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Bounded factorization property for £-Kothe spaces

Murat Hayrettin Yurdakul*’, Emre Tastiiner®

“Middle East Technical University

Abstract. Let ¢ denote a Banach sequence space with a monotone norm in which the canonical system
(en)n is an unconditional basis. We show that the existence of an unbounded continuous linear operator
T between ¢-Ko6the spaces A/(A) and A‘(C) which factors through a third £-Kéthe space A‘(B) causes the
existence of an unbounded continuous quasidiagonal operator from A‘(A) into A‘(C) factoring through
A{(B) as a product of two continuous quasidiagonal operators. Using this result, we study when the triple
(AL(A), AY(B), AL(C)) satisfies the bounded factorization property BF (which means that all continuous linear
operators from A‘(A) into A{(C) factoring through A¢(B) are bounded). As another application, we observe
that the existence of an unbounded factorized operator for a triple of £-Kéthe spaces, under some additional
assumptions, causes the existence of a common basic subspace at least for two of the spaces.

1. Introduction

Dragilev [3] and Nurlu [6] proved that if X and Y are nuclear £;-Kothe spaces and there exists a con-
tinuous linear unbounded operator T : X — Y, then there exists a continuous unbounded quasidiagonal
operator D : X — Y. Djakov and Ramanujan [1] sharpened this result by omitting the nuclearity condition.
The ¢-Kothe version of that result in [1] has recently been obtained in [11] by Uyanik and Yurdakul.

On the other hand, Nurlu and Terzioglu [7] proved (under some conditions) that the existence of an un-
bounded continuous linear operator between nuclear ¢;-Kothe spaces X and Y implies the existence of
a common basic subspace of X and Y; this result was generalized by Djakov and Ramanujan [1] to the
non-nuclear case (see [11] also). In these works, Dragilev’s theorem plays a crucial role.

Zahariuta in [13] observed that if the matrices of ¢;-Kothe spaces X and Y satisfy the conditions d,, d;, re-
spectively, then every continuous linear operator from X into Y is bounded. This phenomenon was studied
extensively by many authors; the most comprehensive result is due to Vogt [12], where all pairs of Fréchet
spaces with this property are characterized.

Terzioglu and Zahariuta [10] characterized those triples (X, Y, Z) of Fréchet spaces such that each continuous
linear operator T : X — Z which factors through Y is automatically bounded.

The aim of the present work is to prove a factorization analogue of Dragilev’s theorem [3] and its generaliza-
tions [1, 11]. Namely, we prove that if there is an unbounded continuous linear operator T : ALA) = AY0)
which factors through A{(B), then, in fact, there exists an unbounded continuous quasidiagonal operator
D : AY(A) — AY(C) that factors through A{(B) as a product of two continuous quasidiagonal operators.
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Terzioglu, Yurdakul and Zahariuta [9] obtained the £;-Kothe version of our result by using the character-
ization of the bounded factorization property [10]. Our proof is the factorized analogue of the proof of
Proposition 1 in [1].

Using this result, we study when the triple (1¢(A), A‘(B), A{(C)) satisfies the bounded factorization property.
Also, exactly as in [9], we show that the existence of an unbounded factorized operator for a triple of
¢-Kothe spaces causes that, under some additional conditions, these spaces (or at least two of them) have a
common basic subspace.

2. Bounded factorization property and £-K6the spaces

We denote by L(X,Y) and LB(X,Y) the spaces of all continuous linear operators and of all bounded
linear operators from the locally convex space X into the locally convex space Y. If for each S € L(X,Y)
and R € L(Y, Z) we have T = RS € LB(X, Z), we say (X, Y, Z) has the bounded factorization property and write
(X,Y, Z) € BF [10]. We simply write (X,Y) € Bwhen L(X,Y) = LB(X, Y).

Notice thatif (X,Y) € Bor (Y, Z) € B, then (X, Y, Z) € BF; and if (X, Z) € B, then (X, Y, Z) € BF forany Y.
The bounded factorization property is essential in the isomorphic classification of Cartesian products of
locally convex spaces. See for example [2].

Dealing with several Fréchet spaces we always use the same notation {|-|,, p € N} for a system of seminorms
defining their topologies and {| - |}, p € N} for the corresponding system of polar norms in the dual spaces.
For any operator T € L(E, F) we consider the following operator seminorms

[Ty = sup{|Txlp : xl; <1}, p,g€N,

which may take the value +co. In particular, for any one-dimensional operator T =x’' ® y, x’ € E’, y € F, we

have [T}, = |x’|:i *|ylp- Notice that T € L(E, F) means that for some function ¢ : N — IN, we have |T| 4 <

for every p € IN. Also T is bounded (i.e. T € LB(E,F)) if there exists € IN such that |T|;, < co for every

g€N.

Following [4], we denote by £ a Banach sequence space in which the canonical system (e;), is an uncon-

ditional basis. The norm || - || is called monotone if ||| < ||yl whenever |x,| < [yal, x = (Xu)n, ¥ = (Yn)n € ¢,

n € IN. Let A be the class of such spaces with monotone norm. In particular, £,,co € A.

It is known that every Banach space with an unconditional basis (x,), has a monotone norm which is

equivalent to its original norm.

Indeed, it is enough to put

= sup | Y o' Oatuc
Jova <17 7

tional corresponding to x, for each n € IN.

Let £ € A and ||.|| be a monotone norm in £.

If A = (a) is a Kéthe matrix, the £-Kothe space A/(A) is the Fréchet space of all sequences of scalars (x,)

such that (x,ak) € ¢ for all k € N with the topology generated by the seminorms |[(x,,)|lx = [[(x,a%)Il, k € N.

Notice that |le,|lx = a*, n,k € N. We always assume that the matrix A = (aﬁ) satisfies ak < aﬁ”, n,k € N.

An operator T € L(AY(A), A{(B)) is quasidiagonal if T(e,) = t.esm), n € IN, for some bijective map o : N — IN

and scalar sequence (t,).

, Where || is the original norm of the Banach space and x,’ is the coefficient func-

3. Main Results

Our main result characterizes the bounded factorization property for triples of {-K&the spaces in terms
of quasidiagonal operators, which is a natural generalization of Dragilev’s theorem [1, 3, 11].

Proposition 3.1. If (A‘(A), A“(B), A“(C)) ¢ BF, then there are continuous quasidiagonal operators
Dy : A{(A) — AYB) and D, : AY(B) — AY(C) such that D = D,D; is unbounded.
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Proof. Let T = RS : A‘(A) = AY(C) be a linear continuous unbounded operator which factors through A‘(B).
Then R : AY(B) — AY(C) is also unbounded, because otherwise T would be bounded. Now, we want to
argue according to the following observation in the spirit of the lemma in [8]:

Let Uy, Vi, Wy denote the closed unit balls defined by the k' seminorms on A‘(A), AY(B), A{(C), respectively.
We start with an arbitrary ball Wy in A‘(C). Using the continuity of R we find a ball V; in A‘(B) such that
R(V1) € Wy, and by the continuity of S we find a ball U; in Af(A) such that S(U;) € V;. Since R is unbounded,
R(V1) is not absorbed by, say, the ball W, contained in W and so T(U;) is not absorbed by W,. For this W5,
we use the continuity of R to find a ball V, C V; in A(B) and the continuity of S to find a ball U, c Uj in
AY(A) such that R(V,) € W, and S(Us) C V,. Since R(V,) is not a bounded set, we can find a ball, say, W3
in AY(C) such that R(V) ¢ AW; for all A > 0. Hence, using the continuities of R and S and unboundedness
of R alternately, we find decreasing sequences of balls (Ui)k, (Vi)r, (Wi)k in AL(A), AYB), ALO), respectively,
such that R(Vy) € Wy, S(Uy) € Vi and T(Uy) ¢ AWp,q for all k € IN.

Keeping the observation above in our minds, without loss of generality, we may assume that

@) ITx|lx < %llxllk forallx € A‘(A), k=1,2,3,...

T
(if) sup | ee””"“ -0, k=1,2,3,...

& Tl
(iif) sup % =00,k=1,2,3,...
o lleelle

where (e,)n, (e7)c and (e,), denote the canonical bases in A{(A), A‘(B) and A¢(C), respectively.

Indeed, one may obtain these by using appropriate multipliers and passing to a subsequence of seminorms,
if necessary.

Let (k;); be a sequence of integers such that each k appears in it infinitely many times and in view of (ii)
choose inductively an increasing subsequence (11;); such that

ITey,l| .
O S o forall |
Tiew

Let S(ey,) = Z Oncer and R(e;) = Z va%v
Then T(e,) = Z 0.,RE;) = Z 0,:(0r1,002, 03, ..)

S0, T(en) = (Bn1611, 01612, 01613, . . )+(B12621, 012622, 0,003, .. )+ .. = [Z 0001, Z OO, Z 003, . ..
7 7 7

ie. T(e,) = Z [Z 5n£9ev]€1-
v 14

Consider ;
~ ck ]( b, ): ~ ok~
su 0,600 |ty | sup 2 || sup = |e,| < su 0.0 lay Y e,
|av|5 ‘Z [Z ] [ kp v kp ak mlg Zv“ ; Zk: ay
~ = ITey|lx 1
<) — ko | < <) —<1
T pl5 (L] L

Thus foreach j=1,2,..., we obtain in view of (iv)

_ SN b
Zv: Zf“en/ge,;v Ay Sipb_ﬁ SuPaT ey

k nj

k+1

Z {Z O é’eé’v] avv_ev
v

”1

<1<27sup

o<1

(v) sup

o<1

Hence, there is v; such that

ck bk 1 c,
i) | sup — || sup -~ | < = —
(Vl)[ 1;P bk]( lip aﬁj] 2j lej

¢ n;
Otherwise, we obtain a contradiction to (v) by monotonicity of ||.[|.
Notice that (vi) holds for any ¢.
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IReg ll+1
Because of (iii) we would choose inductively an increasing subsequence (¢;) such that # > 2/ forall
€t;llk;
j=12,...
Clé/ blgi
Let A; = sup o uj = sup —= so that
k ¢ ko tn;
]
k/'+1
1 Gy

nj
Consider the quasidiagonal operator D; : A‘(A) — AY(B) defined by
Dien, = pj "er, j=1,2,...; Die, = 0if n # nj, and the quasidiagonal operator D, : AL(B) — AY(C) defined by
Daey, = Aj "6y, j=1,2,..; Daer = 0if £ # €.
Hence, the quasidiagonal operator D : A‘(A) — A(C) is defined by
_ R _
Dey; = DyDhey, = (/\jy]-)_laj = [sup %] Z,j =: t;la,l, j=1,2,..;De, =0ifn #n;.
ko Ay
Ifx = Z Xujln; € AY(A), then Dix = Z xn/.(yj)_lE}j.
j j
Since Ixnj(yj)‘lb’{ijl < Ixn/.a’;ll for all j, by monotonicity of ||.||, we obtain that ||(xnj(yj)_1b’}j)|| < ||(xnjaﬁ/_)||, ie.
ID1x[lx < [|x[l for all k. Hence, D is continuous.
Ifx =) x,% € A(B), then Dox = ) x,,(A)) ",
j j
Since ngj(/\j)’lcl;jl < |X[/b§| for all j, by monotonicity of ||.||, we obtain that ||(X€](Aj)7lclz§f)” < ||(X[/b§ ), i.e.
7 7
[ID2x|lx < ||x]|x for all k. Hence, D, is continuous. So, D is continuous (or it can be shown similarly).
In addition, D is unbounded, because if k is fixed, then for some subsequence (j;) we have k; = k,
IDey, Il

>2F 5 c0ass — .
lex, Il

s=1,2,3,... and by (vii),
O

The next theorem gives a necessary and sufficient condition for
(AY(A), AY(B), AY(C)) € BF. Formally in ¢;-Kéthe case this condition coincides with the one given by
Terzioglu, Zahariuta (see [10], Theorem 3.5), but its sufficiency in our case cannot be obtained directly for
a general map, since continuity at any e, does not imply continuity at x € A‘(A). Proposition 3.1 gets rid of
this difficulty.

Theorem 3.2. We have (A‘(A), A‘(B), A’(C)) € BF if and only if for each non-decreasing map 1 : N — IN there
exists r € IN such that for all g € IN there exist s € N and C > 0 so that the inequality

ol ck bk
o G ; o .
(viii) a; < CkI:I%f{l_’_fs [bn(k)] kr:r}?fs @ holds for all i, j,v € IN.
[ .
j

Notice that Theorem 3.2 above is the factorized analogue of Theorem 2.2 in [11]. In its proof we will use
the following result from [10].

Proposition 3.3. For Fréchet spaces E,F,G we have (E,G,F) € BF if and only if for each non-decreasing map
7t : IN — IN there exists v € IN such that for all ¢ € N there exist s = s(q) € N and C = C(q) > 0 so that the following
inequality

Tl < Ckr_nlaX (IRl 7ecx) kI_I}aXS(”S”k,n(k))

,,,,, s
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is satisfied for every R € L(G,F),S € L(E, G) where T = RS.

Now we are ready to prove Theorem 3.2.

Proof. Suppose (A‘(A), A{(B), A(C)) € BF.

LetR = e;, ®e;, S = e; ®e,sothat T = RS = e;. ® ¢; is an operator of rank one. Note that
ok bk c!

IRk ) = W, IS 11k, = an(k ,and |||y, = p
[ j ]

Then results follows from Proposition 3.3 above.

In view of Proposition 3.1 it is enough to prove the converse for quasidiagonal operators.

Let S(ej) = sjeu(j), R(e) = toeiw), and T(ej) = RS(ej) = sjtu(j€iw(j)), j € IN define a continuous quasidiagonal
operator on A‘(A) to A(C) which factors through A/(B).

We determine 7t : IN — IN such that [|S]lx @) < o0 and [|R||x ¢ < oo for each k € IN (Remember our observa-
tion at the beginning of the proof of our Proposition 3.1) and find r € IN such that for every g there exists
C > 0 and s € IN so that the relation (viii) holds. We observe that

|S]||tv(])|cl
i(w(7)
||T||qr =sup —
a’
j J
k
bv(j) Ifo( | zv(]))

and |[R|lrx = sup "

IS]
ISl m0 = sup —5
;o I o(j)

Then, using (viii) we get

k k
ITllg,r = su M«:su siltop] max Citol) max by
4 = SUp — P 18jllto()! Max p® k=15 | g7

i j j o(j) i

|tv(1)|cl(v(] |Sl|bv(])
< C max |sup ————— max | sup
j j

k=1,...s (k) k=1,.., g™ ®
o(f) f
=C max ”R”kn(k) max ”S”kn(k < co.

Hence T is bounded

O

Vogt characterized the pairs (1(A), A*(B)) € 8B ([12]: Satz 1.5). The relation (A(A), A(B)) € B was inves-
tigated by a different approach in [1] and the relation (AY(A), AY(B)) € B was obtained in [11] similarly. A
complete characterization of this case is an immediate by-product of our previous theorem.

Corollary 3.4. We have (A‘(A), A*(B)) € B if and only if for each non-decreasing 7 : N — IN there exists r € N
such that for each q € IN we can find C > 0 and s € IN so that the inequality

bl bt
—<C max (k) holds for all i, j € N.

4. Common Subspaces

Following [9], we say that a pair (F, E) of Fréchet spaces satisfies the condition S if there is a mapping
7 : IN — N such that for each pair p, r € IN there exists a constant C = C(p, r) such that the estimate
(ix) ”T”r,'r(p) < CmaX(HTHT(p),pr ”T”T(r),r)
holds for every one-dimensional operator T = ¢’® f, where ¢’ € E/, f € F. A pair of (-K6the spaces E = A{(A)
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and F = AY(B) satisfies the condition S if the condition (ix) holds for the operators T = e;®eji,j € IN([5]).
If the estimate (ix) is true for arbitrary bounded operators T € L(E, F) then we write (F,E) € S.

Again following [9], a triple of Fréchet spaces (F, G, E) satisfies the condition S¥ (we then write (F,G,E) €
S¥) if for any one-dimensional operator T = RS, withboth S € L(E, G) and R € L(G, F) also one-dimensional,
the inequality

(x) ”T”m(p) <C maX(HR”T(p),p/ ||R||r(r),r) max(”SHI(p),pr ”S”T(r),r)

holds with the same requisites as in (ix).

If the condition (x) holds for an arbitrary bounded operator T = RS, with S € L(E, G) and R € L(G, F) we will
write (F,G,E) € SF.

We note that if E = G or G = F the condition (F,G,E) € SF reduces simply to (F,E) € S as well as
(F,G,E) € 87 doessoto (F,E) € S.

The following example shows that SF is strictly weaker than S. Here we use the notation A,(a) =
AMexp(apa;)) with a, /7 a0 < 00, a = (a;).

Notice that the finite type power series space A1(a) has d-matrix and infinite type power series space A (a)
has d;-matrix.

Example 4.1. Let a = (a;) be a positive sequence increasing to co. Since (A1(a), Aeo(a)) € B ([13]), we have
(A1(a), A (a), A1(a)) € BF trivially. So we have (A1(a), Aws(a), A1(a)) € ST (hence (A1(a), Aw(a), A1(a)) € STF)
by Proposition 7 in [9].

However, (A1(a), Ao(a)) ¢ S.

In what follows we shall denote by A/(A), the basic subspace of an {-Kéthe space A‘(A) which is the
closed linear envelope of {e, : n € L}, L C IN.
Suppose now (A(A), A{(B), AY(C)) ¢ BF and (A(C), A‘(A)) € S. By Proposition 3.1, we know that there are
S : ALl(A) = AY(B); S(ei) = ties), i € N, and R : A(B) > AY(C); Re, = suep), v € N, with some bijective maps
o and p on IN such that T = RS is an unbounded quasidiagonal operator. By Corollary 2.3 in [11] (see also
Proposition 3 in [1]) there exists infinite subsets ] and I of IN such that T maps A‘(A) j isomorphically onto
AY(C);. Then one can easily check that for N = o(]) = p~!(I) both S : A(A); = A‘(B)yand R : A“(B)y, — AY(C);
are also isomorphisms. We have therefore proved that:

Proposition 4.2. Suppose that (A‘(A), A‘(B), A“(C)) ¢ BF and (A'(C), A’(A)) € S. Then there is a common basic
subspace for all three spaces.

Now proceeding exactly as in [9], we consider a generalization of Djakov-Ramanujan’s result ([1], Propo-
sition 3) in the context of factorization.

Theorem 4.3. Suppose that (A‘(A), A(B), AY(C)) ¢ BF and (A“(C), A‘(B), A“(A)) € SF. Then one of the pairs
(AY(A), AYB)) or (AY(B), AY(C)) has a common basic subspace.

Proof. By Proposition 3.1, there exists quasidiagonal operators S : A‘(A) — A{(B) and R : AY(B) — AY(C)
with bijective 0 and p (as above) such that T = RS is unbounded. Without loss of generality we assume
in what follows that all three operators are identity embeddings, since otherwise we can get this property
by considering a new triple of {-Kothe spaces obtained from the original one by some permutations and
normalizations of their canonical bases (note that the property S¥ is preserved under such reconstruction).
When applied to the above embeddings, the condition SF gives the following:
there is a map 7 : N — IN such that

r P P 10
(xi) — < Cmax {'— ! ]max ['— : } for all p,r,i € IN with some constant C = C(p, r).

) = P 7
ai(”) a b b




M. H. Yurdakul, E. Tagtiiner / Filomat 37:11 (2023), 3631-3637 3637

It now suffices to prove that there is an infinite set I ¢ IN such that A‘(A); = AY(B); or A‘(B), = AY(C),.

Suppose that this assertion is false. Then for each infinite set I € IN and m € IN there is r > m such that
R Y
— = liminf — = 0.
a0
We define inductively the sets No > N1 O ... by

p P
(xiii) No := N, N,, := {i € N)_1 : max ;— —|=1},peN

(xii) lim inf
i€l

with 7 from (xi).
We claim that for each p € N the embedding T is bounded on the basic subspace X, of 1‘(A) spanned by
{ei : 1€ N1\ Np}. If that is not so, then for each g € IN there is an infinite subset I, C N,-1 \ N, and m(q) € N
with
D

(xiv) lller{ll ? = oo.
For I = I; we find r > m(q) such that (xii) holds.
Then there is an infinite set ], C I, with
CT(r) b’r(r)

i i

b’ oal
On the other hand, by (xiii) we have
P @)

i i
Applying now (xi) with g = 7(p) and r chosen above and taking into account the estimates (xv) and (xvi),

(xv) max <li€],

(xvi) max <l,iel

c
we obtain —; < Cfor all i € J;, which contradicts (xiv).

This proveslour claim that the embedding T is bounded on each X,,. Hence, for every p € IN, the operator
T must be unbounded on the basic subspace Y, generated by {e; : i € N,}, which, particularly, implies that
N, is an infinite set.

Now we construct a sequence I = {i} so that i, € N,i,1 # i,,p € N.

Then due to (xiii), there is an infinite set | C I such that at least one of the inequalities af < b:(p ) or bf < c:(p )
holds for all p € N and i € | such that i > p, which contradicts the assumption (xii). This completes the
proof. [J
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