim supt→s+ k(t) < 1, then we take δ > 0 and β ∈ (0, 1) in order that k(t) < β2 for
every 0 < t < δ. Again we obtain N ∈ N in order that d( f pn−1, f pn) < δ, for each n ≥ N on account of {dn}n
converges to 0. Consequently (4) implies,

d( f qn, f qn+1) ≤ βn−(N−1)
N−1∏
j=1

√
k(d( f q j−1, f q j))d( f q0, f q1)

< βn−(N−1)d( f q0, f q1).

Now for any arbitrary m ∈N, we have

d( f qn, f qn+m) ≤

m∑
i=1

d( f qn+i−1, f qn+i)

≤ βn−(N−1)
[
1 + β + · · · + βm−1

]
d( f q0, f q1)

≤ βn−(N−1) 1 − βm

1 − β
d( f q0, f q1) ≤

βn−(N−1)

1 − β
d( f q0, f q1).

As a consequence { f qn}n becomes Cauchy in the complete metric space f Q. Thus { f qn}n is converges to f q∗,
for some q∗ ∈ Q.

As for each n, ( f qn−1, f qn) ∈ E(G) and f qn → f q∗, then by the hypothesis there is { f qnr }r having ( f qnr , f q∗) ∈
E(G), for each r ≥ 1. Now for each r,

d( f q∗,Fq∗) ≤ d( f q∗, f qnr+1) + d( f qnr+1,Fq∗)
≤ d( f q∗, f qnr+1) +H(Fqnr ,Fq∗)
≤ d( f q∗, f qnr+1) + k(d( f qnr , f q∗))d( f qnr , f q∗) +Md( f q∗,Fqnr ).

As, f qnr−1 ∈ Fqnr , then taking r→∞, the last inequation leads to f q∗ ∈ Fq∗.
Now let p = f q∗, then f f q∗ = f q∗ follows that f p = p. Again f and F are weakly commuting at q∗, hence

f f q∗ ∈ F f q∗ leads to p = f p ∈ Fp.

Remark 3.3. Theorem 1.2 due to Kamran [10] is followed from above mentioned Theorem 3.2 by choosing a graph G
in order that V(G) = Q, E(G) = {(p, q) : p, q ∈ Q}.
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The below-stated example illustrates the above Theorem 3.2. Further, it indicates that Theorem 3.2 is indeed
an extension of the Theorem 1.2 due to Kamran [10].

Example 3.4. Let Q =
{

1
2 ,

1
22 , · · · ,

1
2n , · · ·

}
∪ {0, 1} be incorporated with the usual metric. Suppose that a set-valued

map F : Q→ CB(Q) is defined by

F(q) =


{
0, 1

2

}
if q = 0,{

1
2 ,

1
2n+2

}
if q = 1

2n where n ∈N,{
1
2

}
if q = 1,

and f : Q→ Q is defined as

f (q) =

 1
2n+1 if q = 1

2n , n ∈N ∪ {0}
0 if q = 0.

Choose a graph G in order that V(G) = Q and E(G) = {(p, q) ∈ Q × Q : d(p, q) < 1
4 }. Consequently, E(G) includes

the set ∆ and G does not possess any parallel edges. Consider p = 0 and q = 1
2n , where n ≥ 2. Then it occurs

( f p, f q) ∈ E(G) and

H(Fp,Fq) = H
({

0,
1
2

}
,
{1

2
,

1
2n+2

})
=

1
2n+2 ≤

1
2

d( f p, f q).

Now, consider p = 1
2n and q = 1

2m , where m ≥ n ≥ 1. Then we see that ( f p, f q) ∈ E(G) and

H(Fp,Fq) = H
({1

2
,

1
2n+2

}
,
{1

2
,

1
2m+2

})
=

1
2n+2 −

1
2m+2 ≤

1
2

(d( f p, f q)).

Hence for every p, q ∈ Q with ( f p, f q) ∈ E(G), H(Fp,Fq) ≤ k(d( f p, f q))d( f p, f q) +Md( f q,Fp) where k(t) = 1
2 for

0 ≤ t < ∞ and M ≥ 0. Moreover, if f u ∈ Fp and f v ∈ Fq with d( f u, f v) ≤ d( f p, f q), then ( f u, f v) ∈ E(G). Hence
F is a generalized G f contraction for the chosen map f . It is easy to see that Fq0 ∩ [ f q0]1

G , ∅ for q0 =
1
2 . Again,

let {zn}n ∈ Q in order that (zn, zn+1) ∈ E(G) for n ≥ 1 and zn → z. Subsequently, we achieve a natural number L so
that d(zn, z) < 1

4 for each n ≥ L. Therefore we obtain a subsequence {znt }t in order that (znt , z) ∈ E(G) for each t ≥ 1.
Further, we observe that ( f Q, d) is complete and for each q ∈ Q, Fq ⊂ f Q. Thus all the criteria of the Theorem 3.2 are
fulfilled and it ensures the existence of a point q∗ ∈ Q with f q∗ ∈ Fq∗. We note that 0 is a coincidence point of f and
F, that is, f 0 ∈ F0. Moreover, f f 0 = f 0 and f f 0 ∈ F f 0. It is worth to mention that 0 is a common fixed point of f
and F.

However, for p = 0 and q = 1, we see that H(F0,F1) = 1
2 , d( f 0, f 1) = 1

2 and d( f 1,F0) = 0. Therefore for all
k ∈W and M ≥ 0, H(F0,F1) = d( f 0, f 1) > k(d( f 0, f 1))d( f 0, f 1) +Md( f 1,F0). This indicates that F does not meet
the condition (2) of Theorem 1.2 due to Kamran.

The upcoming corollary is an extension of the Theorem 1.1 for the mappings on metric space having
graphical structure by considering f to be an identity map in the above mentioned Theorem 3.2.

Corollary 3.5. Assume that (Q, d) is complete and for each (p, q) lies in E(G), a map F : Q→ CB(Q) fulfills,

(i) H(Fp,Fq) ≤ k(d(p, q))d(p, q) +Md(q,Fp) where k ∈W and M is non-negative real number,
(ii) if w1 ∈ Fp and w2 ∈ Fq having d(w1,w2) ≤ d(p, q), then (w1,w2) ∈ E(G).

Then F possess a fixed point if there is q0 ∈ Q in order that

(a) F(q0) ∩ [q0]1
G , ∅,

(b) if {zn}n ∈ Q with (zn, zn+1) ∈ E(G) for every positive integer n and zn converge to z, then there is {znt }t such
that for each t ∈N, (znt , z) ∈ E(G).



P. Maiti, A. Sultana / Filomat 37:11 (2023), 3671–3679 3676

Remark 3.6. The Theorem 1.3 for N = 1 due to Sultana and Vetrivel [17] follows from our Theorem 3.2 by choosing
f to be an identity map and M = 0.

Edelstein [6, Theorem 5.2] improved the well known Banach contraction principle for single valued
uniformly local contraction [6] in the year 1961. Later, Nadler [15, Theorem 6] derived the fixed points for
set-valued uniformly local contraction [15] on a metric space. Subsequently, the Nadler’s [15] result was
generalized by Sultana and Vetrivel [17, Theorem 5] for the mappings satisfied the Mizoguchi-Takahashi’s
[14] contraction locally. In the succeeding corollary, we present the occurrence of fixed points for the
mappings that satisfies the equation (1) locally.

Corollary 3.7. Let us assume (Q, d) is complete and F : Q → CB(Q) in order that for r > 0 and for every p, q lies
in Q having d(p, q) < r meets the contractive condition (1). Then occurrence of q∗ having q∗ ∈ Fq∗ can be assured if
there is q1 ∈ Fq0 and d(q0, q1) < r.

Proof. Take a graph G in Q having V(G) = Q and the collection of edges E(G) = {(p, q) : p, q ∈ Q and d(p, q) < r}.
Subsequently, E(G) does not possess any parallel edges and ∆ ⊆ E(G). Assume that f is an identity map
on the set Q. Let p, q lies in Q with ( f p, f q) = (p, q) ∈ E(G). Therefore d(p, q) = d( f p, f q) < r and hence the
equation (1) hold. If f u ∈ Fp, f v ∈ Fq with d( f u, f v) ≤ d( f p, f q), consequently we obtain d( f u, f v) < r, which
yields that ( f u, f v) ∈ E(G). Thus F turns out to be a G f contraction.

Further, there is q0 ∈ Q and q1 ∈ Fq0 with d(q0, q1) < r, hence it is simple to visualize that Fq0 ∩ [q0]1
G , ∅.

Let {zn}n ∈ Q converge z with (zn, zn+1) ∈ E(G) for every n, in consequence we achieve a natural number L in
order that d(zn, z) < r for every n ≥ L. Consequently, we get a sub-sequence {znt }t such that d(znt , z) < r, for
every t ∈ N, hence (znt , z) ∈ E(G)∀t ≥ 1. Thus every criteria of the Theorem 3.2 are fulfilled. Subsequently
there is q∗ having q∗ ∈ Fq∗.

In the year 2008, Jachymski [7, Theorem 4.1] derived the convergence of iterates for certain linear operator
on a complete normed linear space through fixed points on Banach spaces having graphical structure. In
the succeeding theorem, Sultana and Vetrivel [17] generalized this Jachymski’s [7, Theorem 4.1] result for
some nonlinear operator. In fact, the below sated result due to Sultana and Vetrivel [17] follows from our
main Theorem 3.2 by choosing some suitable graph.

Theorem 3.8. [17] Assume Q0 is a closed subspace of a complete normed linear space Q and 1 : Q → Q in order
that for each p, q lies in Q having p − q ∈ Q0 follows

∥1p − 1q∥ ≤ k(∥p − q∥)∥p − q∥, where k ∈W. (5)

Therefore for each q in Q,
{
limn→∞ 1

nq
}
= (q +Q0) ∩ {q∗ ∈ Q : 1(q∗) = q∗} if (I − 1)(Q) ⊆ Q0.

Proof. Consider the space Q having a graph G in order that V(G) = Q and E(G) = {(p, q) ∈ Q×Q : p−q ∈ Q0}.
Let us choose f to be an identity map on Q and F : Q → CB(Q) in order that for each q in Q, Fq = {1q} .
Evidently, F fulfills all the criteria of Theorem 3.2 and hence for each q ∈ Q, limn→∞ 1

nq ∈ {q∗ ∈ Q : 1(q∗) = q∗}.
Since (I − 1)Q ⊆ Q0 and Q0 is closed, it appears that limn→∞ 1

nq ∈ (q + Q0). Thus, limn→∞ 1
nq ∈

(q + Q0) ∩ {q∗ ∈ Q : 1(q∗) = q∗}. Let r1, r2 ∈ (q + Q0) ∩ {q∗ ∈ Q : 1(q∗) = q∗}. Then r1 − r2 ∈ Q0. Hence and
by equation (5), we have ||1r1 − 1r2|| ≤ k(||r1 − r2||)|r1 − r2| < ||r1 − r2||. Therefore we obtain r1 = r2. Hence
proved.

Several problems related to invariant approximations for single valued maps are established through the
common fixed point theorems (see, [1, 16]). Also invariant approximation theorems for the hybrid couple
of single valued and multivalued mappings satisfied strict contraction are found in [9, 18]. In the following
result, we scrutinize invariant approximation for single valued and multivalued map meeting the equation
(2) on a normed linear space. Let us consider a non-void subset D of a normed linear space (Q, ∥.∥). Now
for z ∈ Q, a set BD(z) = {y ∈ D : d(z,D) = ∥y − z∥} is defined as a collection of best D-approximates of z over
D.
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Theorem 3.9. Assume a non-void subset D of a normed linear space (Q, ∥.∥). Suppose that f : D → D and
F : D→ CB(D) in order that

(i) for every p, q ∈ BD(z), H(Fp,Fq) ≤ k(∥ f p − f q∥)∥ f p − f q∥ +Md( f q,Fp) where k ∈ W and M is non-negative
real number,

(ii) f (BD(z)) = BD(z),
(iii) f (BD(z)) is a complete subspace of BD(z),
(iv) supa∈Fq ∥a − z∥ ≤ ∥ f q − z∥ for each q ∈ BD(z).

Then Fix( f ,F) ∩ BD(z) , ∅ if w ∈ Coin( f ,F) ∩ BD(z) having f f w = f w and f f w ∈ F f w.

Proof. Let q ∈ BD(z) and w ∈ Fq. As f (BD(z)) = BD(z), therefore f q ∈ BD(z) for every q ∈ BD(z). Hence the
notion of BD(z) yields that ∥ f q − z∥ = d(z,D). Further,

∥w − z∥ ≤ sup
a∈Fq
∥a − z∥ ≤ ∥ f q − z∥ = d(z,D).

Hence w ∈ BD(z). Therefore Fq ⊆ BD(z) for each q ∈ BD(z). Since for all q ∈ D, the set Fq are closed, hence Fq
is closed for any q ∈ BD(z) also. Subsequently, F|BD(z) : BD(z) → CB(BD(z)) and f |BD(z) : BD(z) → BD(z). Then
eventually

Fix( f |BD(z),F|BD(z)) = Fix( f ,F) ∩ BD(z).

Hence the theorem follows by applying the Theorem 3.2 under the consideration Q = BD(z) along with a
graph G having V(G) = BD(z) and E(G) = BD(z) × BD(z).

4. Applications

This segment contains with an application of our main Theorem 3.2. We derive the occurrence of
solution for Caputo fractional differential equation by applying the Theorem 3.2.

4.1. Fractional differential equation

A fractional differential equation consists with fractional derivatives of the form Dλ(λ > 0), whereλ need
not be a natural number. This class of differential equations actually generalizes the ordinary differential
equations. The occurrence of solution for several fractional differential equations were derived through the
notion of fixed point theory, which can be found in [3, 12, 13]. We here consider a generalized fractional
differential equation

cDλq(t) = 1(t, f (q(t))) whenever q ∈ C[0, 1], 0 < t < 1 and 1 < λ ≤ 2, (6)

having boundary criteria q(0) = 0 and q(1) =
∫ η

0 q(s)ds, for some η ∈ (0, 1), where f : C[0, 1] → C[0, 1],
1 : [0, 1] × C[0, 1] → R are both continuous. The notation cDλ represents the Caputo fractional derivative
[3] with order λ. Also the collection of all continuous maps from [0, 1] intoR are represented as C([0, 1],R),
which incorporates with ∥.∥ = maxt∈[0,1] |w(t)|.

In the coming result, we look into the sufficient criteria for ensuring a solution of the aforesaid fractional
differential equation (6), through our main Theorem 3.2.

Theorem 4.1. Choose the fractional differential equation as mentioned in (6). Suppose that the below criteria hold:

(a) there is k ∈W in order that for 0 ≤ t ≤ 1,∣∣∣1(t, f (p(t))) − 1(t, f (q(t)))
∣∣∣ ≤ Γ(λ + 1)

5
k
(∥∥∥ f p − f q

∥∥∥) ∣∣∣ f p(t) − f q(t)
∣∣∣ where Γ denotes the gamma function,
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(b) for every q ∈ C[0, 1], Fq ⊆ f (C[0, 1]), where F : C[0, 1]→ C[0, 1] in order that

F(q(t)) =
1
Γ(λ)

{∫ t

0
(t − r)λ−11(r, f (q(r)))dr

−
2t

(2 − η2)

∫ 1

0
(1 − r)λ−11(r, f (q(r)))dr

+
2t

(2 − η2)

∫ η

0

∫ r

0
(r − s)λ−11(r, f (q(r)))ds dr

}
.

Then the above mentioned fractional differential equation (6) possess a solution if the set f (C[0, 1]) is closed in C[0, 1].

Proof. We assume that Q = C[0, 1] incorporate with a graph G having V(G) = Q and E(G) = {(p, q) : (p, q) ∈
Q ×Q}. Now it is simple to visualize that q ∈ Q is the solution of (6), if and only if it fulfills the succeeding
equation,

q(t) =
1
Γ(λ)

{∫ t

0
(t − r)λ−11(r, f (q(r)))dr

−
2t

(2 − η2)

∫ 1

0
(1 − r)λ−11(r, f (q(r)))dr

+
2t

(2 − η2)

∫ η

0

∫ r

0
(r − s)λ−11(r, f (q(r)))ds dr

}
.

(7)

For every p and q lies in Q it yields,∣∣∣∣∣F(p(t)) − F(q(t))
∣∣∣∣∣ =∣∣∣∣∣ 1
Γ(λ)

{∫ t

0
(t − r)λ−1(1(r, f (p(r))) − 1(r, f (q(r))))dr

−
2t

(2 − η2)

( ∫ 1

0
(1 − r)λ−1(1(r, f (p(r))) − 1(r, f (q(r))))dr

−

∫ η

0

∫ r

0
(r − s)λ−1(1(r, f (p(r))) − 1(r, f (q(r))))ds dr

)}∣∣∣∣∣
≤
Γ(λ + 1)

5Γ(λ)
k(∥ f p − f q∥)

{∫ t

0
|(t − r)|λ−1

| f p(r) − f q(r)|dr +
2t

(2 − η2)

∫ 1

0
(1 − r)λ−1

| f p(r) − f q(r)|dr

+
2t

(2 − η2)

∫ η

0

∫ r

0
|(r − s)|λ−1

| f p(r) − f q(r)|ds dr
}

[from (a)]

≤
Γ(λ + 1)

5Γ(λ)
k(∥ f p − f q∥) sup

t∈[0,1]

{∫ t

0
|(t − r)|λ−1dr +

2t
(2 − η2)

∫ 1

0
(1 − r)λ−1dr

+
2t

(2 − η2)

∫ η

0

∫ r

0
|(r − s)|λ−1ds dr

}
∥ f p − f q∥

≤k(∥ f p − f q∥)∥ f p − f q∥.

Therefore ∥F(p(t)) − F(q(t))∥ ≤ k(∥ f p − f q∥)∥ f p − f q∥. Thus considering M = 0 we can conclude that F and f
has a function q∗(t) ∈ Q in order that Fq∗(t) = f (q∗(t)). Hence f (q∗(t)) fulfills the equation (7), therefore the
given equation (6) has a solution.
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