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A multidimensional stable limit theorem

Mityas Barczy?, Gyula Pap®

?ELKH-SZTE Analysis and Applications Research Group, Bolyai Institute, University of Szeged, Aradi vértaniik tere 1, H-6720 Szeged,
Hungary
YBolyai Institute, University of Szeged, Aradi vértaniik tere 1, H-6720 Szeged, Hungary

Abstract. We establish multidimensional analogues of one-dimensional stable limit theorems due to
Héusler and Luschgy (2015) for so called explosive processes. As special cases we present multidimensional
stable limit theorems involving multidimensional normal-, Cauchy- and stable distributions as well.

1. Introduction and main results

Stable convergence and mixing convergence have been frequently used in limit theorems in probability
theory and statistics. Historically the notion of mixing convergence was introduced first, and it can be traced
back at least to Rényi [16], see also Rényi [17] and [19]. The more general concept of stable convergence
is also due to Rényi [18]. Stable convergence should not be mistaken for weak convergence to a stable
distribution. Recently, Hdusler and Luschgy [11] have given an up to date and rigorous exposition of
the mathematical theory of stable convergence, and they provided many applications in different areas to
demonstrate the usefulness of this mode of convergence as well. In many classical limit theorems, such as
in the classical central limit theorem, not only convergence in distribution, but stable convergence holds as
well, see, e.g., Examples 3.13 and 3.14 in Hausler and Luschgy [11]. Stable convergence comes into play
in the description of limit points of random sequences, in limit theorems with random indices, there is
a version of the classical A-method with stable convergence as well, see, e.g., Chapter 4 in Hdusler and
Luschgy [11]. Stable convergence has a central role in limit theorems for martingale difference arrays,
and one can find its nice applications in describing the asymptotic behaviour of some estimators (such as
conditional least squares estimator) of some parameters of autoregressive and moving average processes
and supercritical Galton-Watson processes (for a detailed description, see Chapters 9 and 10 in Hausler and
Luschgy [11]). For a short survey on the role of stable convergence in limit theorems for semimartingales,
see Podolskij and Vetter [15]. In numerical probability, especially, in studying discretized processes, in
approximation of stochastic integrals and stochastic differential equations, and in high frequency statistics,
stable convergence also plays an essential role, see the recent books Ait-Sahalia and Jacod [1] and Jacod
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and Protter [13]. Very recently, Basse-O’Connor et al. [4, part (i) of Theorem 2.1 and part (i) of Proposition
2.3] have proved new limit theorems with stable convergence for some variational functionals of stationary
increments Lévy driven moving averages in the high frequency setting.

Recently, Crimaldi et al. [9, Definition 3] have extended the notion of stable convergence: they have
introduced the notion of stable convergence of random variables with respect to a so-called conditioning
system towards a kernel, by replacing the single sub-o-field appearing in the definition of (the original)
stable convergence with a family of sub-o-fields (called a conditioning system). Then, as a generalization
of the previously mentioned concept, Crimaldi et al. [9, Definition 4] have introduced the notion of stable
convergence of random variables in the strong sense with respect to a conditioning system, where not
only the single sub-o-field appearing in the definition of (the original) stable convergence is replaced by a
conditioning system, but also the type of convergence for the conditional expectations with respect to the
members of the conditional system in question is strengthened to convergence in L. Moreover, as a further
generalization, Crimaldi [8, Definition 2.1] have defined the notion of almost sure conditional convergence
of random variables with respect to a conditional system towards a kernel. If such a convergence holds, then
the conditional expectations with respect to the members of the conditional system in question converge
almost surely to a random variable.

Let Z,, N, R, R, and RR,, denote the set of non-negative integers, positive integers, real numbers,
non-negative real numbers and positive real numbers, respectively. The imaginary unitis denoted by i. The
Borel o-algebra on R? is denoted by B(RY), where d € N. Further, let log™ (x) := log(x) Ljz>1; + 0 - Ljp<x<)

for x € R;. Convergence in a probability, in L;, in L, and in distribution under a probability measure

P will be denoted by L, Ll—(>]P), 2% and %, respectively. For an event A with P(A) > 0, let

Pa(-) := P(-|A) = P(- N A)/IP(A) denote the conditional probability measure given A. Let Ep denote

the expectation under a probability measure IP. Almost sure equality under a probability measure P

and equality in distribution will be denoted by P2% and z:), respectively. Every random variable will be

defined on a (suitable) probability space (Q,F,P). For a random variable &: Q — R?, the distribution
of & on (RY% B(RY) is denoted by IP¢. The notions of stable and mixing convergence and some of their
important properties used in the present paper are recalled in Appendix A.

First, we will recall a one-dimensional stable limit theorem due to Hausler and Luschgy [11, Theorem 8.2]
for so called explosive processes. The increments of these processes are in general not asymptotically negli-
gible and do not satisfy the conditional Lindeberg condition, so they are not in the scope of stable martingale
central limit theorems. For such explosive processes, Hdusler and Luschgy [11] developed the following
limit theorem (Theorem 1.1) which states stable (mixing) convergence of the appropriately scaled explosive
process in question, and they successfully applied it for proving stable (mixing) convergence of conditional
least squares estimator of the autoregressive parameter of supercritical autoregressive processes of order 1
(see Héusler and Luschgy [11, Example 8.10 and Theorem 9.2]) and that of Lotka-Nagaev estimator, con-
ditional least squares estimator and Harris estimator of the offspring mean of supercritical Galton-Watson
branching processes conditionally on non-extinction (see Hausler and Luschgy [11, Corollaries 10.2, 10.4
and 10.6]).

Theorem 1.1 (Hdusler and Luschgy [11, Theorem 8.2]) Let (X,)nez. and (Au)nez, be real-valued stochastic
processes defined on a probability space (Q,F,IP) and adapted to a filtration (Fy)nez,. Suppose that A, > 0,
n € IN, and that there exists ng € IN such that A, > 0 for each n > ng. Let (a,)nen be a sequence in (0, o0)
such that a, — oo as n — oo, andlet G € Foo := 0(U, ez, Fu) such that P(G) > 0. Assume that the following
conditions are satisfied:

(HLi) there exists a non-negative, Fo,-measurable random variable n : Q — R such that P(G N {n? > 0}) > 0 and
8 n n

>

P,
—G>172 as n — oo,

=N

a
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(HLii) (f—:)nen\] is stochastically bounded in Pgnps0)-probability, i.e.,

(anl

n

lim sup Pgnps0) > K) =0,

% neN

(HLiii) there exists p € (1,00) such that

az_ 1
lim 2L = F7 foreach r € N,

n—oo a%

(HLiv) there exists a probability measure p on (R, B(R)) with fIRlogJ’(lxI) p(dx) < oo such that

AX P N{n2 > :
Ep (exp {itAT/Z} 'ﬁ_l) iy fe“" du(x) as n — oo
b R

forall t € R, where AX, =X, —Xu—1, n € N, and AXy:=0.

Then

1?’/12 N ;p‘f/2zj Feo-mixing under Pgnp2sp as 1 — oo, (1)
and

% N ’7; p—f/sz Feo-stably under Pgppsop as 1 — o, 2)

where (Z)icz, denotes a P-independent and identically distributed sequence of real-valued random variables being
P-independent of Fo with P(Zy € B) = u(B) forall B € B(R).

Remark 1.2 (i) The series Y72 p™/?Z; = Y.20(p"/*)7Z; in (1) and (2) is absolutely convergent P-almost surely,
since p¥/? > 1, Ep(log™(|Zol)) < oo (by condition (HLiv) of Theorem 1.1), and one can apply Lemma 8.1 in Hiusler
and Luschgy [11].

(ii) We note that in condition (HLi) of Theorem 1.1 the Fo-measurability of 1 is supposed, but in condition
(i) of Theorem 8.2 in Hiusler and Luschgy [11] it is not supposed. However, in the proof of Theorem 8.2 in Hiiusler
and Luschgy [11, page 148] it is written that the Fo-measurability of n can be assumed without loss of generality.
Note also that if the probability space (€, Feo,Pg) is complete, then the Fo-measurability of n follows itself from

the convergence % L, 1% as n — oo involved in condition (HLi) of Theorem 1.1. Indeed, then there exists a

subsequence (ny)wen such that Ay, /a> Peag. n? as k — co. Since Ay [aj is Fe-measurable for each k € N

e
and (Q, Fe,Pg) is complete, by a standard measure theoretical arqument, we have n* is Foo-measurable. The
continuity of the square-root function together with 1> 0 yield the Fo-measurability of 1, as desired.

(iii) The Fo-measurability of 1 yields that n and Z;, j € N, are P-independent in Theorem 1.1. Further, we

have Pg(n > 0) = Pg(n? > 0) > 0 and Penpps0)(n > 0) = 1, where we used that 1 is non-negative. m|

By |lx|| and ||A|l, we denote the Euclidean norm of a vector x € R? and the induced matrix norm of
a matrix A € R™, respectively. By (x,y), we denote the Euclidean inner product of vectors x,y € R%.
The null vector and the null matrix will be denoted by 0. By p(A), we denote the spectral radius of
A € R, Moreover, I; € R™ denotes the d x d identity matrix, and if A € R?? is symmetric and positive
semidefinite, then A'/? denotes the unique symmetric, positive semidefinite square root of A. If V € R*™?
is symmetric and positive semidefinite, then N;(0, V) denotes the d-dimensional normal distribution with
mean vector 0 € R? and covariance matrix V.

In order to formulate our multidimensional stable limit theorems, we need the following result, which
is a multidimensional generalization of Lemma 8.1 in Héusler and Luschgy [11], and it is interesting on its
own right.
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Lemma 1.3 Let (Z))jez, bea P-independent and identically distributed sequence of R-valued random vectors.
Let P € R™ be an invertible matrix with o(P) < 1. Then the following assertions are equivalent:
(i) Ep(log”(IZol)) < eo.
(ii) Z;io ||PJZj|| < co P-almost surely.
(il) Y320 P'Z; converges P-almost surely in RY.
(iv) P'Z; —> 0 as j — oo P-almost surely.

The proof of Lemma 1.3 and the proofs of all the forthcoming results can be found in Section 2. We note
that from the proof of Lemma 1.3 it turns out that for the implications (i) = (ii) = (iii) = (iv), we do not
need the invertibility of P, we only need it for (iv) = (i).

For an R%-valued stochastic process (Up)uez,, the increments AU, n € Z,, are defined by AUy :=0
and AU, :=U, — U, for n € N.

Our main result is the following multidimensional analogue of Theorem 8.2 in Hausler and Luschgy
[11] (see also Theorem 1.1).

Theorem 1.4 Let (U,)nez, and (By)nez, be Re-valued and R¥-valued stochastic processes, respectively, defined
on a probability space (QQ, F,P) and adapted to a filtration (Fy)nez,. Suppose that B, is invertible for sufficiently
large n € N. Let (Q,)nen be a sequence in R™ such that Q, — 0 as n — co and Q, is invertible for
sufficiently large n € N. Let G € Foo 1= 0(Ujeo Fr) with P(G) > 0. Assume that the following conditions are
satisfied:

(i) there exists an R -valued, Fo-measurable random matrix 1 : Q — R>? such that P(G N {An~'}) > 0 and
-1 Pg
Qan —1 as n— oo,
(i) (QuUn)nen is stochastically bounded in IPgn3,-1)-probability, i.e.,
lim sup Pgra,1(1Q, Ul > K) =0,
K—0o ey

(iii) there exists an invertible matrix P € R™4 with o(P) <1 such that

4 P
B.B,!, — P’ as n — oo foreach r e NN,

(iv) there exists a probability measure p on (R?, B(R?)) with f]Rd log™ (llxll) p(dx) < o such that
. Por - .
]EP(EI<G’B"AH">|7:”_1) Cﬂllf 0% 1y(dx) as n — oo
]Rd

forall 6 R

Then
B, U, — i PjZ]- Foo-mixing under Pgra,1y as n — oo, 3)
j=0
and
Q.u,—n i Pij Foo-stably under Pgra,-1y as n — oo, 4)
j=0

where (Z))icz, denotes a P-independent and identically distributed sequence of R%-valued random vectors being
P-independent of Fo with P(Zy € B) = w(B) forall B € B(RY).
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Remark 1.5 (i) The series .72, PIZ; in (3) and in (4) is absolutely convergent P-almost surely, since P is invertible,
o(P) < 1, Ep(log*(lIZoll)) < oo (by condition (iv) of Theorem 1.4), and one can apply Lemma 1.3.

(ii) The random variable 1 and the sequence (Z;)jcz, are P-independent in Theorem 1.4, since n is
Foo-measurable and the sequence (Z))icz, is P-independent of Fe. Further, we have Pc(An™') > 0 and
Perayy@n) =1,

(iii) The proof of Theorem 1.4 (which can be found in Section 2) follows the method of that of Theorem 8.2 in
Hiusler and Luschgy [11]. However, a natural question also occurs, namely, would it be possible to prove Theorem
1.4 using the Cramér-Wold theorem for stable convergence (see, e.g., Hiusler and Luschgy [11, Corollary 3.19])?
We do not know the answer to this question. The Cramér-Wold theorem for stable convergence states that, given
R-valued random variables X,, n € N, and X, X, converges G-stably to X as n — oo if and only if
for all u € RY, the real-valued random variables (u,X,) converges G-stably to the real-valued random variable
(u,X) as n — oo (where we used the setup given in Definition A.1). Here we only note that even in the proofs of
multivariate central limit theorems with scaling matrices not converging to a fixed positive definite matrix, not only
the Cramér-Wold theorem (for convergence in distribution) comes into play, but a key lemma originated to Bolthausan
[7] and its generalization due to Biscio et al. [6, Lemma 3.2], for more details see Biscio et al. [6]. ]

In the next remark we reformulate condition (iii) of Theorem 1.4 in the one-dimensional case.

Remark 1.6 In case of d = 1 (so not using boldface style in this case), if condition (i) of Theorem 1.4 and
PAn™Y) =P(n #0) = 1 hold, then condition (iii) of Theorem 1.4 is equivalent to the following condition:

there exists P € (—1,1) \ {0} such that Q,Q,,}, — P asn — oo for each r € IN. (5)

Indeed, if conditions (i) and (iii) of Theorem 1.4 with d = 1 and P(An~') = 1 hold, then there exists P € (—1,1)\ {0}
such that for each r € IN, we have

QuQyY, = QuB;'BuB, L BuerQyl, —5 P = P as > oo,

Since Q,Q,L, is non-random, we have (5). Conversely, if condition (i) of Theorem 1.4 withd = 1, P(An') = P(n #
0) = 1, and (5) hold, then there exists P € (—1,1) \ {0} such that for each r € IN, we have

_ PPN P
BuB,l, = BuQ;'QuQ;1,Qu—rB;l, — 7 'P'n =P as n— o,

i.e., condition (iii) of Theorem 1.4 with d = 1 holds. Finally, note that, with the notation a, := Q,;', condition (5)
implies that for each r € IN we have

7 2 -2 2 1

n—r —

anQn—r_)Pr:W as n— oo,

which is nothing else but condition (iii) of Theorem 8.2 in Hiusler and Luschgy [11] (see also condition (HLiii) of
Theorem 1.1) with p := (P?)™! € (1, 00). In Remark 1.7, we give a more detailed comparison of Theorem 8.2 in Hiiusler
and Luschgy [11] (see also Theorem 1.1) and Theorem 1.4. m]

a
a;

In the next remark we investigate the connection between Theorem 8.2 in Hausler and Luschgy [11] (see
also Theorem 1.1) and Theorem 1.4.

Remark 1.7 Theorem 1.4 gives back Theorem 8.2 in Hiusler and Luschgy [11] (see also Theorem 1.1) provided that
IP(n > 0) = 1 in condition (i) of Theorem 8.2 in Hiusler and Luschgy [11]. Indeed, let (Xy)nez, and (An)nez,
be real-valued stochastic processes defined on a probability space (Q,F,IP) and adapted to a filtration (Fp)uez, -
Suppose that A, > 0, n € N, and that there exists ny € IN such that A, >0 for each n > ny. Let (a,)nen bea
sequence in (0,0) such that a, — o0 as n — oo, and let G € Fo with IP(G) > 0 such that the conditions (HLi)
together with P(n > 0) =1, (HLii), (HLiii) and (HLiv) of Theorem 1.1 hold. Note that in this case Pgnps0 = P,
since P(n > 0) = 1 implies that P> > 0) = 1. In Theorem 1.4, let us make the following choices U, = X,,
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neZ. By:=A"? nzny, Q,:=a;!, neN, and P := p~ Y2, where p € (1, 00) is given in (HLiii) of Theorem
1.1. Then (HLi) of Theorem 1.1, the non-negativity of 1 and the continuity of the square-root function yield that

/
Q,B,' = ‘ﬁ T, n as n — oo, i.e., condition (i) of Theorem 1.4 is satisfied. Further, (HLi) of Theorem 1.1 together
with P(n > '0) =1, (HLiii) of Theorem 1.1 and the continuity of the square-root function imply that for each r € IN,
we have

1/2 1/2
_An/—r zAn/r An An—r E}nli
—r A}]/z Ayey A}/z a, n pr/z

i.e., condition (iii) of Theorem 1.4 holds. Conditions (HLii) and (HLiv) of Theorem 1.1 readily yield conditions (ii)
and (iv) of Theorem 1.4, respectively. So we can apply Theorem 1.4 and we have (1) and (2), as desired. O

=P as n — oo,

Next, we present a multidimensional stable central limit theorem, which is a multidimensional coun-
terpart of Corollary 8.5 in Hdusler and Luschgy [11].

Corollary 1.8 Let us assume that the conditions of Theorem 1.4 hold with u := PN©®P) where PN/OP) denotes
the distribution of a d-dimensional normally distributed random variable with mean vector 0 € R? and covariance
matrix D € R™. Then

B,U, > Z Foo-mixing under Pgagp1y as n — oo, (6)
and
Q.u, - nz Foo-stably under Poa@yy as n— oo, 7)

where Z denotes a_d-dimensional normally distributed random vector with mean vector 0 € R? and covariance
matrix Y.;20 PPD(P')T, and Z is P-independent of Fe.

In Corollary 1.8, 1 and Z are P-independent, since 7 is #-measurable (supposed in condition (i)
of Theorem 1.4).

Next, we will formulate a corollary of Theorem 1.4 involving multidimensional stable distributions, in
particular, a multidimensional Cauchy distribution. For this, first we recall the notion of a multidimensional
stable distribution. A d-dimensional random variable ¢ := (Cy,...,(4) is said to be stable if for any
a1,a, € Ry, thereexist b € Ry, and ¢ € R? such that

ac® +ac® 2bC +c, ®)

where ¢V and ¢® are independent copies of C. Itis known that ¢ is stable if and only if there exists
a € (0,2] such that for each n > 2, n € N there exists ¢, € R? satisfying ¢4 g™ 2 na + cy,
where ¢V, ¢?,...,¢"™ are independent copies of ¢. The index a is called the index of stability or the
characteristic exponent of ¢. In what follows, let S;_;1 := {x € R? : ||x|| = 1} be the unit surface in R%.
We say that ¢ is symmetric stable if it is stable and P(¢ € A) = P(—¢ € A) for all A € B(RY). It known
that a d-dimensional random variable ¢ is symmetric a-stable with index «a € (0,2) if and only if there
exists a unique symmetric finite measure Il on (Sy—1, B(S4-1)) (Where the property symmetric means that
IT(A) = I1I(-A) forany A € B(S4-1)) such that

Ep (exp(i(0,£))) = exp {— fs |<9,x>|“n(dx)}, 6 eRY,

see, e.g., Sato [20, Theorem 14.13]. The measure IT is called the spectral measure of {. We say that a
d-dimensional random variable ¢ has a d-dimensional Cauchy distribution with parameter (0,1,), if its
density function takes the form

1"1+d 1ud
felx) = 7(1154)(1+||x||2) T rew,
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see, e.g., Kotz and Nadarajah [14, Section 2.2, page 41] or Sato [20, Example 2.12]. It is known that if { has
a d—dimensional Cauchy distribution with parameter (0,1;), then the characteristic function of ¢ takes
the form Ep(eX9%)) = e 19l 9 € RY, and ¢ is symmetric 1-stable, see, e.g., Sato [20, Theorem 14.14].

Corollary 1.9 Let us assume that the conditions of Theorem 1.4 hold with u :=P°, where ¢ isa d-dimensional
symmetric a-stable random variable with characteristic exponent « € (0,2) and spectral measure I1. Then

B,U, > Z Foo-mixing under Pgngp1y as n — oo, 9)
and
Q.U, »nZ  Fu-stably under Pgrz,y as n— o, (10)
where Z denotes a d-dimensional random vector IP-independent of Fo, with a characteristic function
Ep(el®?) = exp{ - ) i KPHTo,x|' Tdy)},  6eR™ (11)
a1 =0

In particular, if C has a d-dimensional Cauchy distribution with parameter (0,1;), then Z has a characteristic
function

Ep(©®?) =exp{- Y IIPHTOI},  OeR. (12)
j=0

In Corollary 1.9, n and Z are PP-independent, since 1 is ¥Fw-measurable. Corollary 1.9 in the
special case when ¢ has a d-dimensional Cauchy distribution with parameter (0, I;) can be considered as a
multidimensional counterpart of Exercise 8.1 in Hausler and Luschgy [11].

Finally, we formulate a slight generalization of Theorem 1.4 in case of G = (), by weakening its condition
(iv) a little bit. This generalization can be considered as a multidimensional analogue of Corollary 8.8 in
Héusler and Luschgy [11].

Corollary 1.10 Let us suppose that the conditions of Theorem 1.4 are satisfied with G := Q) except its condition (iv)
which is replaced by

(iv')  there exists a probability measure u on (R?, B(R?) with f log™ (IIx|l) p(dx) < oo,
d
and an Fe,-measurable, R -valued discrete random variablﬂ; S such that

. P 5,1 .
IEua(e1<9’B”AU">|ﬂ—1) B—'>’f 059 1(dx) as n — oo forall 6 € RY.
R

d

Then
B U, — i P/ SZ; Foo-stably under Pg,4) as n — oo, (13)
j=0
and
Q.u,—n i PfSZj Foo-stably under P,y as n — oo, (14)
j=0

where (Z;)jez, denotes a P-independent and identically distributed sequence of R-valued random vectors IP-
independent of Fo, with P(Zy € B) = u(B) forall B € B(RY).
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In Corollary 1.10, 11 and (Z))jez, are P-independent (see part (ii) of Remark 1.5). For an application of
Corollary 1.10 with d = 1, see the proof of Theorem 9.1 in Hédusler and Luschgy [11], where the authors prove
stable convergence of conditional least squares estimator of the autoregressive parameter of supercritical
autoregressive processes of order 1.

Finally, we note that in a companion paper Barczy and Pap [3], we use our main result Theorem 1.4
for studying the asymptotic behaviour of least squares estimator of the autoregressive parameters of some
supercritical Gaussian autoregressive processes of order 2 using random scaling. In another companion
paper Barczy [2], we also use Theorem 1.4 for proving stable convergence of conditional least squares
estimators of drift parameters for supercritical continuous state and continuous time branching processes
with immigration based on discrete time observations.

2. Proofs

Proof of Lemma 1.3. (i) = (ii). We have o(P) = limj_,, [[P¥||'/* by the Gelfand formula, see, e.g., Horn and
Johnson [12, Corollary 5.6.14]. Hence there exists ko € N such that

1—@(P)_1+Q(P)<
2 2

”Pk”l/k < o(P) + 1 for each k > ko, (15)

since g(P) < 1. Choose c € (1, ﬁ) Then (i) implies

Y Pzl > ) = Y P(IZoll > ) = ) P(log" (1 Zol)) > jlog"(c))

j=ko i=ko J=ko
= log*(/|Z
AL
prs log(c)

where we used that log™(c) = log(c) > 0 and Y., P(€ > n) < Ep(&) for any non-negative random variable
&. By the Borel-Cantelli lemma,

P(limsup{|Zj| > }) =0,  and hence ]P(li;rlionf{llell <d))=1,

j—0

ie., for P-a.a. w € Q, there exists jo(w) € N such that || Z;(w)|| < ¢/ for each j = jo(w). Consequently, for
P-a.a. w € Q), we have

o o o j
Y pzi< Y ||Pf||-||zj(w)||<Z(“§‘P’) i < oo,

j=koV jo(w) j=koV jo(w) j=ko

since “2P¢ € (0,1). Tt yields (ii).
The implications (ii) = (iii) and (iii) = (iv) are obvious.
(iv) = (i). We have P(limsup 1900{ IP’Zj|]| > 1}) = 0, and hence, by the Borel-Cantelli lemma and the

independence of (Z))jcz,, we get
ZP(||szj|| > 1) < co.
j=0

Using that the determinant of P coincides with the product of its eigenvalues, the invertibility of P implies
that P does not have an eigenvalue 0, and, in particular, we get o(P) > 0. The eigenvalues of P! are
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I implying IP7Y = o(Ph) > > 1. Thus for

. . —1
the reciprocals of the eigenvalues of P, hence o(P™") > 75

each je€Z,, wehave
P(IP'Z|| > 1) = P(IPVIP/Zo|l > IP7YV) = P(I(P'Y P/Zo|| > [IP7Y|)
= P(IZoll > IP'IV) = PUog™ (I1Zol)) > jlog™ (IP~")).

Consequently, Z}'io P(log ™ (1Zoll) > jlog(llP‘lll)) < o0, yielding
+
. (1og (||Zo||))< .

P _
log(IIP7!|))
and hence (i), where we used that log+(||P_1||) = log(llP‘lll) >0 and Ep(&) <1+ ), P& > n) for any
non-negative random variable &. ]
Proof of Theorem 1.4.

Step 1: Let Q :=Pgn,1), and for each n € Z,, put

PG {EA7YF)
" PGN{EnY)

Then Q is absolutely continuous with respect to P and P; as well, and, for each n € N, L, is a

well-defined and ¥,,-measurable random variable, since P(G N {3 1]‘1}) > 0. Note that (Ly)nez, is the

density process of Q with respect to IP, thatis, L, = jg;;’;" for every n € Z,, where Ql|z, and Plg,

denote the restriction of Q and PP onto (Q, ), respectively. Indeed, for all A € F,, we have

P(ANGN @n)
PGN{En) 7

Qlr, (A) =Q(A) =

and, by the definition of conditional expectation with respect to the c-algebra 7,

B R RIED
LLn(w)]Plﬂ(dw)—fA ChRIEL ) (w) Plg, (dw)

- WI(IEP(IGO @ny | Fu))(w) P(dw)

1 _PANGN{En™)
B J, e @) = e

yielding that Q|#, (A) = fA L,(w) Plg, (dw), A € F,,, as desired. Then, by Lévy’s upwards theorem (see, e.g.,
Theorem A.6), we get

L@ Er(lgnany | Fe) Lon@aqgy dQ
n = = - as n — oo, (16)
P(Gn{3n~1)) P(GNn{3n1}) dP
-a.s ]E 1 -1 |Too 1 -1
g Er SV ) = ot ) _do as n — oo, (17)

L, — = - =
P(GnN{3n1}) P(GNn{3dn7t}) dP
where the second equality in (16) (and in (17)) holds, since for all A € 7,

PANGN{HnY
PGn{En)

Q(A) = Poray1y(A) =

and

Lon@nt ( ) PANGN{3n™)
f PCnanT) 9= TpGA@Er)
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Next, we check that Z;, j € Z,, and ¥ areindependent under Q as well. Indeed, since Z;, j € Z,,
and ¥ are independent under P (by assumption) and G N {A77!} € ¥, (since G € Fo and 7 is
F-measurable), we have for each m € N, By, By,...,B;, € B(]Rd) and A € Fo,

Q({ZyeBy}nN{Zi e B1}n---n{Z, € By} NA)
P({Zy € By} N{Z1 € Bi}N---N{Z, € B, NANGN{AY))
- PG N (371)
P({Zy € Bo}N{Z1 € Bi}N---N{Z, € B,)PANGN {An71}
P(G N {371}
IP(Zy € Bo)P(Z; € By)---P(Z,, € B,)PANGN (A7}
- PG N {3 1)) ’

and

Q(Zo € Bo)Q(Z: € B1) -+ Q(Zyy € B,)Q(A)
_P(ZyeBinGn{dn)  P({Z,€B,tNGNn{ANY) PANGN{AnT)
- PGnQ@Any PG 3y CPGN {3
PANGN{EY)
PGN{EnT)

=1P({Zo € By}) - - - P({Z, € B,})

where we used that
P({Z; e ByNGN{EAn ) =PZ; e B)PGN{Fy7"),  jel01,...,m).
It yields that

Q({ZO € BO} N {Zl € Bl} n---N {Zm € Bm} nA)
= Q(Z € Bo)Q(Z1 € B1) - Q(Z, € B1n)Q(A),

as desired.
For each 6 € RY, let us introduce the notation

Pu(0) := f d %% i(dx) = Ep(e"®) = Eq(e!?%), (18)
R

since the distributions of Z; under P and Q coincide. Indeed, by the independence of . and Z,
under PP, for all B € B(R%), we have

CP(Zy e BINGN (A7) PZo e BPGN A7)
QAR GaEe T RGnEgy s

as desired. Note that the function ¢, : RY — C defined in (18) is nothing else but the characteristic function
of Zy under P (or Q).
Step 2: Next, we show that for each r € Z,, we have

T r
Z PjBn,jAU,,,]- - Z Pij F-mixing under Q as n — oo. (19)
j=0 j=0
Let r € Z, be fixed in this step. Since }_, P/Z; and ¥ are independent under Q, we need to check that

T T
Z P/B,_;AU,_; > Z P'Z;  F-stably under Q as n — o, (20)
j=0 j=0
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see the discussion after Definition 3.15 in Hausler and Luschgy [11] (or Definition A.1). For this, by Corollary
3.19 in Héusler and Luschgy [11] (see, also Theorem A.3) with G := o and & := J,z, Fu, itis enough
to show that

r r

fo trexpli(0, )" PIB-AU,)}dQ - fo trexp i(6, ) PiZ;)1dQ (21)

j=0 =0

as n— oo forall @ eR? and F € & Indeed, & C Fo, & is closed under finite intersections, Q € & and
0(E) = Fo. Now we turn to prove (21). For all 0 € R? and F € & we have

r T
exp{i<6, Y P'B, AU, ]>} = [ [ exormeinun
j=0 j=0

and

[ 1rewlife.) Piz))tde = o [ B ) = [ [ pu@7yo)
=0 j=0 =0

- [TTeueyorae
F i

where we used that Z;, j € Z,, and ¥. are independent under Q, Z; j € Z,, are identically
distributed under Q, and the notation (18). Hence, fixing 0 € R arbitrarily, and using the notation
Ay = expli(0, P'B,_jAU,_)}, Cj:= ¢, (PT)0) and g, = H;:o Cj‘H?:o Ay forneN and je{0,...,7},
convergence (21) means that fp InrdQ — 0 as n — oo forall F e &. By |g,,] <2 and (16), we get

fgn,rdQ_an—r—lgn,rdIP <2fdQ
F F F

dpP
as n — oo. Consequently, in order to show (21), it is enough to verify that lim, e fF Ly—r-1gn,dIP = 0. The
condition F € & yields the existence of ny € Z, such that F € ¥,,, and consequently F € ¥, for n > ny.
Foreach n€ N and j€{0,...,r}, put

dlP - 0

- Ln—r—l

H]Z:l Aﬂ,k lf ]: 0/

o— ]_1 r . .
Do = (T12 Co) (Tl Ang) i 1<j<r—1,

10 Ci if j=r.

Then for each n € IN, we have

Inyr = ﬁck_ IL[Ank
k=0 k=0
r r=1 r=1 r -1 r
e i SN )
k=0 k=0 =1LV k=0 k=j+1 k=0 k=j
+ Co( ) An,k) - ﬁAnk
k=1 k=0
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see also Lemma 8.4 in Hausler and Luschgy [11]. Moreover, for each n € N and j € {0,...,r}, we have
IDyjl <1, and the #,_j-measurability of A,; yields that D,; is %,-j1-measurable. Further for each
n > ng+r+1, therandom variable 1rL, 1 is ¥, , 1-measurable, and hence ¥, ; 1-measurable for each
j€10,...,r}. Indeed, since n—r—-12>ny and F € ¥,,, wehave F € ¥,,_,_4, i.e.,, 1 is F,_,—1-measurable,
so the ¥,_,_1-measurability of L,_,_; yields that 1pL,,; is F,-,—1-measurable. By the definition of
conditional expectation, for each n > ng + r + 1, we obtain

F = JF

= Z Ep (E]P(ILFLn—r—an,j(Cj - A”/f) | ﬂ_j_l))
j=0

r
Z Ep (]]-FLn—r—an,]'(Cj - An,j))
=0

= Z Ep (]lan—r—an,j(Cj —Ep(An;| 7’71—;—1)))‘
=0

-y fp Lo 1D (C) = B 1) 4
=0

Since L, < 1/P(GN{3An7"}), ICjl <1, |A,;l <1, and % = lgn@y/P(G N {3n7")) (see the second equality
in (16)) for each n > ng +r+1, we have

‘f Ln—r—lgn,r dIp
F

Cj— Ep(Anj| Fu-j-1)| AP
Z‘fcmaqqll’(cm })' P(Anj| Fn-j1)l

<Z fQ LyralC) — En(Ay | Frejo)| AP

Y | Lia(IC1 + Ep(Ay | 7, jo1)) dP
= Jaenanr)

2 f ICj = En(Anj | Foej- 1)IdQ+ZZ fQ oy L1 4P
N{dn~

7=0

For each j € {0,...,}, condition (iv) yields
f |Cj - ]EP(An,j|7_71—j—1)|dQ -0 as 1 — oo. 22)
Q

Indeed, since |Ep(A;;|Fn-j-1)l <1, the family {IEp(A,;|Fy-j-1) : n € N} is uniformly integrable under

Q for each j€{0,...,r}, and, by (iv), Ep(A, ;| Fn-j-1) 2, Cj as n — oo foreach j€{0,...,r}, sothe
momentum convergence theorem yields (22). Further, using (17) and that 0 < L,—,—1 < 1/P(G N {3A771}),
the dominated convergence theorem yields that

Lon@g

Ly_yq dPP — —————dP=QQ\(GN{an ") =0
L\(Gm{]qll) ! O\NGN{En1) P(GN {3 ’7_1}) 1

as n — oo. Consequently, we conclude lim,_, fF Ly—y-19n,dIP =0 for all F € & and hence (21), which,
as it was explained, implies (19).
Step 3: Next, we check that for each r € Z,,

.
B,U,-U,_,1) > Z Pij F-mixing under Q as n — oo. (23)
=0
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Foreach re Z, and j€{0,...,r}, we have
P'B, jAU,_; - B,AU,_; = (P - B,B;! )B, AU, 2,0 as n— . (24)

Indeed, B, is invertible for sufficiently large n € IN, and P/ - BnBi j 2, 0 as n — oo, since for all € >0,
by condition (iii),
P({IP - BnB,_i]-II >elnGn{an™)
PGNET)
P({|lP - BB, | > e} N G)
PGN{En))

QUIP’ - B,B, || > €) =

<

P(G)

]P(GTHq*l})_}O as n — oo,

= IPG(”Pj - Bntlj” > 3)

Further, by (19) with r = 0 and using the fact that F..-mixing convergence under Q yields convergence

in distribution under Q, we have B, AU, 20 Zy as n — oo, and especially, for each j € {0,...,7},

B, AU, 2@ Zy as n — co. By Slutsky’s lemma, we have (24). Hence for each r € Z,, we have

T T
Y PB, AU, ;- Y BAU, ;-50  as n— .
0 =0

Consequently, since Z;:o B,AU,_; = B,(U, — U,—,-1), n € N, by (20) and part (a) of Theorem 3.18 in
Héusler and Luschgy [11] (see also Theorem A.2), for each r € Z,, we have

,
B,U,-U,_,1)—> Z Pij F-stably under Q as n — oo.
=0

Since ). P/Z; and F. areindependent under Q (following from the Q-independence of Z;, j € Z.,
and ¥., which was proved in Step 1), by the discussion after Definition 3.15 in Hausler and Luschgy [11]
(see also Definition A.1), we have (23).

Step 4: Now we turn to prove (3). Lemma 1.3, the invertibility of P, o(P) < 1, the condition
f]Rd log™ (Ilx|l) (dx) < oo and the fact that Q is absolutely continuous with respect to P (see Step 1) yield

the IP-almost sure and the Q-almost sure absolute convergence of the series Z}“’:O Pz j- Especially,

T [s]
Z P'Z; - Z Pz as r — oo Q-almost surely,
j=0 j=0

and hence
r DQ) (o)
Y Pz,28Y Pz, as o
=0 =0

Consequently, using that Y, P/'Z; and ¥ areindependent under Q for each r € Z,, by Exercise 3.4
in Hdusler and Luschgy [11], we have

r e8]
Z Pij - Z Pij Foo-mixing under Q as r — oo. (25)
=0 =0
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Since B,U,-B,(U,-U,_,1) =B,U,_,1, and Z}"’:o Pij and ¥ areindependent under Q (following

from the fact that Z;, j € Z,, and ¥ are independent under Q, which we checked in Step 1), by (23),
(25) and Theorem 3.21 in Hdusler and Luschgy [11] (see, also Theorem A.4), we obtain (3) if we can check

lim lim sup Q(||B,U——1l| > €) =0 (26)
r—00 n—00

forall € € (0,0). Since B, and Q, are invertible for sufficiently large n € N, and P is invertible, for
each r € Z, and for sufficiently large n € IN, we have

IBuU,urall < IPH- 1P BByl B Q5L 1 1Qy g Uiyl

Since for each r € Z,, B,B! 2, pr+ as n — oo (see Step 3), and

n—r—1

IP7'B,B;! | - Ll<|IP"B,B}_, —P*,

we have P7"'B,B!

1 £>le as n — oo foreach r € Z,.. Henceforall ¢ >0, x>0 and r € Z,, we
have

QP 'B,B;!

n—r—1

—Ijll>¢) <x  for sufficiently large n € N. (27)

Consequently, with the notation G,z := {|[P”""'B,B;}

.~ Ll <€, forall ¢¢€06,x€(0,0), reZ, and
for sufficiently large n € IN, we have

QB+l > £)
< QP 1P BByl 1B @y 1Q, i Uil > )
= Q({IP 0 1P BB 1B 1 Q5 1Q Ul > €] 1 Gy
+ Q{1 I BB L BB Q1 1Q - Uil > € NG )
< QPP BB = Ll 1B Q1@ Ut > 510 G
+ Q1P 1B 1 Q5L 1 10, s Wt} > 5§01
+Q{IP 1 1P BB 1 1B Qi 1Q iUl > ) 1 G )
< QP 1B 13 - 19, Ul > o
+ QP 1Br1 Q5 1Q,e s Uiall > 5
+Q(||P" BB —Il> ’5),

where G| - denotes the complement of G,,= Since, by (15), [P} < (HQ(P) for sufficiently large

re NN, usmg also (27), for all ¢,6,x € (0,00), € € (0,1), and for sufficiently large r € IN, there exists
a sufficiently large n(r) € IN (here n(r) may depend on ¢ and «x as well, but we do not denote this
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dependence) such that for n > n(r), we have
Q(”Bnun—r—lu > 6)

< Q(”Bn—r—l Q;Er—ln NQyra Ul > %'(1 + o(P) )Hl)
)

e ) r+1
+ Q(IIB,, 1 Q1 1Q, g Uy all > 5(1 + o(P) )+ N
) e 2 r+1
< ZQ(IIBMfl Qall - 1Qyry Unrall > 5(1 T Q(P)) ) T
e 2 r+1
= 2011 Q5 1Q iUl > 5 () 1B Q3 <0)
r+1

- el 2 -
# 20 1By 1 Q7L Qe iUl () B @l > 0)

2 r+1
2Q(||Qn,1unm|| 25(“ (P)) )+2Q(||Bn+1Q;L_1II>5)+K-

So for all ¢,6,x € (0,00) and for sufficiently large r € IN, there exists a sufficiently large n(r) € N such

that for n > n(r), we have

Q(”Bnun—r—lu > 6)
2 r+1 1 1
<25upQIQUA> 35{75 5] ) +2QUBL Q7L 1> 0 I <072
+2QUB, 15,4115 0, I > 0/2) +

<2 u 2_\"Yaaq(|B . | > 6/2
sup QIQUA > 5515 5gm;) )+ 20(1Baa Q=] > 072)

leIN

+2Q(lIn 7' > 6/2) + x,

where we used that Q(An~!) = 1. Similarly as we have seen in Step 3, condition (i) implies Q,B;" < n

as n — oo. Indeed, since IP(G) > 0, forall y >0, we have

o _ PUIIQ,B; -l >y} nGn{An71)
QUQ,B," —1ll>y) = PG A En )
P({lQ,B," =1l >IN G)
- P(G N {An1)

_ -1 P(G) -
=Pc(1Q,B," —nll > y)—]P(G SNELE) —0 as n— oo.

Since Q, is invertible for sufficiently large 7 € N, Q(d77!) =1 and the norm function is continuous, we

get |IB Q;lll 2, lln~tl as n — co. Thus, forall ¢,6,« € (0,00) and for sufficiently large r € IN, we obtain

r+1
tim sup QUIB U111 > €) <2sup QIQUA > 557 5p) )+ 20011>5/2)+ x.

n—oo teN

Using condition (ii) and that ; +£(P) > 1, forall ¢,6,x € (0,00), we get

lim sup lim sup Q(||B, U -1l > €) < 2Q(||1f1|| > 0/2) + k.

r—00 n—oo
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We have Q(|ln7!]| > 6/2) —» 0 as § — oo, hence, taking limsup;_,, and limsup, Lo» We obtain (26) for all
€ € (0,00), and then we conclude (3).

Step 5: Now we turn to prove (4). As we have seen in Step 4, condition (i) implies Q,B,' R 1 as
n — co. Hence, since 11 is F-measurable, by (3) (which was proved in Step 4) and parts (b) and (c) of
Theorem 3.18 in Héusler and Luschgy [11] (see, also Theorem A.2), we have

Q,u, = (Q,B)B,U,) — 1 Z Pij Foo-stably under Q =Pgna,1) as n — oo,
=0

yielding (4). ]
Proof of Corollary 1.8. First, note that log™(||x|)) < [lxll, x € R?, so

f log™ (|Ixll) u(dx) < f llxl] p(dx) < oo,
R4 R4

and then we can indeed apply Theorem 1.4 and IE]la(log+(||ZO||)) < oo, It remains to check that Z]f'io Pz j is

a d-dimensional normally distributed random variable with mean vector 0 € R? and covariance matrix
Z]f'io P'D(P')". Since P isinvertible, o(P) <1 and Ep(log*(l|Zoll)) < oo, by Lemma 1.3, we have that the

series }.i, P/Z; is absolutely convergent PP-a.s., and hence, by the continuity theorem, we get

7

Ep (ei<9,):}’10 P jZf>) = lim Ep (ew’):;:() P jZ/')) = lim Ep (ei«P j)Te’Zf>)
r—o00 r—o00 j=0
r
- lim e—%(D(Pf)TG,(Pf)Tw — e—%(():j-;o PfD(Pf)T)(-),(-)), 0c ]Rd,

r—o00

=0

where the series Z}’io P'D(P)T is absolutely convergent, since, by (15),

) ) ko—1 ) 2j

, . . , ; 1+ o(P)
ZMPJD(PJ)TH<2||Pf||||D||||(Pf)T||<||D||Z||Pf||2+||D||Z( d ) < oo,
j=0

- - L 2
j=0 j=0 Jj=ko

where ko is appearing in (15). So ¥ 72, P/Z; isa d-dimensional normally distributed random variable with
mean vector 0 € R? and covariance matrix Z;‘;O P/D(P/)T, as desired. O

Proof of Corollary 1.9. First, note that the integral appearing in (11) is convergent, since, by Cauchy-
Schwarz’s inequality and (15), for all 0 € RY,

f Y @7, i(dx) < f Y Il 61 1(dx)

Sa-1j=0 Sa-17j=0
<|lon f ) IP/| i T(dlx)
Sa-17j=0
o N e [y (e
<o | Y 1Pl T + [lone | ) ]l TI(dx)
2
Sa-1 =0 Sa-1 j=ko

ool (1 + o(P)\Y
:||6||“2||Pf||“n<sd_1)+1|e||“2( 2‘) )n<sd_1)<oo,

=0 =
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where ko is appearing in (15) and we also used that H%(P) €(0,1) and TI(S4-1) < oo.
Next, we check that Ep(log™(/|C]l)) < co. We have

Ep(log™(lICll)) = Ep(log(lICINLjg=1) = fom Pog(lICI) =1y = y) dy
. fo " Poglich) > v, il > 1) dy = fo RO > 11> 1) dy
- fo Pl > ) dy + | TR > ) dy
<1+ f Pl > 2)~ dz

Since ¢ has a d-dimensional stable distribution, it belongs to its own domain of attraction, and then it is
known that the function R, 3z - P(||C]| > z) is regularly varying with tail index a. As a consequence,
the function R, 3 z = z°IP(||C]| > z) =: L(z) is slowly varying. Hence there exists zy € (e, o) such that
z73L(z) <1 forall z € [zp, ), see, e.g., Bingham et al. [5, Proposition 1.3.6.(v)]. Consequently, we have

00 1 20 » 1 00 > 1
P(ICl| > z)-dz = z%L(z)—dz + z7%L(z)-dz
e Z e 4 Z y4

0

=0 1 | S| « «
< f z%L(z)—dz + f z72-dz < f —dz+ f 27175 dz < oo,
e 4 b)) z e 2 20

since z7L(z) = P(||C]| > 2) <1, z € Ry,.
Hence one can indeed apply Theorem 1.4 and Ep(log*(IIZoll)) < co. It remains to check that the
characteristic function of .72 P'Z; is givenby (11). Since P isinvertible, o(P) < 1, and Ep(log™ (I1Zoll)) < co,

by Lemma 1.3, we have that }. 72, P/Z; isabsolutely convergent P-a.s., and hence, by the continuity theorem,
we get

T

r
Ep (ei<6f2}’ioP’Zf>)=nm ]Ep(ei<(P1)T9'Zf>)zlim exp —Z f [((P)T 0, x)| TI(dx)
r—00 r—00

=0 Si-1

j=0

=expi-) | KP)OOITIAY)}, OeR,
j=0

Si-1
yielding (11).
In the special case when ¢ has a d-dimensional Cauchy distribution with parameter (0,1), we have
fSLH K(P))T0,x)|*TI(dx) = [(P))"6ll, 6 € R, j € Z,, yielding (12). ]

Proof of Corollary 1.10. Let {si : k € IN} be the range of S, let Gy := {S = s}, k € N, and
I:={keN:PGn{An'}) >0. Since PAn!) >0 (dueto G = Q), we have that I is not the
empty set. Further, since Pg 3, is absolutely continuous with respect to IP5,1), by (iv’), and using
that convergence in IP(3,-1)-probability yields convergence in P, n3,-1)-probability (which can be checked
similarly as in case of Pg and Pgn,-1; as we have seen in the proof of Step 3 of Theorem 1.4), we have

foreach keI and 0 € RY,

. P -1 . .
Ep(el05AU) | F, ) i fR d 059 yy(dx) = jﬂ; ) &0 1y(dx) = Ep (e 04

= Ep (ei<6,sk20>)
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as n — oo. Moreover, IEﬂa(log+(||skZOII)) < 00, since

log™ (lIskZoll) = log(llskZoll) Ljs,zyi>1) < log(llselliZoll) L gisuinizon=1)
< log(lIskll) Lis,0) Lyjseliizoli=1) + 10g(11Zol) 1z, =1y +108(||Zo||)]llHS <1Zoll<1) Lisiz0}

which yields that

Ep(log™ (lIskZol)) < log(llskl) Lisz0; + Ep(log™ (1Zoll)) < oo

Hence, by Theorem 1.4, for each k € I, we have
B, U, — Z Pjsij = Z PjSZj Fo-mixing under Pg 3,1y as 1 — oo,

and

Q.u,—n Z Pfsij = nZ Pjslj F-stably under Pg, 3,1 as n — co.
=0 =0

Note that, since G = Q, we have P(A77!) >0 and forall A € F,

PANG.N{T7y7!
Ppay(A) = ZIPH,,-l ncy=Y X ”lp(g;_i)" !

k=1
PANG:N @) PG N {37
Z PGy N {37t} PEn™)

= Z Pg,n@ g1 (AP35 51)(Gy),
kel

so we have

Payy = Z P11 (GOPG, a1y
kel

where }i;Pj3,1(Gy) = 1. Finally, Proposition 3.24 in Hausler and Luschgy [11] (see also Theorem A.5)
yields the statement. o

Appendix

Appendix A. Stable convergence and Lévy’s upwards theorem

First, we recall the notions of stable and mixing convergence.
Definition A.1 Let (Q,7,IP) be a probability space and G C ¥ be a sub-o-field. Let (X,)pen and X be
R¥-valued random variables defined on (Q, ¥, P), where d € N.
(i) We say that X, converges G-stablyto X as n — oo, if the conditional distribution PX"16 of X, given G

converges weakly to the conditional distribution PPX19 of X given G as n — oo in the sense of weak convergence
of Markov kernels. It equivalently means that

lim Ep(E Er(h(X,)|G)) = Ep(E Er(h(X)|G))

for all random variables & : Q — R with Ep(|&|) < oo and for all bounded and continuous functions h: R? - R.
(ii) We say that X, converges G-mixingto X as n — oo, if X, converges G-stablyto X as n — oo, and
PXIG = PX 1P-almost surely, where PX denotes the distribution of X on (R?, B(R?)) under . Equivalently,
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we can say that X, converges G-mixing to X as n — oo, if X, converges G-stably to X as n — oo, and o(X)
and G are independent, which equivalently means that

lim Ep(& Ep(h(X,)1G)) = Ep(S) Ep((X))

for all random variables & : Q — R with Ep(|&]) < oo and for all bounded and continuous functions h: R — R.

In Definition A.1, PX!9, n e N, and PX!9 are the P-almost surely unique G-measurable Markov
kernels from (Q,F) to (RY, B(R%) such that for each n € N,

f P¥19(w, B)P(dw) = P(X;,'(B)NG)  forall Ge g, Be B(RY).
G

and

f PXI9(w,B)P(dw) = P(X"Y(B)NG)  forall Ge G, Be B(RY),
G
respectively. For the notion of weak convergence of Markov kernels towards a Markov kernel, see Hausler
and Luschgy [11, Definition 2.2]. For more details on stable convergence, see Hdusler and Luschgy [11,
Chapter 3 and Appendix A]. In particular, it turns out that X,, converges G-stably to X as n — oo if
and only if lim,_,. Ep(&h(X,)) = Ep(Eh(X)) for all G-measurable random variables & : (3 — IR with
Ep(/&]) < oo and for all bounded and continuous functions h : R? —» R (following from Theorem 3.17
in Hausler and Luschgy [11]). Furthermore, X, converges G-mixing to X as n — oo if and only if
lim,, 0 Ep(&R(X,)) = Ep(&) Ep(h(X)) for all G-measurable random variables & : O — R with Ep(|&]) < o
and for all bounded and continuous functions h : R? — R (following from Corollary 3.3 in Hausler and
Luschgy [11]).

Next, we recall four results about stable convergence of random variables, which play important roles
in the proofs of Theorem 1.4 and Corollary 1.10.

Theorem A.1 [Hé&usler and Luschgy [11, Theorem 3.18]] Let X, n €N, X, Y,,, n€ N, and Y be Ré-valued
random variables on a probability space (QQ,F,P), and G C F be a sub-o-field. Assume that X,, — X G-stably

as n — oo,

@) If 11X, = Y.l L0as n— oo, then Y, — X G-stablyas n — oo.

(b) If Y, Py asn—o oo, and Y is G-measurable, then (X,,Y,) = (X,Y) G-stably as n — oo.

() If g:RY — R? is a Borel-measurable function such that P*({x € R? : g is not continuous at x}) = 0, then
9(X,) = g(X) G-stably as n — oco. Here recall that P* denotes the distribution of X on (R?, B(RY))
under IP.

Theorem A.2 [Héusler and Luschgy [11, Corollary 3.19]] Let X,, n € N, and X be R-valued random
variables on a probability space (Q,F,P), and G C F be a sub-o-field. Let & C G be closed under finite
intersections such that Q) € & and o(E) = G, where o(E) denotes the o-algebra generated by &. Then the
following statements are equivalent:

(i) X, = X G-stablyas n — oo,
(ii) lim,—c Ep(1pel*X») = Ep(1re!™X)) forall F€ & and u € RY,
(iii) (u, X,) — (u,X) G-stably for all u € R?

Theorem A.3 [Hdusler and Luschgy [11, Theorem 3.21]] Let X,,,, X,, n,r € N, X, and Y,, n € IN, be
R?-valued random variables on a probability space (Q,F,P), and G C F be a sub-o-field. Assume that

(i) foreach r € N, we have X,,, — X, G-stablyas n — oo,
(i) X, = X G-stablyas r — oo,
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(iii) lim, o limsup,_,  P(IX,, = Yaull > €) =0 forall > 0.
Then Y, — X G-stablyas n — oo.

Theorem A.4 [Hausler and Luschgy [11, Proposition 3.24]] Let (€, F,1P) be a probability space. Suppose that
P =Y., piQ;, where Q;, i € IN, isa probability measure on (Q, F) and p; € [0,1], i € N, satisfying Y., pi = 1.
Let X, n €N, and X be R¥*-valued random variables on (Q,F,P). If X, converges G-stably to X under Q;
as n — oo foreach i € N satisfying p; > 0, then X, converges G-stably to X under P as n — oo.

Finally, we recall Lévy’s upwards theorem used in the proof of Theorem 1.4.

Theorem A.5 [Lévy’s upwards theorem] Let (Q, 7 ,1P) be a probability space, and let & be a real-valued random
variable such that Ep(|E]) < co and (Fp)uez, be a filtration with Foo = o( Unez., 7’,,) Then

Ep(& | F) 255 Bp(E | Fu) as n— oo,  and  Ep(E|F) “B Ep(&|Fo) as n — oo,

We note that Theorem A.5 sometimes is called Lévy’s zero-one law as well, since if & = 14, where

A € ¥, thenityields that IP(A| %) Pasq A as n — oo, where the limit can be zero or one.
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