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Abstract. This article discusses on topics about the integral boundary value problems with impulsive
conditions. Using a generalized contraction, the existence of solutions of an initial boundary value problem
involving Atangana Baleanu Capotu-fractional order (in Mittag—Lefler kernel sense) will also be investi-
gated and some important results will be presented. Two examples are provided to illustrate the results.

1. Introduction

Fractional differential equations are strong tools to demonstrate many natural phenomena. Refer to
[5-7,9, 10, 17, 20, 29] to see some important results. The study of implicit differential equations is one of
the most important studies in the theory of differential equations. These equations have applications in
many area such as managerial and economic sciences. Refer to some recent works on implicit differential
equations [1-4, 8, 16, 19, 23, 26-28].

In [11] the authors have studied the existence of solutions and Hyers-Ulam stability of the following
problem:
oD2, m(c) = f(c, m(c), m(me),o D m(c)), ¢ €%,
c#tcpforn=1,2,...,k,0<a<1,0<m<]1,
_ @
n(o) = Tip,
An(gn) = In(n(gn))/ n= ]-/2/ e /k/
where ¥ = [0,T], T > 0 and {DZ denotes the Caputo derivative at points other than ¢, in x, while
f:xXR> > Rand 7 : C(x,R) — R are given continuous functions. Further, I, : R — R are the nonlinear

impulsive mappings and An(c,) = m(c)) — m(c;), where ¢}, ¢; are the right and left limits of ¢, at n,

respectively. In this article, we study the existence and uniqueness of solutions for such integral boundary
value problems by a new fixed point theorem.
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F.Jarad et al. in [18] have studied the fractional differential equations in the sense of Atangana-Baleanu-
Caputo fractional derivative (ABC-fractional derivative) and presented the existence and uniqueness of
solutions of the type:

{ ABCDVC(1) = Y (1, c(1)),

c(a) = ca, @

where v € (0,1), 2B¢D" is ABC-fractional order differential operator and Y(t, ¢(1)) € C[a, b]. The generaliza-
tion of this work have been presented in some articles (see [7, 21]). Moreover, many authors have studied
and generalized the fixed point results of some mappings satisfying the generalized (6, {)-contraction
conditions in the context of partially ordered b-metric spaces (see [12-15]).

In this research, we examine the existence of solutions of the following initial boundary value problem
by utilizing the new generalized contraction.

APCD (1) = Y(1, c() + f L K1, s,¢(s))ds,
cla) =¢,
where 9 € (0,11, Y(, ¢(1)) € C([a, b] X R, R) and K(1, s, c(1)) € C([a, b] X R X R, R) with Y(t, ¢(¢)) |,= 0.

2. Preliminaries

Letk =[0,T]and 0 =¢p <¢1 < G2 <--- < ¢y =T, (n € IN). Denote the space of all piecewise continuous
function by PC(x, R) and set x = xo Uk Uy U---Uxk, where kg = [co, c1], k1 = (¢1,¢2], k2 = (62, ¢3], ..., K =
(Cnr Cn+1] and KI =K \ {glr gZI cecy Cl’l} Define

E={n:x > R:meC(ky,R)},

and put An(c,) = n(c}) — n(c;,) for m € E.
Here, (E, d) is a Banach space with respect to d be defined by:

d(y, ) = Iy = 1)l = sup(y(t) = 7(V)*.

tex

Definition 2.1. ([25]) The Reimann fractional integral of function m € LY([0, T], R, is defined as

olim(c) = ﬁfo (¢ — 1) n(t)dr.

Definition 2.2. ([22]) The Caputo derivative of z : (0, 00) — IR is defined as

1
I'n-a)

§DA(c) = f (- IO, 1= ol + 1.
0

We denote by @ all the functions ¢ defined on [0, o) that satisfies the conditions:
(i) ¢ is continuous,
(ii) ¢ is nondecreasing,
(iii) ¢(1) = 0if and only if ¢ = 0.
Also, let W denotes the set of all functions ¢ : [0, c0) — [0, o) satisfying the conditions:

(a) ¢ is lower-continuous,



H. Afshari et al. / Filomat 37:11 (2023), 3639-3648
(b) ¢(1) =0ifand only if t = 0.
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Moreover, suppose ¢ and ¢ satisfies the inequality ¢(3) > ¢(1). Then, we have the following results.

Definition 2.3. ([24]) Let (P,d,s, <) be a partially ordered b-metric space with s > 1, ¢ € ® and y € V. The
mapping S : P — P is a generalized (¢, )-contractive if it satisfies:

P(sd(Sv, 5¢€)) < P(d(v, &) — P(d(v, &),
forany v, & € Pwithv < &.

Theorem 2.4. ([24]) For the mentioned (P,d,s,<), let S : P — P be an almost generalized (¢, )-contractive
continuous and nondecreasing with regards to <. If there exists vo € P with vo < Svy, then S has a fixed point

3. Existence of solutions: Main results

Here, we drive some conditions for the existence of at least one solution for problems (1) and (3)

Lemma 3.1. ([11]) Let i : k — R is continuous and 0 < a < 1. Then, 1t € E is the solution of the problem:

DI m(c) =), ce€x, c#auforn=1,2,...,k
T((O) - 7-[0/

4)
Ar(c,) = Li(n(cy), n=1,2,...,k,

if and only if Tt satisfies the integral equation as
1 N 2
@) fo (€= P(n)dt + 1o, ¢ € Ko,

1 C n 1 Ci
ni(c) = % L (c- T)“‘ll,b(T)dT + ; [@ ﬁ_l(gi - T)‘Hlp(T)dT (5)

+ Ii(?'i(cz'))] +To, CEKy n=1,2,...,k

Corollary 3.2. ([11]) From Lemma 3.1, the solution of (1) is given as follows:

1 ” a—-1 Ca
T@) j; (c = 1) f(c, m(c), m(mc), §D m(c))dT + To, ¢ € o,

Cn

% f (e = 0% fle, m(e), m(me), § D2 m())d
ni(c) =

Y[ = ste e ) D2 e

+ Ii(ﬂ(Ci))] +Ty, CE€EKy n=12,...k
We use the following notations
un(c) = f(¢,m(c), m(me), (D¢, m(c)) = f(c, m(c), m(mc), un(c))-

The following assumptions are necessary to obtain the main results.

(A1) f:xxR3®— Ris continuous;
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(A2) There exist My > 0 and 0 < N < 1 such that for ¢ € x and for 71, 7t € R the following relation holds.
If(c, m(c), m(me), un(c)) — f(c, 7e(c), (me), un(c))| < Mg(Im(c) — ()] + Im(me) — (me)l) + Nelun(c) — ur(c)l;
(A3) For any 7, 7t € E, there exists A} > 0 with
li(r(ci) — Li(m(ci))l < Aflm(ci) — m(ci)l;
(Ag) For W(i, ¢(v) € L[a, b] and continuous functions ¢ and ¢; there exist constants A; > 0, (i = 1, 2) such that
(s, c(s)) = Y(s, call < Aalle —call, 1K1, c(0) = K15, c1(I < Aallc = call.

Define W : C(x, R) — C(x, R) as follows:
(Wr)(c) = ﬁ fo (€ = " gDt + 7o, < € Ko,
(Wr)(c) = ﬁ f j(g O () + 21 [ﬁ f (6= O QT+ B+ o = 1,2,

Theorem 3.3. If the mentioned conditions (A1) — (As) together with the inequality

+ A;n) <

( 2MfTa ZanTa 1
a 2

“NAT(@+1) (1 =NpL(a+1)
hold and there exists m € C(x, R) with m < W, then (1) has a solution.

Proof. We first show that W is continuous. Let {nr,,} € C(x, R) with 7t, = © € C(x, R). For each ¢ € «,,, we
have

|(Wr,)(c) = (Wm)(c)l < ﬁ f;(c = 0 g, (7) = un(7)ld7

Y z (8)
+ ; ﬁ f1 (ci— T)a_llunn(T) — uy(7)ldt + ; Ii(1t,(ci)) = Li(m(ci))l,

where ur,, u, € C(x, R) satisfy

Ur,(c) = f(c, Tn(c), mn(me), un,(c)) and ur(c) = f(c, m(c), m(mg), ur(c)).
By (A2), we get

My
T () = O
Now, i, — 1 as n — oo implies uy, (c) = uz(c), ¢ € k. Let N > 0 such that for ¢ € x, we have |ur, (¢c)] <N
and |u-(c)| < N. Thus,

|, (S) — un ()l <

(€ = 0 (1) = (1)) < (c — T)“_1(|Mnn(’[)| + |un(T)|) < 2R(c - 1),

(i = O Mot (7) = un(0)] < (ci = T)afl(lun,,(T)l + Iun(T)l) < 2N(¢i -

For each ¢ € k,,, T — 28(c — 7)* ' and T — 28(¢; — 7)*"! are integrable. Also, f and I are continuous.
Therefore, applying Lebesgue dominated convergence theorem, we get [(Wr,)(¢c) — (Wmn)(c)| = 0asn — oo.
Hence, particularly max.e, [Wm,(c) — Wrn(c)] — 0 which implies that ||Wmn, — Wrll[g — 0. Similarly, for
¢ € kg, we can show that ||Wm, — Wr|[g — 0. So, W is continuous.
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For 7t, 7t € E and ¢ € x,,, we have

(Wm)(c) = (WR)(c)l < L f}C (1) — wa(D)ld
Z T(a) (Cz — 1) un(1) — wr(T)ldT

* 2 (i) = I(R())),

i=1

where 1, w,; € C(x, R) are given by

uz(c) = f(c m(c), m(me), un(c)),
wr(c) = f(¢ 7(c), t(me), wr(c)).
By (A;), we have

If(c, (), m(me), urn(c)) — f(c, 7e(c), (me), wr(c))l
Mi¢(Irt(c) — 7t(o) + [m(mc) — mz(c)]) + Nlun(c) — wr (o)l
2M¢(Im(c) = Te(S)l + Nylur(c) — wa(c)l.

lur(c) — wa (o)l

INCIA

Then,

o2y )
1 (€) —wa (O < 1= Nflﬁ(c;) - n(e)l-

Thus, using assumptions (A;) — (A3), inequality (9) implies

|(Wm)(c) = (WR)()l < f (¢ = 0 n(7) - ”(D)ld7

(1-N )F(
* Z a- Nf)r(a) -
M T M T
(( “NAL(@+1) « (- NpI(a+1)

+ A;n)m(c) — ()]

So, we have
2MfTa ZMleTa
A-NpL(@+1) = (1 -Np(a+1)

Wrt — Wl < ( N A;n)un — .

Similarly, for r, 7t € E and ¢ € %o, we get

o

2M T
IWr — Wrlle < (—f)nn — e
1- Nf)F(a +1)
Therefore,
2M T® 2
W — Wl < (—f) I - 7llg2.
1- Nf)F(a +1)
Since
2M,T® 2M,T® 2MnT® 1
< —_
((1 —NpT(a + 1)) = ((1 “NAL(@+1) ' A-NpT@+1) = ”) <2

" (6= (o) — A0l + Y Ajln(c) - ()
i=1

3643

(10)

(11)
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then
1
IWr — Wl < I 7llg?.
So, we have
) I — 7l _ lIm — 7l
2[Wn - Wa|lg? < ———— = In - allg* - ————.
2 2
Then,
i — 7l

PQIWR - Wrll®) < p(lim - 7le) - p(————).
Since ¢(3) = Y(1), we obtain

=12
PN~ W) < gl - ) — p( T

Hence, W is a generalized (¢, i)—contractive operator and therefore, by using Theorem 2.4, the problem (1)
has a solution. O

Now we study problem (3) and derive some results.

Theorem 3.4. ([21]) Assume that § € (0,1],Y(t,c(1)) € C([a,b] X R,R) and K(1,s,c(t)) € C([a,b] X R X R, R)
with Y (1, ¢(1)) la= 0. Then, the solution of

{ABCaDSC(L) =Y, () + f Ko 5,6
(@) = &
is given by

<;<L>=s+ﬁ[v(t,c<t»+ f L«(l,s,g<s>>ds]+m f (-5 [Y(s,g<s>>+ f s«(s,r,qr»dr]ds,

where B is the normalized function which is defined as

9
]B(S):l—S'i‘m

Define ¥ : C(x, R) — C(x,R) as

F (o, c(0) =& + % [m W) + f K, g(s»ds]

_ S (e s
+]B(9)r(3) fa (t—5) [T(s,z;(s))+ fa W(s,r,g(r))dr]ds'

Theorem 3.5. If the assumed condition (A4) together with the inequality

(1 9 8 -ad)

1
BE) T BOIE + 1))M1 thlb-al<3 (12)

hold and there exists ¢ € C(x, R) such that ¢ < F ¢, then (3) has a solution.
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Proof. First, we show that  is continuous.

lcn() — el =1& 43

]B(S) [Y(t ca(1) + f K(,s, cn(S))dS]

+W f (=s)"" [T(S/Cn(S)H f W(s,r,gn(r))dr]ds

e W‘f [ e+ [ K, c(s))ds]
113(9)
1

= BE)

- —T¥) f(L—S)S 1 [T(s g(s))+f K(s,r, g(r))dr} ds|
|IT(1 cn(D) = Y(, c() + f 1K (1,5, cn(8)) — 1K (1,8, C(S))|d5]

Bw)r(s f (1= 9)" 7 IG5, 6n(s)) = Y5, ¢(6))

+f |7((s,1’,cn(r))—W(s,r,g(r))ldr]ds

S(° —a®)

BT 11 M+ b - allen—cl

< 15(9) A1+ (b= )Aa] | — ¢l +

(1=98 SO -a%)
“\BE) TBOTE+1)

)[/\1 + Aa(b—a)llc, — ¢l < A"|c1 — ¢,

where A = (% + %) [A+ A0 —a)] < % Therefore, we can obtain ¢, — ¢. Applying Lebesgue

dominated convergence theorem, we have || ¥ (1, ¢,(1)) = F(1,¢c(1)) |- 0, as n — oo. So, ¥ is continuous.
Now, we show that (i, ¢) satisfies in the conditions of the generalized (¢, 1))—contractive operator. For
this, we have

oy [10 e+ [ s e

+ m fl(L —5)%1 [T(S, c(s)) + j; Ks,, C(r))dr] ds

) P p—— (L, gl(L)) + f 7((l, S, Ql(s))ds]

_% ) f (t—s)! [Y(s,cl(s))+ f 7<(s,r,q(r))dr]ds I
J1-
= BE)

* BO) f (=) I, <(6) = X, 1O

177 (e, c(1) = F (1, a1l =11 € +

[II Y(t, c(v) =Y(, 1) |l +f I K(s,¢(5)) = K15, c1(5)) |l dS]

+ f ||7<<s,r,g<r>>—7<<s,r,q<r»udr]ds

1 9 '
BO) [Alllc C1||+£A2||C_Cl||d5]

+m f (—9)™ [A1||g—gl||+ f /\2||C—C1||d7’]d5
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1- S(b® —a®)
< ]B(S) [Al + b -a)Az]llc —cill + W

1-9  80° -a")
B®) T B )M A0 - allle - all

[A1 + A2(b = a)]llc — cll

Therefore,

1 ) - F (e ) I 3ller ~ell

Hence,

177G, <0) = T (,00(0) 1P ler = el
So,

llc1 — clIf?

1
21 F (L c) = F L a) IP< Sller = cl? = ller = ¢l - >

Thus,

2
PRI F(,50) = F 1) IP) < gl — oIP) — 120,

Since ¢(3) = Y(1), we have

P2 I F (1, <) = F (L, @) IP) < pllict = cl?) = Ylicr = cIP).

So, ¥ is a generalized (¢, {)—contractive operator. All the condition of Theorem 2.4 hold. Therefore, the
problem (3) has a solution. [

Example 3.6. Consider the following problem.

—TIX —X

DEm(0) = G5+ 35 ((costim(@l) +2{¢) + costD. ()
1
CE[Oil]/ C;ég/ k:1/ (13)
(0) =
1 1 1
5(3)= 573

Here,a = 3, m =1, ko = [0, 3] and 1y = (3,1]. Set

—TX —X

(66, ), 1n(0) = o+ 355 (cos(im( + (3¢ + cos(D @)

Function f is continuous. Using (Az) for any 7, @ € R, we have

(e, ), mome) g DEm(e) = fe, 7(E), 7me), AR < 7517(6) = 7] + 56DeH (e) = §D (@)

Hence, (Az) holds with My = %5 and Ny = 3. Set

Ik(v) = 0,

10
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where v € R. Then, for v, € Rand k = 1, we have

7| =

—|v — 7.

_ 1
I[1(v) = [1(9)] < |EU - M

10

Hence, (A3z) holds with A} = 11—0 Also, the condition

M;T® MnT® )
((1 +A1n) =0.169 <1,

“NoT@+1) T (I-NpI(a+1)

satisfies with T = 1 and n = 1. Thus, from Theorem 3.3, problem (13) has a solution.

Example 3.7. Let Y(,¢(1)) = tsinc(r) € C([0,1] X R, R), K(s,5,¢(t)) = tc(t)sins € C([0,1] X R x R, R) and
B(1) = 1. Consider

@-1z"

ABC DO (1) = 1sinc(t) + f 1c(t) sin sds,
0
<(0)=0

(14)

where $ =09,a =0,b=1and Ay = A, = 1. We have

(1 -9 81 —ad)

1
B(S) '~ B()I(S + 1>)”1 + A2 -a)] < 3.

Hence, by Theorem 3.5, Problem (14) has at least one solution.
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