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Four double series involving ((3)
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Abstract. Four double series involving £(3) are evaluated in closed form by calculating definite integrals.
Three examples are also illustrated by the hypergeometric series approach.

1. Introduction and Outline

Let C(z) be the usual Riemann zeta function defined by

L(z) = Z %, where R(z) > 1.
n=1

(e8]

=)

n=1

In a letter to Euler, Goldbach posed the problem to evaluate the double series
Ly 1 h ApuelN with A>1

ﬁ;‘k_ﬂ' where A, u wi > 1.

formulae is recorded below

This led Euler to examine the nowadays so-called “multiple zeta functions” extensively. One of his beautiful

A=2

20(A,1) = ALA +1) — Z C(j+1)I(A—j), where A>1.

=1

In particular for A = 2, we get immediately
1 1
Yo L= L =

Recently, there have been growing interests (cf. [1, 2, 4, 5, 7-10] and [12-15, 17-20]) in finding closed form
expressions and interrelations for the multiple Euler sums. Observe that the above series can be interpreted
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as the subseries of the divergent one “Y,,,; -1z” consisting of only the terms with indices 1 > k (under the
main diagonal). This suggests the author to recall the following well-known series

2
nk=1 k 6
B i (_1)n+k B 72
Q(-1,-1) = S =y n2
nk=1

Define, in general, the bivariate series by

k

(o) xn
Q=) = M)
nk=1

Then there are four subseries divided by the main diagonal “n = k”:

14k n, .k
Xy XY
Q>(xr ]/) = Z nzk 7 QZ(x/ y) = Z nzk ;
n>k n>k
xnyk xnyk
Q<(x/ ]/) = Z lek 7 Qﬁ(x/ ]/) = Z nzk .
n<k n<k

The aim of this short article is to focus entirely on the subseries of ()(+1, +1) and to evaluate them in
closed form. Four remarkable formulae are highlighted, in anticipation, as follows:

0.0,0=Y = =2 )=00),

n>k

_1)k
a.0-0=Y D oe-Tm,

n2k
n>k
oy (=D CB)
QC10=), o =5
n>k
o () 2 13
Q.(-1, 1)_n>k = In2- =)

where the first one is well-known, while the other three values also involve ((3).

These values will be determined in the next section by calculating definite integrals in conjunction with

power series expansions. Some of them will alternatively be illustrated in Section 3 by the hypergeometric
series approach.
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2. Integration Method

For |x| < 1, write the sum in terms of a definite integral

_ fox{ Z - 1}1n(x/T)dT

n=k+1

x Tk
_ f T In(x/T) T
0 1-T
By substitution, we can further reformulate the double series

X'y o yE (T In(x/T)
=YL [ e

n>k k=1

fo ln(x/T {i-(T }

and

ngk &k k-1
3 x"yE v T In(x/T)
Qux,y) =) n2k"zkf0 o1 L

n=k k=1
_ 7 In(x/T) { . (Ty)k}
‘j(: T1-T) ; PR
which yield the following definite integral expressions

0. (x, 1) = j: In(T/x)In(1 — Ty) it

1-T

[ In(T/x)In(1 - Ty)
Q) = [ R

3307

Now we are in position to determine the values of the double series by computing the corresponding

integrals for specific “x, y = +1”.

21. Q.(1,1)

There are different proofs (see [5, 6] for example) for the value of Q.(1,1). For completeness, we show

it by making use of two integrals:

1 1
f 7" In(T)dT = —21 and f T In*(T)dT = 33
n n

0 0
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In fact, by integration by parts, it is almost routine check that

_ (MIn(D)In(1 -T)
Q.(1,1) = fo —————dT

——folln(T){i T

n=1

00 1 1
= _Z = f T In(T)dT
n=1 mJo
= 1
=Y — =0).

n=1

n—1

}dT
n

The same value can alternatively be obtained as follows:

_ (MIn(D)In(1-T)
Q.(1,1) = fo —————dT

XM In(1 -1 1 InX(T)
2 +fo -0

[

n=1

f T In(T)dT

2.2, Q,(1,-1)
Expanding (1 — T)™! into the geometric series

L—iT"-l d TT"—ll(T) lT—E
1_T— an o nd n 1’1

n=1

we can proceed by making use of integration by parts

1
f T In(T) In(1 + T)dT = {— In(T) — —} In(1 + T)'
0

—fol{n(lT—:T)ln(T)— %:T)}ﬂ

_ —In2 LT In(T) "
T2 _fo {n(1+T)_n2(1+T)}dT'

This leads us to the expression

" In(T) In(1 + T)
Q.(1,-1) = f 7(”

T" In(T) 2
_Zf n2(1+T) Zf n(1deT_%1“2'
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Evaluating further the integrals

(o)

1 n 1 © k-1
T _ z ' vkl k=1 3 _ Z (-1)
j(; 1+TdT_k=1( b j(;T dT_kzl n+k

and

"TUINT)  N et [ ek _y D
fo — dT_;(—1) 1f0T 11n(T)dT—kZ_;(n+k)2,

then making substitution, we can simplify the expression

1
Q.(1,-1) = fo In@MinA+T) ;.

n=1 k=1 n=1 k=1
-1 m+n -1 m+n 7.(2
-y G S T2 [men+k
n2m m2n 6
n<m m>n

7T2
= ~Qu(-1,-1) = Qo(~1,~1) = = In2

2
= ((3)~ 7 In2,
where the last passage is justified by

2
Q(-1,-1) = 717—2 In2 = C(3) + Qu(=1,-1) + Q. (=1, -1).

Analogously, from the integral expression
-1
In(-T)In(1 -T)
Q.(-1,1) = ——————=dT
= [
o fl In(T) In(1 + T)
b 1+T

1 2
:f 1+ T)
0

dr T—-T

2T

we can manipulate further the series

[ n— 1
Q>(—1,1):Z(_1) 1 f T" n(1 + T)dT
0

= 2n
- (-1)" {T” ! f T" }
= — In(1+T)| - T
; 2n n n(l+ )|0 0 n(1+T)d
= (—1)" f T" > (—1)"1n2
= ——dT - A
; 2n2 ), 1+Td ; 2n?

& (_1)11 1 ™" 7_(2
- T + = In2.
W o TeT T
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By invoking (4), the above sum can further be reduced to

(_1)11 1 ™" ( 1 n+k—1 B -1 (_1)m —
Z 212 fo vl Zznz(n+k) 2

2
mn
n=1

1 3
= ?Q<(1, 1) = 7{9(1,—1) +300) - Q>(1,—1)}

-1 7 3 7 @) =
—?{—gln2+1C(3)—C(3)+Zh’12}—T——l 2.

Consequently we arrive at the closed formula

"In2(1+ T) Z(3)
Q.(-1,1) = | ———dT ==,
=1.1) fo 2T 8

Alternatively, for 0 < T < 1, if making use of the geometric series

1
T (1+T) Z (1 +T)k+1’

and then evaluating the integrals

1.2 3

1
f n(1+T)dT:1n(2)/
o 1+T 3

'I*1+7) 2 2 22 In’QQ)
o (1+ Tkt Tk 3.2k 2.2k f.Qk’

we can derive the following expression

1 2
In*(1 + T)
Q (—1,1):[ ———2dT
g 0 2T

1n(2) 12{ 21n2_1n2(2)}
2 e 2k K2 .2k k. ok

In®(2)
3 7

= (3) - Lis(3) - In2Lix(}) -

where the polylogarithm function is defined by the power series

=~

Thanks to the two known equations

2 In*2
Li 2( ) = - 2( ),
. In’(2 2 21
Lis(3) = 6( ) _ - In2 + ﬂ<;(3);

we confirm again
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24. Q5(-1,-1)
Finally, we turn to evaluate the integral

_ ('In(-T)In(1 + T)
Q.(-1,-1) = fo —— T

1 p—
_ _f In(T) In(1 T)dT 5.7
0 1+T

By means of integration by parts, we have
1 _ 1 B
Q.(<1,-1) = _f In(T) In(1 T)dT _ f In(1 + T) In(1 T)dT
0 1+T 0 T

1
—In(T) In(1 + T) In(1 - T)Ll) _ f %M
0 =

1
) f In(1+ T)In(1 — T)dT -Q.(1,-1).
0 T

Denote by H, the harmonic number

i
Hy=0 and HV,:ZE for ne€IN.
k=1

According to the equality

1
f T" ' In(1 - T)dT = —%,

0

we can evaluate the integral

1 ) n— 1
f In(l+T)In(A-T) - _ % f T In(1 = T)dT
0 0

T n=1
H,
=) (' =Qx(-1D)
n=1

3
=Q.(-1,1) - ZC(?’)'
Therefore, we find that

0.(-1,-1) = 0.(-1,1) - 303) - 0. (1, -1)

_©® 3 n
=g ~ ZC(3) —-C3) + ZIHZ
-

13
= —1In2-—L@O).
g m2-3 c3)

From the four summation formulae established for Q.(+1,+1) in this section, we can deduce other
double series ()(+1, £1) labeled by “<, <, >". For example, among the four series Q.(+1, +1), two series

“Q<(1,1) and Q.(-1,1)” are divergent, while two convergent ones are evaluated by

2
Q.(1,-1) = 71-[—21112 - ?,

2
Q.(-1,-1) = 25(3) - %mz.
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3. Hypergeometric Series Approach
For an indeterminate o and a nonnegative integer n, define the shifted factorial by (a)o = 1 and
(@), =af@+1)---(a+n—-1) for nelN.
Then the classical hypergeometric series (cf. Bailey [3]) reads as

a,az, - ,4 _ o 2" (@1)n(@2)n -+ (ap)n
pHa [blszf E ,b}; Z] - Z 1! (01)n(b2)n - (B

n=0

There exist numerous hypergeometric series identities in the literature. Some of them have been shown
powerful to prove summation formulae involving harmonic numbers (see [6, 11]). The strategy consists of
two steps. The first one is to extract the initial coefficient of x from hypergeometric terms. Let [x"]¢(x) stand
for the coefficient of ™ in the formal power series ¢(x). Then it is trivial to check the following relations:

(A+x) _ nl
ol =H, and [x] a-x, =H,.

[x]

Another step is to do the same from the I'-function quotient. Recalling, for the I'-function (cf. [16, §11]),
the Weierstrass product

I(z) =2 [ [1a+1/n/1 + 2/n))
n=1
and the logarithm-differentiation

I'(z) — z—1
TR) ‘_7+Z(n+1)(n+z)

n=0

with the Euler constant

y:lim{ %{—lnn},
n—oo —

we can derive the following expansions (cf. [6])

I'l-z)=exp {Z (;C—kzk} ,

k=1

l’(% —z) = \/ﬁexp{z %zk},

k=1
where the Riemann Zeta sequences {o, T} are defined by

01:?/1 Gm:C(m)/m:2/3/”'
T1=y+2In2, Tn = Q" =1)Um), m=2,3,---.

Now we are going to illustrate the hypergeometric approach through three examples.
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3.1. Q.(1,1)
Recall the Gauss summation theorem (cf. Bailey [3, §1.3])

x, x|,|_T(1l-2x)
ol -

Then we can express Q.(1, 1) in terms of the coefficient

Q.1,1) =

2k

n>k

= —[xg] 21 [x, ﬂl]

= 51 pr ) = O

3.2. Q.(-1,1)
In view of the Kummer summation theorem (cf. Bailey [3, §2.3])

X, X _ I1+3)
2F1[ 1’_1]‘ (1 + 21— 5)’

we can express Q.(—1, 1) in terms of the coefficient

Q.(-1,1)=) (;i,in = Yy

n>k n=1
= %[x3] 2F1 [x, - 1]
_ 1[ 3 Id+3) O

TA+xr1-3) 8

3313

However, we fail to rederive the formulae for both Q. (1,-1) and Q.(-1,—1). Instead, we succeed in

proving an extra identity in the next subsection.

33. Q:(3,1)
Recall Bailey’s summation theorem (cf. Bailey [3, §2.4])
x, MGG

According to the linear relation “2x = (k + x) — (k —x)”, the contiguous series can be written in terms of

B-series

x,—x|1] 1 1
oFq [1 + y|§} = EB(JC/ )+ EB(—X/ y).

Then we can evaluate the series

(9]

H, x,—x|1
Z 2. on =[x y]2F1[1+y|§}

n=1

e { B, y) +28(—x, Y) }

= [F*y]lB(x,y) = ((3) - il In2.
12
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This is equivalent to the following interesting identity

7.(2
Q:(3,1)=((3) - 73 In2.
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