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Hybrid fractional differential equation with nonlocal and impulsive
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Abstract. In this paper, we have studied the existence of solutions of the following nonlinear ψ-Hilfer
hybrid fractional differential equation with non-local and impulsive conditions (non-local impulsive ψ-
HHFDE)

HDα,σ,ψ
0+

(
u(t)

f (t,u(t)) + 1(t,u(t))
)
= h(t,u(t)), t ∈ J = [0, b] \ {t1, t2, ..., tn}

∆I1−ζ;ψ
0+

[
u(tk)

f (tk ,u(tk)) + 1(tk,u(tk))
]
= Γk ∈ R, k ∈ {1, 2, ...,n}

I1−ζ;ψ
0+

(
u(t)

f (t,u(t))

)
t=0
+ χ(u) = µ ∈ R

Where 0 < α < 1, 0 < σ < 1, ζ = α + σ(1 − α), f ∈ C(J × R,R∗), χ ∈ C(R,R) and 1, h ∈ C(J × R,R). The
used tools in this article are the classical technique of Dhage fixed point theorem. Further, an example is
provided to illustrate our results.

1. Introduction

The purpose of fractional calculus is to generalize traditional derivatives to non-integer orders. As is
well known, many dynamical systems are best characterized by a fractional order dynamical model, usually
based on the notion of differentiation or integration of the non-integer order. The study of fractional order
systems is more delicate than for their integer order counterparts. Indeed, fractional systems are, on the
one hand, considered as memory systems, especially for the consideration of initial conditions and on the
other hand they present a much more complex dynamics.
Hybrid equation theory is very much useful in the study of nonlinear dynamical systems that are not
easily solvable or analyzed. The non-linearity of such a dynamical system is not smooth for studying
the existence or some other characterization of the solutions, however perturbing such a problem in some
way allows the problem to be studied with available methods for different aspects of the solutions. The
nonlinear dynamical systems perturbed in this way are called hybrid differential equations. They are
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results of perturbation techniques as explained in [1]. There have been many works on the theory of hybrid
differential equations, and we refer the readers to the literatures(see [2–6]).
Hilal and Kajouni [5] studied boundary fractional hybrid differential equations involving Caputo differential
operators of order 0 ≤ α ≤ 1

cDα
0+

[
x(t)

f (t,x(t))

]
= 1(t, x(t)), t ∈ [0,T]

a x(0)
f (0,x(0)) + b x(T)

f (T,x(T)) = c
(1)

Where f ∈ C1([0,T] × R,R∗) and 1 ∈ Car([0,T] × R,R) and a, b, c are real constants with a + b , 0. They
proved the existence result for boundary fractional hybrid differential equations under mixed Lipschitz
and Caratheodory conditions.
The main motivation for this work comes from the work [8], the authors of this work studied the following
impulsive ψ-Hilfer fractional differential equation with initial condition

HDα,σ,ψ
a+ u(t) = f (t,u(t)), t ∈ [a,T] \ {t1, t2, ..., tn}

∆I1−ζ;ψ
a+ u(tk) = Γk ∈ R, k ∈ {1, 2, ...,n}

I1−ζ;ψ
a+ u(a) = δ ∈ R

Where 0 < α < 1, 0 < σ < 1, ζ = α + σ(1 − α), a = t0 < t1 < t2 < ... < tn < tn+1 = T, ∆I1−ζ;ψ
0+

u(tk) =

I1−ζ;ψ
0+

u(t+k ) − I1−ζ;ψ
0+

u(t−k ) such that I1−ζ;ψ
0+

u(t+k ) = limε→0+ I1−ζ;ψ
0+

u(tk + ε) and I1−ζ;ψ
0+

u(t−k ) = limε→0− I1−ζ;ψ
0+

u(tk + ε).
In this present paper, we investigate the existence on solutions for the following impulsiveψ-Hilfer nonlinear
hybrid fractional differential equation (ψ-HHFDE) with non-local initial conditions given by

HDα,σ,ψ
0+

(
u(t)

f (t,u(t)) + 1(t,u(t))
)
= h(t,u(t)), t ∈ J = [0, b] \ {t1, t2, ..., tn}

∆I1−ζ;ψ
0+

[
u(tk)

f (tk ,u(tk)) + 1(tk,u(tk))
]
= Γk ∈ R, k ∈ {1, 2, ...,n}

I1−ζ;ψ
0+

(
u(t)

f (t,u(t))

)
t=0
+ χ(u) = µ ∈ R

(2)

Where 0 < α < 1, 0 < σ < 1, ζ = α + σ(1 − α), HDα,σ,ψ
0+

(.) is the ψ-Hilfer fractional derivative of order

α and type σ, f ∈ C(J × R,R∗), χ ∈ C(R,R) and 1, h ∈ C(J × R,R), I1−ζ;ψ
0+

is left sided ψ-RL fractional

integral operator, 0 = t0 < t1 < t2 < ... < tn < tn+1 = b, ∆I1−ζ;ψ
0+

β(tk,u(tk)) = I1−ζ;ψ
0+

β(t+k ,u(t+k )) − I1−ζ;ψ
0+

β(t−k ,u(t−k )),

I1−ζ;ψ
0+

β(t+k ,u(t+k )) = limε→0+ I1−ζ;ψ
0+

β(tk+ε,u(tk+ε)) and I1−ζ;ψ
0+

β(t−k ,u(t−k )) = limε→0− I1−ζ;ψ
0+

β(tk+ε,u(tk+ε)). Where

β(tk,u(tk)) =
[

u(tk)
f (tk ,u(tk)) + 1(tk,u(tk))

]
The plan of this paper is as follows : In Section 2, we present some preliminary results from fractional
calculus, which will be employed throughout this paper. In section 3 we present a representation formula
for the solution and we investigate the existence of the non-local impulsiveψ-HHFDE (2). As an application
of our main results, illustrative example is given in the last section.

2. Preliminaries

Let J = [0, b] be a finite interval of the real lineR. C(J,R) be the Banach space of continuous real function
h with the norm ∥h∥ = max{|h(t)| : t ∈ J}. Cn(J,R) be the Banach space of n-times continuously differentiable
functions on J.
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Let [a, b] with (0 < a < b < ∞) be a finite interval and ψ ∈ C1([a, b]) be increasing function such that ψ
′

, 0,
∀t ∈ [a, b], we consider the weighted space

C1−ζ,ψ([a, b]) =
{
u : (a, b]→ R, (ψ(t) − ψ(a))1−ζu(t) ∈ C1[a, b]

}
.

Define the weighted space of piece-wise continuous functions as

PC1−ζ,ψ([a, b],R) = {u : (a, b]→ R,u ∈ C1−ζ,ψ((tk, tk+1]), I1−ζ;ψ
0+

u(t+k ), I1−ζ;ψ
0+

u(t−k ) exists and

I1−ζ;ψ
0+

u(t−k ) = I1−ζ;ψ
0+

u(tk) f or k = 1, 2, ...,n}.

Clearly, PC1−ζ,ψ([a, b],R) is a Banach space with the norm

∥u(t)∥C1−ζ,ψ([a,b]) = maxt∈[a,b]|(ψ(t) − ψ(a))1−ζu(t)|

Let us recall some definitions and properties of fractional calculus.

Definition 2.1. [1] The left-sided ψ-Riemann-Liouville fractional integral and fractional derivative of order α,
(n − 1 < α < n) for an integrable function Φ : [0, b]→ R with respect to another function ψ : [0, b]→ R, that is an
increasing differentiable function such that ψ′ (t) , 0, for all t ∈ [0, b], (b ≤ +∞), are respectively defined as follows

Iα;ψ
0+
Φ(t) =

1
Γ(α)

∫ t

0
ψ
′

(s)(ψ(t) − ψ(s))α−1Φ(s)ds,

and

Dα;ψ
0+
Φ(t) =

(
1

ψ′ (t)
d
dt

)n

In−α;ψ
0+

Φ(t) =
1

Γ(n − α)

(
1

ψ′ (t)
d
dt

)n ∫ t

0
ψ
′

(s)(ψ(t) − ψ(s))n−α−1Φ(s)ds,

where Γ(.) is the Euler gamma function defined by

Γ(z) =
∫ +∞

0
e−ttz−1dt, z > 0

Definition 2.2. [7] Let (n − 1 < α < n), n ∈ N, with ψ ∈ Cn([0, b],R) a function such that ψ(t) is increasing and
ψ
′

(t) , 0 for all t ∈ [0, b].
Theψ-Hilfer fractional derivative (left-sided) of functionΦ ∈ Cn([0, b],R) of order α and type σ ∈ [0, 1] is determined
as

HDα,σ,ψ
0+
Φ(t) = Iσ(n−α);ψ

0+

(
1

ψ′ (t)
d
dt

)n

I(1−σ)(n−α);ψ
0+

Φ(t).

In other way
HDα,σ,ψ

0+
Φ(t) = Iσ(n−α);ψ

0+
Dζ,ψ

0+
Φ(t),

where

Dζ,ψ
0+
Φ(t) =

(
1

ψ′ (t)
d
dt

)(n)

I(1−σ)(n−α);ψ
0+

Φ(t),

with ζ = α + σ(n − α)

In particular, the ψ-Hilfer fractional derivative of order α ∈ (0, 1) and type σ ∈ [0, 1], can be written in the
following form

HDα;σ;ψ
0+
Φ(t) =

1
Γ(ζ − α)

∫ t

0
ψ
′

(s)(ψ(t) − ψ(s))ζ−α−1Dζ,ψ
0+
Φ(s)ds,

where

ζ = α + σ(1 − α), and Dζ,ψ
0+
Φ(t) =

(
1

ψ′ (t)
d
dt

)(1)
I1−ζ;ψ
0+
Φ(t).
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Lemma 2.3. [1, 9]. Let α, β > 0. Then we have
i) Iα;ψ

0+
(ψ(t) − ψ(0))β−1 =

Γ(β)
Γ(β+α) (ψ(t) − ψ(0))α+β−1

ii) HDα;σ;ψ
0+

(ψ(t) − ψ(0))ζ−1 = 0

Lemma 2.4. [11]. Let α > 0 and β > 0. Then the relation

Iα;ψ
0+

Iβ;ψ
0+

h(t) = Iα+β;ψ
0+

h(t)

holds almost every where for t ∈ J, for h ∈ Lp(J,R) and p ≥ 1. If α + β > 1, then the relation holds at any point of J.

Lemma 2.5. [1, 10] Let α > 0 and h ∈ C([a, b]), then Iα;ψ
a+ h(t) ∈ C([a, b]) and

i) Iα;ψ
a+ (.) maps C([a, b],R) into C([a, b],R)

ii) limt→a+ Iα;ψ
a+ h(t) = Iα;ψ

a+ h(a) = 0

Lemma 2.6. [7] Let h ∈ Cn[a, b], n − 1 < α < n, 0 ≤ σ ≤ 1, and ζ = α + σ − σα. Then for all t ∈ (a, b]

HDα;σ;ψ
a+ Iα;ψ

a+ h(t) = h(t),

and

Iα;ψH
a+ Dα;σ;ψ

a+ h(t) = h(t) −
n∑

k=1

(ψ(t) − ψ(a))(ζ−k)

Γ(ς − k + 1)
h[n−k]
ψ I(n−σ)(n−α);ψ

a+ h(a), where h[n−k]
ψ h(t) =

(
1

ψ′ (t)
d
dt

)n−k

h(t).

In particular, if 0 < α < 1, we have

Iα;ψH
a+ Dα;σ;ψ

a+ h(t) = h(t) −Ωζψ(t, a)I(1−σ)(1−α);ψ
a+ h(a),

where

Ωζψ(t, a) =
(ψ(t) − ψ(a))ζ−1

Γ(ς)
.

Theorem 2.7. [2] Let S be a closed, convex and bounded subset of the Banach algebra X. Suppose that A : X → X
and B : S→ X are two operators such that

a) A is Lipschitzian with a Lipschitz constant δ.

b) B is completely continuous.

c) u = AuBv⇒ u ∈ S, for all v ∈ S.

d) δM < 1, Where M = ∥B(S)∥
Then, the operator equation u = AuBu has a solution in S.

3. Existence Results

In this partition, we prove the existence of the solution of the given problem (2). We first present the
following important result through which we can prove our major results.
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Representation formula for the solution:
We will give a lemma which plays an important role for the construction of an equivalent fractional

integral equation of the non-local impulsive ψ-HHFDE (2).
We consider the following problem

HDα,σ,ψ
0+

(
u(t)

f (t,u(t)) + 1(t,u(t))
)
= φ(t), t ∈ J = [0, b] \ {t1, t2, ..., tn}

∆I1−ζ;ψ
0+

[
u(tk)

f (tk ,u(tk)) + 1(tk,u(tk))
]
= Γk ∈ R, k ∈ {1, 2, ...,n}

I1−ζ;ψ
0+

(
u(t)

f (t,u(t))

)
t=0
+ χ(u) = µ ∈ R

(3)

Lemma 3.1. Let f ∈ C(J ×R,R∗), 1 ∈ C(J ×R,R), u ∈ C1−ζ,ψ(J,R) and φ : J −→ R be continuous.
Then for any τ ∈ J a function u : J −→ R defined by

u(t) = f (t,u(t))
{
−1(t,u(t)) +Ωζψ(t, 0){I1−ζ;ψ

0+
(

u(τ)
f (τ,u(τ))

+ 1(τ,u(τ))) − I1−ζ+α;ψ
0+

φ(t)|t=τ} + Iα;ψ
0+
φ(t)

}
, (4)

is the solution of the problem

HDα,σ,ψ
0+

(
u(t)

f (t,u(t))
+ 1(t,u(t))

)
= φ(t), t ∈ J = [0, b]

Proof. From (4) we have(
u(t)

f (t,u(t))
+ 1(t,u(t))

)
= Ωζψ(t, 0){I1−ζ;ψ

0+
(

u(τ)
f (τ,u(τ))

+ 1(τ,u(τ))) − I1−ζ+α;ψ
0+

φ(t)|t=τ} + Iα;ψ
0+
φ(t).

Applying the ψ-Hilfer fractional derivative operator HDα,σ,ψ
0+

on both sides of the above equation, we get

HDα,σ,ψ
0+

(
u(t)

f (t,u(t))
+ 1(t,u(t))

)
= {I1−ζ;ψ

0+
β(τ) − I1−ζ+α;ψ

0+
φ(t)|t=τ}HDα,σ,ψ

0+
Ωζψ(t, 0) +H Dα,σ,ψ

0+
Iα;ψ
0+
φ(t), t ∈ J,

using the Lemma (2.3), (ii) and Lemma (2.6), we get

HDα,σ,ψ
0+

(
u(t)

f (t,u(t))
+ 1(t,u(t))

)
= φ(t), t ∈ J.

This completes the proof of the lemma.

Lemma 3.2. Let f ∈ C(J × R,R∗), 1 ∈ C(J × R,R), u ∈ PC1−ζ,ψ(J,R) , and φ ∈ C(J,R) with J = [0, b]. Then the
problem (3) has a solution given by

u(t) =


f (t,u(t))

{
−1(t,u(t)) +Ωζψ(t, 0)(µ − χ(u)) + Iα;ψ

0+
φ(t)

}
t ∈ [0, t1]

f (t,u(t))
{
−1(t,u(t)) +Ωζψ(t, 0)(µ − χ(u) +

∑k
i=1 Γi) + Iα;ψ

0+
φ(t)

}
t ∈ (tk, tk+1], k = 1, 2, ...,n

(5)

Proof. Assume that u ∈ PC1−ζ,ψ(J,R) satisfies the nonlocal impulsive ψ-HHFDE (3).
If t ∈ [0, t1] we have

HDα,σ,ψ
0+

(
u(t)

f (t,u(t)) + 1(t,u(t))
)
= φ(t)

I1−ζ;ψ
0+

[
u(t)

f (t,u(t))

]
t=0
+ χ(u) = µ ∈ R

(6)
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Applying the ψ-RL fractional integral operator Iα,ψ0+
on both sides of the problem (6) and using Lemma (2.5)

we get
u(t)

f (t,u(t))
+ 1(t,u(t)) −Ωζψ(t, 0)I1−ζ;ψ

0+

[
u(t)

f (t,u(t))
+ 1(t,u(t))

]
t=0
= Iα;ψ

0+
φ(t),

this implies that

u(t) = f (t,u(t))
{
−1(t,u(t)) +Ωζψ(t, 0)(µ − χ(u)) + Iα;ψ

0+
φ(t)

}
. (7)

Now, if t ∈ (t1, t2] we have
HDα,σ,ψ

0+

(
u(t)

f (t,u(t)) + 1(t,u(t))
)
= φ(t), t ∈ (t1, t2]

I1−ζ;ψ
0+

[
u(t+1 )

f (t+1 ,u(t+1 )) + 1(t
+
1 ,u(t+1 ))

]
− I1−ζ;ψ

0+

[
u(t−1 )

f (t−1 ,u(t−1 )) + 1(t
−

1 ,u(t−1 ))
]
= Γ1 ∈ R

(8)

By Lemma (3.1), we have

u(t) = f (t,u(t))
{
−1(t,u(t)) +Ωζψ(t, 0)

{
I1−ζ;ψ
0+

[
u(t+1 )

f (t+1 ,u(t+1 ))
+ 1(t+1 ,u(t+1 ))

]
− I1−ζ+α;ψ

0+
φ(t)|t=t1

}
+ Iα;ψ

0+
φ(t)

}
.

Then

u(t) = f (t,u(t))
{
−1(t,u(t)) +Ωζψ(t, 0)

{
I1−ζ;ψ
0+

[
u(t−1 )

f (t−1 ,u(t−1 )) + 1(t
−

1 ,u(t−1 ))
]
+ Γ1 − I1−ζ+α;ψ

0+
φ(t)|t=t1

}
+ Iα;ψ

0+
φ(t)

}
(9)

Now from (7) we obtain

u(t)
f (t,u(t))

+ 1(t,u(t)) = Ωζψ(t, 0)(µ − χ(u)) + Iα;ψ
0+
φ(t),

this implies

I1−ζ;ψ
0+

[
u(t)

f (t,u(t))
+ 1(t,u(t))

]
= µ − χ(u) + I1−ζ+α;ψ

0+
φ(t),

this gives

I1−ζ;ψ
0+

[
u(t−1 )

f (t−1 ,u(t−1 ))
+ 1(t−1 ,u(t−1 ))

]
− I1−ζ+α;ψ

0+
φ(t)|t=t1 = µ − χ(u). (10)

By (9) and (10), we get

u(t) = f (t,u(t))
{
−1(t,u(t)) +Ωζψ(t, 0)

(
µ − χ(u) + Γ1

)
+ Iα;ψ

0+
φ(t)

}
, t ∈ (t1, t2]. (11)

Next, if t ∈ (t2, t3] then
HDα,σ,ψ

0+

(
u(t)

f (t,u(t)) + 1(t,u(t))
)
= φ(t), (t2, t3]

I1−ζ;ψ
0+

[
u(t+2 )

f (t+2 ,u(t+2 )) + 1(t
+
2 ,u(t+2 ))

]
− I1−ζ;ψ

0+

[
u(t−2 )

f (t−2 ,u(t−2 )) + 1(t
−

2 ,u(t−2 ))
]
= Γ2 ∈ R

(12)

Again by using Lemma (3.1), we have

u(t) = f (t,u(t))
{
−1(t,u(t)) +Ωζψ(t, 0)

{
I1−ζ;ψ
0+

[
u(t+2 )

f (t+2 ,u(t+2 ))
+ 1(t+2 ,u(t+2 ))

]
− I1−ζ+α;ψ

0+
φ(t)|t=t2

}
+ Iα;ψ

0+
φ(t)

}
.
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Then

u(t) = f (t,u(t))
{
−1(t,u(t)) +Ωζψ(t, 0)

{
I1−ζ;ψ
0+

[
u(t−2 )

f (t−2 ,u(t−2 )) + 1(t
−

2 ,u(t−2 ))
]
+ Γ2 − I1−ζ+α;ψ

0+
φ(t)|t=t2

}
+ Iα;ψ

0+
φ(t)

}
(13)

From (11) we have

I1−ζ;ψ
0+

[
u(t)

f (t,u(t))
+ 1(t,u(t))

]
= µ − χ(u) + Γ1 + I1−ζ+α;ψ

0+
φ(t),

this gives

I1−ζ;ψ
0+

[
u(t−2 )

f (t−2 ,u(t−2 ))
+ 1(t−2 ,u(t−2 ))

]
− I1−ζ+α;ψ

0+
φ(t)|t=t2 = µ − χ(u) + Γ1. (14)

Using (14) in (13), we get

u(t) = f (t,u(t))
{
−1(t,u(t)) +Ωζψ(t, 0)

(
µ − χ(u) + Γ1 + Γ2

)
+ Iα;ψ

0+
φ(t)

}
, t ∈ (t2, t3].

Continuing the above process, we obtain

u(t) = f (t,u(t))

−1(t,u(t)) +Ωζψ(t, 0)

µ − χ(u) +
k∑

i=1

Γi

 + Iα;ψ
0+
φ(t)

 t ∈ (tk, tk+1], k = 1, 2, ...,n.

Conversely, suppose that u ∈ PC1−ζ,ψ(J,R) satisfies the fractional integral equation (5), Then for t ∈ [0, t1]
we have

u(t)
f (t,u(t))

+ 1(t,u(t)) = Ωζψ(t, 0)(µ − χ(u)) + Iα;ψ
0+
φ(t).

Applying the ψ-H fractional derivative operator HDα,σ,ψ
0+

on both sides, we get

HDα,σ,ψ
0+

(
u(t)

f (t,u(t))
+ 1(t,u(t))

)
=H Dα,σ,ψ

0+
Ωζψ(t, 0)(µ − χ(u)) +H Dα,σ,ψ

0+
Iα;ψ
0+
φ(t),

using the Lemma (2.3), (ii) and Lemma (2.6), we get

HDα,σ,ψ
0+

(
u(t)

f (t,u(t))
+ 1(t,u(t))

)
= φ(t), t ∈ [0, t1].

Now, for t ∈ (tk, tk+1], k = 1, 2, ...,n, we have(
u(t)

f (t,u(t))
+ 1(t,u(t))

)
= Ωζψ(t, 0)

(
µ − χ(u) + Γ1 + Γ2

)
+ Iα;ψ

0+
φ(t).

Applying the ψ-H fractional derivative operator HDα,σ,ψ
0+

on both sides and using Lemma (2.3), (ii) and
Lemma (2.6), we get

HDα,σ,ψ
0+

(
u(t)

f (t,u(t))
+ 1(t,u(t))

)
= φ(t), t ∈ (tk, tk+1], k = 1, 2, ...,n.

It remains to verify the initial conditions. For t ∈ [0, t1], we have

u(t)
f (t,u(t))

+ 1(t,u(t)) = Ωζψ(t, 0)(µ − χ(u)) + Iα;ψ
0+
φ(t).
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Applying the operator I1−ζ;ψ
0+

(.) on both sides of the above equation, we get

I1−ζ;ψ
0+

(
u(t)

f (t,u(t))
+ 1(t,u(t))

)
= I1−ζ;ψ

0+
Ωζψ(t, 0)(µ − χ(u)) + I1−ζ;ψ

0+
Iα;ψ
0+
φ(t).

Note that for a fixed function u(.), χ(u(.)) is a fixed element in R.
By using the Lemma (2.5, ii), Lemma (2.3, i) and for t = 0 we obtain

I1−ζ;ψ
0+

(
u(t)

f (t,u(t))

)
t=0
+ χ(u) = µ ∈ R.

Next, for t ∈ (tk, tk+1] we have

u(t)
f (t,u(t))

+ 1(t,u(t)) = Ωζψ(t, 0)

µ − χ(u) +
k∑

i=1

Γi

 + Iα;ψ
0+
φ(t).

Applying the operator I1−ζ;ψ
0+

(.) on both sides of the above equation and using the Lemma (2.4) and Lemma
(2.3, i) we get

I1−ζ;ψ
0+

(
u(t)

f (t,u(t))
+ 1(t,u(t))

)
= µ − χ(u) +

k∑
i=1

Γi + I1−ζα;ψ
0+

φ(t). (15)

And for t ∈ (tk−1, tk] we have

I1−ζ;ψ
0+

(
u(t)

f (t,u(t))
+ 1(t,u(t))

)
= µ − χ(u) +

k−1∑
i=1

Γi + I1−ζα;ψ
0+

φ(t). (16)

Then from (15) and (16), we have

∆I1−ζ;ψ
0+

[
u(tk)

f (tk,u(tk))
+ 1(tk,u(tk))

]
=

k∑
i=1

Γi −

k−1∑
i=1

Γi = Γk.

We have proved that u satisfies the non-local impulsive ψ-HHFDE (5). This completes the proof.

Lemma 3.3. Let f ∈ C(J × R,R∗), 1 ∈ C(J × R,R), u ∈ PC1−ζ,ψ(J,R) , and h ∈ C1−ζ,ψ(J × R,R) with J = [0, b].
Then the problem (2) has a solution given by

u(t) =


f (t,u(t))

{
−1(t,u(t)) +Ωζψ(t, 0)(µ − χ(u)) + Iα;ψ

0+
h(t,u(t))

}
t ∈ [0, t1]

f (t,u(t))
{
−1(t,u(t)) +Ωζψ(t, 0)(µ − χ(u) +

∑k
i=1 Γi) + Iα;ψ

0+
h(t,u(t))

}
t ∈ (tk, tk+1], k = 1, 2, ...,n

Next, we introduce the following hypotheses:

(H1) The function f ∈ C(J × R,R∗) and 1 ∈ C(J × R,R) are bounded and there exists constant δ > 0 such
that for all p, q ∈ R, and t ∈ J we have:

| f (t, p) − f (t, q)| ≤ δ|p − q|.

(H2) The function h ∈ C(J ×R,R) and there exists a function K ∈ PC1−ζ,ψ(J,R) such that

|h(t, p)| ≤ (ψ(t) − ψ(0))1−ζK(t) t ∈ J, p ∈ R.
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(H3) assume that χ : PC1−ζ,ψ(J,R)→ R is a continuous function that satisfy

|χ(u)| ≤ Lχ

Let X := (PC1−ζ,ψ(J,R), ∥.∥PC1−ζ,ψ(J,R)). Then X is a Banach algebra with the product of vectors defined by
(uv)(t) = u(t)v(t), t ∈ (0, b]. Define,

S =
{

v ∈ X, I1−ζ;ψ
0+

[
v(t)

f (t, v(t))

]
t=0
+ χ(v) = µ and ∥v∥PC1−ζ,ψ(J,R) ≤ R

}
,

where

R = L1

(ψ(b) − ψ(0))1−ζL2 +
1
Γ(ζ)

|µ| + k∑
i=1

|Γi| + Lχ

 + (ψ(b) − ψ(0))α+1−ζ

Γ(α + 1)
∥K∥PC1−ζ,ψ(J,R)

 ,
and L1,L2 > 0 are the constants such that | f (t, p)| ≤ L1, |1(t, p)| ≤ L2 for all t ∈ J.
From the definition of the set S it is clear that it is closed and bounded.
Now we check for convexity. Letλ ∈ [0, 1], u, v ∈ S, and w = λu+(1−λ)v such that I1−ζ;ψ

0+

[
w(t)

f (t,w(t))

]
t=0
+χ(w) = µ,

then we have

∥w∥PC1−ζ,ψ(J,R) = ∥λu + (1 − λ)v∥PC1−ζ,ψ(J,R)

≤ λ∥u∥PC1−ζ,ψ(J,R) + (1 − λ)∥v∥PC1−ζ,ψ(J,R)

≤ λR + (1 − λ)R
≤ R

This implies that the set S is convex.
Therefore, S is closed, convex and bounded subset of X. Define the operators A : X→ X and B : S→ X by:

Au(t) = f (t,u(t))

Bu(t) =

−1(t,u(t)) +Ωζψ(t, 0)(µ − χ(u) +
k∑

i=1

Γi) + Iα;ψ
0+

h(t,u(t))


We consider the mapping T : S→ X defined by:

Tu(t) = Au(t)Bu(t)

Theorem 3.4. Assume that the hypotheses (H1), (H2)and(H3) hold. Then, the non-local impulsive ψ-HHFDE 2 has
a solution u ∈ PC1−ζ,ψ(J,R) provided:

δ

(ψ(b) − ψ(0))1−ζL2 +
1
Γ(ζ)

|µ + k∑
i=1

Γi| + Lχ

 + (ψ(b) − ψ(0))α+1−ζ

Γ(α + 1)
∥K∥PC1−ζ,ψ(J,R)

 < 1 (17)

Proof. To prove that u ∈ C1−ζ,ψ(J,R) is a solution of the problem (2) is equivalent to prove that the mapping
T has a fixed point, we show that the operators A and B satisfies the conditions of the Theorem 2.7.
The proof is given in the several steps:
Step 1: A : X→ X is Lipschitz operator:
Using the hypothesis (H1), we obtain

|(ψ(t) − ψ(0))1−ζ(Au(t) − Av(t))| = |(ψ(t) − ψ(0))1−ζ( f (t,u(t)) − f (t, v(t)))|

≤ δ|(ψ(t) − ψ(0))1−ζ(u(t) − v(t))|
≤ δ∥u − v∥PC1−ζ,ψ(J,R).

Therefore, A is Lipschitz operator with Lipschitz constant δ.
Step 2: B : S→ X is completely continuous:
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i) B : S→ X is continuous:
Let (un)n∈N be any sequence in S such that un → u as n→ ∞ in S. We prove that Bun → Bu as n→ ∞
in S.
We have

∥Bun − Bu∥PC1−ζ,ψ(J,R) = maxt∈J |(ψ(t) − ψ(0))1−ζ(−1(t,un(t)) −Ωζψ(t, 0)χ(un) + Iα;ψ
0+

h(t,un(t))

+ 1(t,u(t)) +Ωζψ(t, 0)χ(u) − Iα;ψ
0+

h(t,u(t)))|

≤ maxt∈J(ψ(t) − ψ(0))1−ζ
{|1(t,un(t)) − 1(t,u(t))| +Ωζψ(t, 0)|χ(un) − χ(u)|

+ |Iα;ψ
0+

h(t,un(t)) − Iα;ψ
0+

h(t,u(t))|}.

By continuity of g, χ and Lebesgue dominated convergence theorem, from the above inequality, we
obtain:
∥Bun − Bu∥PC1−ζ,ψ(J,R) → 0 as n→∞.
This proves that B : S→ X is continuous.

ii) B(S) = {Bu : u ∈ S} is uniformly bounded.
Using hypotheses (H1), (H2) and (H3) for any u ∈ S and t ∈ J, we have:

|(ψ(t) − ψ(0))1−ζBu(t)| = |(ψ(t) − ψ(0))1−ζ(−1(t,u(t)) +Ωζψ(t, 0)(µ − χ(u) +
k∑

i=1

Γi) + Iα;ψ
0+

h(t,u(t)))|

≤ (ψ(t) − ψ(0))1−ζ
|1(t,u(t))| +

1
Γ(ζ)
|µ +

k∑
i=1

Γi| +
1
Γ(ζ)
|χ(u)|

+ (ψ(t) − ψ(0))1−ζ 1
Γ(α)

∫ t

0
ψ
′

(s)(ψ(t) − ψ(s))α−1
|h(s,u(s))|ds

≤ (ψ(b) − ψ(0))1−ζL2 +
1
Γ(ζ)
|µ +

k∑
i=1

Γi| +
Lχ
Γ(ζ)

+ (ψ(b) − ψ(0))1−ζ 1
Γ(α)

∫ t

0
ψ
′

(s)(ψ(t) − ψ(s))α−1
|(ψ(s) − ψ(0))1−ζK(s)|ds

≤ (ψ(b) − ψ(0))1−ζL2 +
1
Γ(ζ)
|µ +

k∑
i=1

Γi| +
Lχ
Γ(ζ)

+ (ψ(b) − ψ(0))1−ζ
∥K∥PC1−ζ,ψ(J,R)

1
Γ(α)

∫ t

0
ψ
′

(s)(ψ(t) − ψ(s))α−1ds

≤ (ψ(b) − ψ(0))1−ζL2 +
1
Γ(ζ)

|µ + k∑
i=1

Γi| + Lχ


+

(ψ(b) − ψ(0))α+1−ζ

Γ(α + 1)
∥K∥PC1−ζ,ψ(J,R).

Therefore

∥Bu∥PC1−ζ,ψ(J,R) ≤ (ψ(b) − ψ(0))1−ζL2 +
1
Γ(ζ)

|µ + k∑
i=1

Γi| + Lχ

 + (ψ(b) − ψ(0))α+1−ζ

Γ(α + 1)
∥K∥PC1−ζ,ψ(J,R).

(18)
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iii) B(S) is equicontinuous: Let any u ∈ S and t1, t2 ∈ J with t1 < t2. Then using hypothesis (H2), we have

|(ψ(t2) − ψ(0))1−ζBu(t2) − (ψ(t1) − ψ(0))1−ζBu(t1)|

= | − (ψ(t2) − ψ(0))1−ζ1(t2,u(t2)) + (ψ(t2) − ψ(0))1−ζIα;ψ
0+

h(t2,u(t2))

+ (ψ(t1) − ψ(0))1−ζ1(t1,u(t1)) − (ψ(t1) − ψ(0))1−ζIα;ψ
0+

h(t1,u(t1))|

≤ |(ψ(t2) − ψ(0))1−ζ1(t2,u(t2)) − (ψ(t1) − ψ(0))1−ζ1(t1,u(t1))|

+ |(ψ(t2) − ψ(0))1−ζ 1
Γ(α)

∫ t2

0
ψ
′

(s)(ψ(t2) − ψ(s))α−1
|h(s,u(s))|ds

− (ψ(t1) − ψ(0))1−ζ 1
Γ(α)

∫ t1

0
ψ
′

(s)(ψ(t1) − ψ(s))α−1
|h(s,u(s))|ds|

≤ |(ψ(t2) − ψ(0))1−ζ1(t2,u(t2)) − (ψ(t1) − ψ(0))1−ζ1(t1,u(t1))|

+ |
(ψ(t2) − ψ(0))α+1−ζ

Γ(α + 1)
∥K∥PC1−ζ,ψ(J,R) −

(ψ(t1) − ψ(0))α+1−ζ

Γ(α + 1)
∥K∥PC1−ζ,ψ(J,R)|

≤ |(ψ(t2) − ψ(0))1−ζ1(t2,u(t2)) − (ψ(t1) − ψ(0))1−ζ1(t1,u(t1))|

+
∥K∥PC1−ζ,ψ(J,R)

Γ(α + 1)
{(ψ(t2) − ψ(0))α+1−ζ

− (ψ(t1) − ψ(0))α+1−ζ
}.

By the continuity of ψ and g, from the above inequality it follows that:
if |t1 − t2| → 0 then |(ψ(t2)−ψ(0))1−ζBu(t2)− (ψ(t1)−ψ(0))1−ζBu(t1)| → 0 From the parts (ii) and (iii), it follows
that B(S) is uniformly bounded and equicontinous set in X. Then by Arzela-Ascoli theorem, B(S) is relatively
compact. Since B : S→ X is the continuous and compact operator, it is completely continuous.
Step 3:
Let any u ∈ PC1−ζ,ψ(J,R) and v ∈ S such that u(t) = Au(t)Bv(t) then, for all t ∈ [a, b] we have

|(ψ(t) − ψ(0))1−ζu(t)| = |(ψ(t) − ψ(0))1−ζAu(t)Bv(t)|

= | f (t,u(t))|{(ψ(t) − ψ(0))1−ζ
| − 1(t, v(t)) +Ωζψ(t, 0)(µ − χ(v) +

k∑
i=1

Γi) + Iα;ψ
0+

h(t, v(t))|}

≤ | f (t,u(t))|{(ψ(t) − ψ(0))1−ζ
|1(t, v(t))| +

1
Γ(ζ)

(|µ +
k∑

i=1

Γi| + |χ(v)|)

+ |(ψ(t) − ψ(0))1−ζIα;ψ
0+

h(t, v(t))|}

≤ L1{(ψ(b) − ψ(0))1−ζL2 +
1
Γ(ζ)

(|µ +
k∑

i=1

Γi| + Lχ) +
(ψ(b) − ψ(0))α+1−ζ

Γ(α + 1)
∥K∥PC1−ζ,ψ(J,R)}.

This gives that ∥u∥PC1−ζ,ψ(J,R) ≤ R. Then, u ∈ S.
Step 4:
Let M = ∥B(S)∥PC1−ζ,ψ(J,R) = sup{∥Bu∥PC1−ζ,ψ(J,R) : u ∈ S}.
From inequality (17) and (18), we have

δM ≤ δ

(ψ(b) − ψ(0))1−ζL2 +
1
Γ(ζ)

|µ + k∑
i=1

Γi| + Lχ

 + (ψ(b) − ψ(0))α+1−ζ

Γ(α + 1)
∥K∥PC1−ζ,ψ(J,R)


< 1

From steps 1 to 4, it follows that all the conditions of the theorem (2.7) are fulfilled. Hence the operator T
has a solution in S.
This implies that the non-local impulsive ψ-HHFDE (2) has a solution in PC1−ζ,ψ(J,R).
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4. Example

This section is consisted on appropriate example which is relevant to demonstrate our results. We
consider the particular case when ψ(t) = t and σ = 0.
Consider the non-local impulsive ψ-HHFDE involving Riemann Liouville fractional derivative.
Where f (t,u(t)) = 1

4 tu(t) + 1, 1(t,u(t)) = cos(t)|u(t)|
1+|u(t)| , h(t,u(t)) = |u(t)|

2+u(t)2 , and χ(u) = 1
3(1+|u( 1

2 )|)

RLD
1
2
0+

(
u(t)

1
4 tu(t)+1

+
cos(t)|u(t)|

1+|u(t)|

)
=

|u(t)|
2+u(t)2 , t ∈ [0, 1] \ { 12 }

∆I1−ζ;ψ
0+

[
u(t)

1
4 tu(t)+1

+
cos(t)|u(t)|

1+|u(t)|

]
t= 1

2

= Γ 1
2
= 2

3

I1−ζ;ψ
0+

[
u(t)

1
4 tu(t)+1

]
t=0
+ 1

3(1+|u( 1
2 )|)
= 1

2

(19)

Comparing the problem (19) with system of non-local impulsiveψ-HHFDE (2). Then
α = 1

2 , σ = 0, ζ = 1
2 , ψ(t) = t and J = [0, 1].

It is clear that
| f (t,u(t)) − f (t, v(t))| ≤ 1

4 |u − v|, |1(t,u(t))| ≤ 1 and |h(t,u(t))| ≤ 1, here k(t) = 1, L2 = 1, |χ(u)| ≤ 1
3 = Lχ, and

δ = 1
4 .

Now we check for condition (17). Further, consider

δ

(ψ(b) − ψ(0))1−ζL2 +
1
Γ(ζ)

|µ + k∑
i=1

Γi| + Lχ

 + (ψ(b) − ψ(0))α+1−ζ

Γ(α + 1)
∥K∥PC1−ζ,ψ(J,R)


=

1
4

1 +
1
Γ( 1

2 )

(1
2
+

2
3
+

1
3

)
+

1
Γ( 3

2 )


≈ 0, 787
< 1

We observe that all the conditions of Theorem (3.4) are satisfied. Therefore, the system of non-local impulsive
ψ-HHFDEs involving Riemann Liouville fractional derivative (19) has a solution in PC1−ζ,ψ(J,R).

5. Conclusion

Impulsive differential equations play a very important role in modeling real world physical phenomena
involving in the study of population dynamics, biotechnology and chemical technology. In this work
we have established existence theory on solutions of the system of hybrid fractional differential equation
introduced by the ψ-Hilfer fractional derivative with non-local impulsive conditions The technique used is
based on Dhage fixed point theorem. Also we presented an example to illustrate our main results.
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