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Abstract. In this paper, we introduce and study the notions of Hom-reflection space and Hom-symmetric
space. We provide some examples of Hom-reflection spaces (resp. Hom-symmetric spaces) by using
ordinary reflection (resp. symmetric) spaces. Also, we associate a Hom-reflection (resp. Hom-symmetric)
space to a Hom-Lie group. Finally, we provide some properties of a Hom-Jordan algebra and show that
there is a relationship between Hom-Jordan algebras and Hom-symmetric spaces.

Introduction

Symmetric spaces, which were introduced by O. Loos in [23] have many similarities to Lie groups (only
the multiplication is changed to a group multiplication). There is a linear structure on the tangent bundle of
a symmetric space, which is called Lie triple system. In fact, this system plays a role similar to Lie algebra
for a Lie group. For an impulsive description of physical problems in terms of a theatrical group, one can
use the theory of symmetric spaces (see [29] for more details).

The authors of [13] have introduced Hom-Lie algebras, as a generalization of Lie algebras, in the study of
quantum deformations of Witt and Virasoro algebras. Because Hom-algebra structures are closely related
to the discrete and deformed vector fields, many researchers became interested to this field [13, 20].

The notion of a Hom-group, as a non-associative analogue of a group, appeared in the study of the
universal enveloping algebra and elements of group-like type in [21]. Then, M. Hassanzadeh studied
some concepts on Hom-groups [14, 15]. Next, J. Jiang, S. K. Mishra and Y. Sheng by adding a smooth
manifold structure on a Hom-group introduced the notion of Hom-Lie group in [18]. Also, by defining the
left-invariant sections of the pullback bundle of a Hom-Lie group, they associated a Hom-Lie algebra to a
Hom-Lie group. Recently, in [28] the authors studied the Kdhler-Norden geometry on Hom-Lie groups.
Hom-Jordan algebras are commutative algebras where the identities defining the structure are twisted by
a homomorphism. They are first introduced by A. Makhlouf in his paper [24].

In this paper, we introduce Hom-reflection spaces and Hom-symmetric spaces which are obtained
by twisting the usual identities by a map. We provide some examples of Hom-reflection spaces (resp.
Hom-symmetric spaces) by using ordinary reflection (resp. symmetric) spaces. Also, we associate a Hom-
reflection (resp. Hom-symmetric) space to a Hom-Lie group. Later on, we extend certain properties of
a Jordan algebra to the Hom-version, more precisely the fundamental identity and the notion of inverses
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for a Jordan algebra. Finally, we show that there is a relationship between Hom-Jordan algebras and
Hom-symmetric spaces.

The paper is organized as follows. In Section 1, we recall some basic definitions and results concerning
reflection spaces, symmetric spaces, Jordan symmetric algebras and Hom-Lie groups. Definitions and
examples of Hom-reflection spaces and Hom-symmetric spaces are provided in section 2. In section 3, a
Hom-version of the fundamental identity and the notion of inverses for a Jordan algebra has been given.
We also show that there is a relationship between Hom-Jordan algebras and Hom-symmetric spaces.

1. Preliminaries

We recall the notion and some basic results of symmetric spaces, Jordan symmetric spaces, Hom-groups
and Hom-Lie groups (see [5-7, 11, 17, 22, 23], for more details).

Definition 1.1. A pair (M, m) is called reflection space if M is a smooth manifold and m : M XM — M, (x,y)
m(x, y) = xy = ox(y) is a smooth product map such that

1) xx =x,
Gi) x(xy) =y, ie, 02 =idy,
(iii) x(yz) = (xy)(xz), i.e., 0y € Aut(M, m),

forall x, y, z € M. Moreover, if 2 is invertible in K and Ty(0y) = —idr m, where Tx(oy) is the differential of o, and
idr m 1s the identity of T M, then (M, m) is said to be symmetric space (over IK).

Remark 1.2. From (ii) and (iii) of the above definition we conclude that the left multiplication operator ¢, is an
automorphism of order two fixing x, which is called the symmetry around x. Also, in the real finite-dimensional case,
Ty(0x) = —idr m if and only if for all x € M, the fixed point x of oy is isolated.

Proposition 1.3. [22, 23] Let (M, m) be a symmetric space. Then the tangent bundle (TM, Tm) of a reflection (resp.
symmetric) space is again a reflection (resp. symmetric) space, where

Tm(X, Y)(f)(a, b) = (X, Y)(f o m(a, D))
= X(f o Rp)(@) + Y(f o L,)(b), 1)

forall f e C*(M)anda,b € M (L,(b) = m(a, b) = Ry(a) are the left and right translations).

Definition 1.4. A Jordan algebra is a commutative algebra A with a multiplication u : AXA — A, (a,b) — u(a,b) =
ab such that the multiplication satisfies

a(a®b) = a*(ab), Va,be A. (2)
A Jordan algebra is said to be unital if it admits an element e, called the unit, satisfying ea = a, for all a € A.

Definition 1.5. Let A be a unital Jordan algebra over K. An element a in a unital Jordan algebra A is said to be
invertible if there is an element b such that ab = e and a®b = a.

Theorem 1.6. Let A be a unital Jordan algebra such that A is a finite dimensional real vector space. Then the set
I(A) of invertible elements is an open in A. Endowed with the multiplication p : I(A) X I(A) — I(A) defined by

p(a,b) = P(@b™!, Va,bel(A), (©)
where P(a)b = 2a(ab) — a®b, I(A) is a symmetric space, which is called the Jordan symmetric space.

Definition 1.7. [14] A (regular) Hom-group is a quadruplet (G, u, e, ) consisting of a set G with a distinguished
member e (is called unit) of G, a map u : GX G — G (multiplication map) and amap o : G — G (bijection), such that
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w(a(g), u(h, k) = pu(g, h), a(k)), ¥g,h k€ G (Hom-associativity property),
a(u(g,h)) = w(a(g), a(h)) (ais multiplicative),

(g, e) = ule, g9) = a(g), ale) = e (Hom-unitarity condition),

¥ geG, g7 € Gaatisfying u(g,97) = ulg ™, 9) =,

5. u(g,h)™t = u(h™,g7) (the inverse map g — g~ is an antimorphism).

Ll .

Moreover, if G is a smooth manifold, a is a diffeomorphism and the multiplication and inverse maps are smooth, then
(G, 1, e, ) is called Hom-Lie group.

2. Hom-reflection space and Hom-symmetric space

Definition 2.1. An a-manifold is a triple (M, u, ) in which M is a smooth manifold, u : M X M — M is a smooth
binary map and o : M — M is a diffeomorphism such that

(@ o u)a,b) = u(a(a), ab)), or lygoa=aol, rupyoa=aor, Ya,beM,
where 1,(b) = u(a, b) = ry(a).

Example 2.2. Let M be a smooth manifold with a multiplication u : MX M — M. We recall that a map o : M — M
is an automorphism of (M, u) if it is a diffeomorphism of M and satisfies (oo u)(a, b) = u(a(a), a(b)). So, ifa : M — M
is an automorphism of (M, u), the binary operation a o b = a(u(a, b)) gives an a-manifold structure on M.

Definition 2.3. A Hom-reflection space is an a-manifold (M, u, &) satisfying
(@) p(a,a) = ala) or l,(a) = a(a),
(i) p(a(a), u(a, b)) = a?(b) (where a* = ao @) or Iy o lboa™ = a,

(iii) p(a(a), u(b,c)) = u(u(a,b), u(a,c)) or lo@ o Iy = I,y © Lo,
foralla, b, c € M.

Let A : M — M x M be the diagonal map on M defined by A(a) = (a,4), T : M XM — M X M be the
flip map defined by 7(a,b) = (b,a) and pr, : M X M — M be the second projection on M x M defined by
pra(a, b) = b. We can present an equivalent and axiomatic definition of the notion of Hom-reflection space.
A Hom-reflection space is a triple (M, i, @), where M is a smooth manifold, y : M X M — M is a smooth
multiplication and a : M — M is a diffeomorphism satisfying the following axioms:

@
MxM —2s M
axXa a s
b
MxM —3s M
(ii)
M——2 S\ MxM

N

AXid

MXM ——— MxXMxM

\Lprz \Lax u 7

(iii)
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(iv)

M x M x M 2 Ao Mox Mx M 2% Mo Mox M x M

\Laxy \Lyxu

MxM > M < MxM

Example 2.4. Let (M, m) be a reflection space and o : M — M be an automorphism. Then the triple (M, 1, a) is a
Hom-reflection space, where the product 1 is given by

u(a, b) = m(a(a), a(b)), VYa, be M. 4)

Remark 2.5. Let (M, u, &) be a Hom-reflection space. Then, we get a reflection space structure (M, m) equipped with
the product m : M x M — M defined by m(a,b) = a~(u(a, b)), for all a, b € M, which is called the compatible
reflection space of (M, u, av).

Example 2.6. Considering a manifold M and a diffeomorphism o : M — M, the operator u(a,b) = a(b) for any
a,b € M, gives a Hom-reflection space.

Example 2.7. Let (G, ) be a Lie group and o : G — G be a diffeomorphism. Then (G, u, ) is a Hom-reflection space,
where u(g,h) = a(g) - a*(h™' - g), forall g,h € G.

Example 2.8. Take M = R" with a reflection space structure defined by m(v,w) = 2v — w and let f be the
automorphism of R" defined by f(v) = av + b, for some invertible a and some b. Then the binary map u(v, w) =
f(m(v,w)) = 2av — aw + b gives a Hom-reflection space structure on M.

Proposition 2.9. Let (G, ¢, e,, @) be a Hom-Lie group. Defining -: G X G — G by
g-h=goa (i og), (5)
the triple (G, -, @) is a Hom-reflection space.
Proof. For all g € G, we have
g-g=goa’l(gog)=goe =ay),
i.e., (i) of Definition 2.3 holds. Next, by using the Hom-associativity of @ and ¢, one can show that

Ag)-(g-h)=a(g)-(goa™ (" og))
=a(g) o (@2 ey oal(g7) 0 9)
=a(g)ea((g o h) o (g o g)
=a(g) ¢ oz_l((g_l oh)o ea)
=a(g) o (g oh)
=(gog™)oalh)
=e, ¢ a(h)
= a*(h).
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So (ii) holds. Finally, for all g, h, k € G, by using the Hom-associativity of a and ¢, we have
@-h-@g-0=@-moa gk o h)
=(goal o g))oa (@ g R og ) o (goa (kT o g))

-1

goa (o g))ea((g ek o (g caT (goa (T 0 g)))

-1

(
( Jea™!(

(goa it og)oa (g ok o@ (g o g)oa (i o g)))
(goa (i og)oa((g7 o k) o (eaoa (17" o g)))

( Joa™!(

goat(hog))oa (g ok)o (h™ og))
=a(g)o (a7 H o g)oa (g o k) o (1 o g))
=a(g) ¢ (a‘z((h_ og)o(glok)oat(hto g)).

But
(T ogyo(g ok =al) o(goa (g o k)
=a(i™) o (a(gog ™) o k)
=a(h™Y) o (ey o k)
= a(i™t o k).
Then
@m0 =a@ea (B ok)o @ og)
=a(g) o ((oz_z(h_1 ok)yoa ' (™M) o g)
=a(g) o ofl((ofl(lf1 ok)yoh ™o a(g))
=a(g) o a‘l((h oa (kT oh) o a(g))
=a(g)ea”((- B 0 a(y)
= alg) - (- k).
O

Let (M, i, @) be a Hom-reflection space. The pullback map a* : C*(M) — C*(M) is a morphism of the
function ring C*(M), i.e.,

a’(fg) =a’(fla’(g), Yf,g€CM).

A Hom-bundle is a vector bundle A — M with a smooth map a : M — M and an algebra morphism
ax : T'(A) — I'(A) satisfying

as(fx) = a’(flaa(x), Vx € I(A), f€C*(M),

where T'(A) is the C*(M)-module of sections of A — M and it is denoted by (A — M, a,a,). The triple
(a'TM, a, Ad,+) is a famous example of a Hom-bundle, where o'TM is the pullback bundle of TM along the
diffeomorphism a : M — M and Ad,-(x) = a* o x o (&)}, for any x € T'(a'TM). Considering

x(f) = X(f)oa, Vf €C(M),

where X € I[(TM) and x € I'(«'TM), it is seen that there is a one-to-one correspondence between I'(TM) and
['(a'TM) (see [18], for more details).
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Proposition 2.10. Let (M, u, ) be a Hom-reflection space and (M, m) be its compatible reflection space. Then
(T(@'TM), &' u, Ady1y) is a Hom-reflection space, where the product o'y is defined by

a‘u(x, (@, b) = x(f ory 0 a™)@) + y(f o Lo a H)(b), 6
forall f € C*(M) and for alla,b € M.
Proof. Let x,y € [(&'TM) and let X, Y be the corresponding sections of TM, i.e., x = Xoaand y = Yo a.
Then we obtain

& e ()@, b) = x(f o ry 0 a”)(@) + y(f o la o a)(b)

= X(f o Ra)(@(@) + Y(f © Law)(a(b)), Vfe€C™(M), Ya,beM, )

where Ry (a) = m(a, a(b)) = p(a~'(a),b) = r, o a”1(a) and Ly (b) = m(a(a), b) = u(a, a1 (b)) = I, o a~1(b).
But

X(f o Ry 0 0 ) (@(@) + Y(f © Laga) © @ 0 a”")(ax(b))
= X((foa)oRyoa ) a@) + Y((f oa) oL, oa ) a(b))
= Ady (X((f o a) o Ry)(@)) + Ad @1y (Y((f © @) o L,)(b))
= Ady(X((f o @) o Rp)(@) + Y((f 0 @) o Ly)(b))

= Ady (X, Y)((f o @) o m(a, b))

= Adg-1) (X, Y)(f o m(a(a), a(D))))

= Ady (Tm(X, Y)(f)(a(a), a(D))).

Soa' u(x, y)(f)(a,b) = Ad g1y (Tm(X, Y)(f)(a(a), a(b))). Therefore, according to Proposition 1.3 and Example2.4,
the proposition is proved. O

X(f © Rawy)(@(@)) + Y(f o Laga))(a(D))

Definition 2.11. A Hom-symmetric space is a Hom-reflection space (M, p, &) satisfying
x(f ol 0oa™N)a) = —Ady-(¥)(f)(@), Ya €M, Vx € T(&'TM). (8)

The examples of Hom-reflection spaces in the previous subsection are also Hom-symmetric spaces.
Let x € I['(@'TM) and X be the corresponding sections of TM, i.e., x = X o a. Then we have

X(f © La)(@(@)) = ~X(f)(a(a)).
So, Ta@La@ = —idr,,m and consequently Tyl = To(La(a) © @) = (Ta@)La@)Taa = —T,a.
Lemma 2.12. Let (M, u, ) be a Hom-symmetric space. Then,

x(for,oa M) = 2Ady(x)(f)a), Yae M, Vx e [(¢'TM).
Proof. By Proposition 2.10 and (i) of Definition 2.3, we have
X(forgoa”) @)+ x(f ol 0 a”')(a) = Ady (x)(f)(@)-
But x(f o I, o a”1)(a) = —Ad,(x)(f)(a). Then
xX(f o g 0 7)) = 2Ad - (x)(f)(@)-
0

Proposition 2.13. Let (M, u, a) be a Hom-symmetric space and (M, m) be its compatible symmetric space. Then
(T(a'TM), a'u, Ad,-) is a Hom-symmetric space, where

a'u(x, y)(f)@a,b)=x(for,oa™)a) + y(fol,oa™)b), VfeC (M), Ya,beM. 9)
Moreover
o u(x, y)(f)(@a, b) = 2Adq (x)(f)(@) — Ady (y)(f)(D)- (10)

Proof. Similar to Proposition 2.10 we can obtain (9). Also, Lemma 2.12 gives us (10). O
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3. Hom-Jordan Hom-symmetric space

Definition 3.1. A triple (V, u, a) consisting of a K-linear space V, a bilinear map p : VXV — V ( called
multiplication or product) and a linear map o : V — V is called a Hom-Jordan algebra if u is commutative and
satisfies the Hom-Jordan identity

(@), pp(x, x), ) = pla(px, 0), palx), y), Yx,yev, (11)

where a? = a o a.

Example 3.2. If (V,u,a) is a Hom-associative algebra over K with product (x,y) v u(x,y) = xy, then V* =
(V, ', a) is a Hom-Jordan algebra, where

+yx

/ Xy
uey) = — o 'nyEv

Recall that a Hom-associative algebra is a triple (V, u, a) consisting of a K-linear space V, a linear map a : V. — V
and a multiplication pp: V@V — V satisfying

pax), u(y, 2)) = ppx, y), az), Vx,y,ze V.

Definition 3.3. A Hom-Jordan algebra (V,u,a) is called multiplicative (resp. regular) if for any x, y € V,
a(u(x,y) = ula(x), aly)) (resp. a is invertible). Also, it is called unital if there exists an element e € V (called the
Hom-unit of V) such that a(e) = e and for all x € V, u(e, x) = a(x) (it is denoted by (V, u, e, a)).

Proposition 3.4. If (V, u, a) is a multiplicative Hom-Jordan algebra, then (\7, o, ¢, ) is a unital Hom-Jordan algebra,
where

1. V=KeV (any element ofV can be written as (a,x), a € Kand x € V),
2. the Hom-unit is e = (1,0),

3.a=idXa,

4. Forall (a,%), (b,y) €V,

(a,x) o (b,y) = (ab,aa(y) + ba(x) + u(x, y)). (12)

Proof. For all x,y € V, we write u(x,y) = xy and p(x,x) = x%. It is evident that the commutativity of the
product “e” is a consequence of the commutativity of the multiplication u and the commutativity of the

multiplication on K. Let A = (4, x) and B = (b, y) be two elements of V, then we have

a*(A) e (A e A)eB) = (a,a°(x)) o ((a°,2aa(x) + x°) ® (b, y))
= (a,a%(x)) ® (a°b, aza(y) + 2aba’®(x) + ba(x?) + 2aa(x)y + xzy)
= (a°b, aSOzz(y) +2a%ba’(x) + aba®(x%) + 2a20z2(x)a(y) + aa(xzy)
+ a?(x)(@*ba’ (x) + a*a(y) + 2aba®(x) + ba(x?) + 2aa(x)y + x*y))
= (@%b, a30c2(y) +2a%ba’(x) + aba®(x?) + 2a2a2(x)a(y) + aa(xzy) + a?ba’(x)
+ a?a?(x)a(y) + 2aba*(x)a?(x) + ba? (x)a(x?) + 2aa*(x)(a(x)y) + a*(x)(x*y))
= (@%b, a3a2(y) + 3a%ba’(x) + 3aba®(x*) + 3a2a2(x)a(y) + aa(xz)az(y)
+ ba? (X)a(x?) + 2a0*(X)((¥)y) + &> (¥)(¥*y)),
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and
a(A e A) e (a(A) e B) = (a°,2a0*(x) + a(x*)) ® (a, a(x)) ® (b, )
= (a%,2a0%(x) + a(x?)) ® (ab, aa(y) + ba?(x) + a(x)y)
= (b, a>a*(y) + a*ba’ (x) + a*a(a(x)y) + 2a°ba’(x) + aba*(x)
+ (2a0?(x) + a(x®))(aa(y) + ba?(x) + a(x)y))
= (a°b,aa*(y) + a*ba’ (x) + a*a(a(x)y) + 2a°ba> (x) + aba*(x*) + 2a*a®(x)a(y)
+ 2aba® (x)a?(x) + 2a0?(x)(a(x)y) + aa(xP)a(y) + ba(x*)a?(x) + a(x*)(a(x)y))
= (a®b,a’a*(y) + 3a°ba’ (x) + 3aba®(x?) + 3a*a*(x)a(y) + aa(x*)a(y)
+ ba? (x)a(x?) + 2a0®(x)(a(x)y) + a(xP)(@(x)y)).
But a?(x)(x*y) = a(x?)((x)y). Hence the product ”e” satisfies the Hom-Jordan Identity, i.e.,
a*(A) e ((AeA)eB)=0a(AeA)e (a(A) e B),
forall A = (a,x), B=(b,y) € V. Forall A = (a,x) € V, it follows that
eeA=(1,0)e(ax) = (a ax).
Thus (V, e,¢, ) is a unital Hom-Jordan algebra. [J

3.1. Fundamental identities

Let (V, u, @) be a multiplicative Hom-Jordan algebra. In terms of left and right multiplications I(x)y = xy
and r(x)y = yx the definition of a Hom-Jordan algebra may be written as

I(x) = r(x), (13)

(@ ())(x?) = la(x*)(a(x)), (14)
where [(x)I(y) = I(x) o I(y). Replace x by x + Ay (A # 0 € K) in (14) to obtain T = I(a(x + Ay))(a(x +
Ay)) — l(a*(x + Ay)((x + Ay)) = 0. Using the linearity of I/(x), we may write T = To + ATy + A’Tp + A3T;,
where Ty = I(a(x*))l(a(x)) = (a*(x)I(x?), T1 = Z[Z(Oé(xy))l(a(x» - l(az(X))l(x]/)] + (2D a(y)) = (W),
Ty = Z[Z(Q(Xy))l(a(]/)) - l(az(y))l(xy)] + (a(y)a(y)) = (a*())(y?) and Ts = La(y?)a(y) - (a*y)IY).

From (14), wehave T = Ty = T3 = 0. So, for every A # 0 € K, we obtain AT; + A?T, =0. Hence Ty + AT, =0,
for every 0 # A € K.

Lemma 3.5. Let (V, u, ) be a multiplicative Hom-Jordan. Then for all x, y € V, we have
2[l(a(xy))l(0¢(X)) - l(aZ(X))l(xy)] + (X)) - (P )I(r?) = 0. (15)

Proof. From the above, we have T; + AT, = 0 (for every A # 0 € K), where T; = Z[I(a(xy))l(a(x)) -

l(az(x))l(xy)] + la()l(a(y)) — (P (y)I(x?), and T, = 2[l(a(xy))l(a(y)) - l(az(y))l(xy)] + la(y*)a(y)) -
I(@*(x))l(y?). Let Ay and A, be two non-zero scalars in K. We see that Ty + AT> = T1 + A,T, = 0,
(A1 = A2)T> =0, T1 = T, = 0. Hence the lemma is proven. O

We next replace x by x + Az in (15) to obtain U = 2[I(a(xy + Azy))l((x) + Aa(2)) - (a?(x) + Aa?(2))I(xy + Azy) | +
I(a(x?) + 2Aa(xz) + A2a(z)(e(y)) — L@ (y)(x? + 2Axz + A%2%) = Uy + 2AU; + A2U, = 0. Here Uy = T; = 0 and
U, = Z[Z(a(zy))l(a(z)) - l(az(z))l(zy)] + l(a(Z22)(a(y)) — la?(y))l(z*) = 0. So, we have the following lemma:
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Lemma 3.6. Let (V, 11, o) be a multiplicative Hom-Jordan. Then for all x,y, z € V, we have

a(xy)a(2)) + (a(y2)(a(x)) + (axz)la(y)) = L(a®(x)(yz) + (a*(y)(x2) + [(@?@)lxy). (16)
Proof. Computing U, we find

U = la(xy)l(a(2) + (ay2)(ax)) + (a@xz)iay)) - (o @))(yz) — (o y)xz) = (o (@)(xy)-
From the above, we have Uj = 0. Thus the lemma holds. [J
Now, applying the identity (16) to a quantity w and using the commutativity of the product, we obtain

a(xy)(wa(z)) + a(xz)(wa(y)) + ayz)(wax) = (xy)w)a’ (@) + (2)w)a’(y) + (y2)w)a? (). (17)
We write as,(x, , z) for the a-associator (xy)a(z) — a(x)(yz). Then equation (17) can be rewritten as

asa(xy, 0, a(2)) + a54(x2, W, a(y)) + a8 (yz, W, a(x)) = 0. (18)
By replacing w by a(w), the equation (17) becomes

a(xy)(wz) + a(xz)a(wy) + a(yz)a(wx) = ((xy)a@w))a’(2) + ((x2)a(w)a®(y) + (y2)aw))a? (). (19)
Interchange z and w and use the commutativity of the product to write

a(xy)a(zw) + a(yz)a(xw) + a(xz)a(yw) = ((xy)a(z)a’ W) + o*(y)(a@)(xw)) + a*(xX)(@(z)(yw)). (20)
Then, we have the following lemma:

Lemma 3.7. Let (V, u, &) be a multiplicative Hom-Jordan. Then,

Ha(xy)la@)a + (a(y2)(a@)e + (a@xz)lay)a = ((xy)a=)a® + Lo (y)Ia=)()
+1(@? () (a(2)(y), (1)

forallx,y, ze V.

Lemma 3.8. Let (V, u, ) be a multiplicative Hom-Jordan. Then,

l(2)a(y) - (y2)a(x)a? = e @) aC)iy) - (am)E)]
- [P aw) - Py aE) i), (22)
forallx,y, z€ V.
Proof. Since the left hand side of (21) is symmetric in y and z, we get
Ha(ez)la(y)a + (a(y2)la)a + (a@y)la@)a = (Ea(y)a® + (a @) a(y)(x)
+ (@@ aW)(2).
Also, the left hand side of the above equation is symmetric in x and y. This shows the lemma. [

An important role in the theory of Jordan algebras plays the so-called quadratic representation. In the
sequel, we will extend this notion for Hom-Jordan algebras.

Definition 3.9. Let (V, u, ) be a multiplicative Hom-Jordan. The Hom-quadratic representation of V is the map
Q : V — End(V) defined by

Q(x) = 2(a())I(x) = I(x*)ar. (23)
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Example 3.10. If (A, u, ) is a Hom-associative algebra, then the Hom-quadratic representation of A* (see example
3.2) is given by Q(x)y = a(x)(yx) = (xy)a(x), forall x,y € A.

Lemma 3.11. Let (V, u, ) be a multiplicative Hom-Jordan. Then the Hom-quadratic representation Q satisfies
I(@?(x)Q(x) — Qa(x)l(x) =0, Vx €. (24)
Proof. Letx € V. Considering al(x) = I(a(x))a we get
1(@*(x)Q(x) — Qa(x))(x) = 2l(a*(x)a(x)I(x) = (a*(@X)I(x*)a
= 2l (@) ax)(x) + (a(?))al(x)
= ~L(@®(O)(*)a + a())a(x)a

= ((a(®)a)) = l(a?(@))I(x*)a
=0.

Hence the lemma holds. [

Now, set the map Q(x, ) given by

Qv y) =Qx+y) - Q) - QAy), Yx,yeV. (25)
Using the definition of the map Q given by (23), we obtain easily

Q(x, y) = 2(l(a())(y) + la()l(x) — lxy)a) and Q(x,x) = 2Q(x). (26)
Lemma 3.12. Let (V, u, ) be a multiplicative Hom-Jordan. Then, we have

Qlxy, a(x))a — Qa())(y) = a*()Q(x) =0, Vx,y € V. (27)

Proof. Letx,y € V. Using (26), we have
Q(ry, alx))a = Qa())I(y) — Ha*(y)Q) = 2(a(xy)a(x)) + Har(@(x))I(xy)
= ((xy)a@))ma — 21 () (a@)I(y) + (a()ay)a
= 2@*(Y)Ua()E) + La* () )a
= 2((a(ey)ax)a + (a®()(xy)a - ((xy)a@))a?)

= 2@ @)a(x)l(y) + La(*)(ay)a
= 2> (YD a)() + La? ).

But, replacing z by x in (21), we find

Ha(xy)Ma@)a - ((xya)a® = La?(x)Iax)y) + 1o (y)lax)ix)
~ laGey)lax)a - La@x?)ay))a.

Hence,

Qlry, a())a = Qa())I(y) - (o ())Qx) = 2((a* ())I(xy) — Kalxy)a(x))ax
+ (@YD) = L))

So, by (15), Q(xy, a(x)ax — Q(a(x)I(y) — l(a*(y))Q(x) = 0. O
Lemma 3.13. Let (V, u, @) be a multiplicative Hom-Jordan. Then,

1(a?())Q(x, y) = Qa(x), a)I(x) = Qa())I(y) - (a*(y)Q), Vx,y € V. (28)
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Proof. This identity is obtained by replacing x by x + Ay in (24). O
Next, we set I(x, y) defined by

I(x, y)(z) = {xyz} = Qx,2)y, VzeV. (29)
Using (26), we observe

15, y) = 20@@)(y) ~ (ay)(x) + 1xy)a). (30)
Remark 3.14. Forallx, yandz € V, xyz = Q(x,2)y = Q(z,x)y = zyx.
Lemma 3.15. Let (V, u, a) be a multiplicative Hom-Jordan. Then

Q@ ()(y, x) = l(a*(x), (y))QX), Vx,y € V. (31)
Proof. We have

%Q(az(x))l(y, x) = Qe ()(a()I(x) = Qa* (N ax)I(y) + Qa*(@)lxy)a, x, y € V.
But Q(a?(x)l(a(x)) = [(a*(x))Q(a(x)) and Q(a*(x))I(a(y)) = Qla(xy), a*(x)a — l(a*())Q(ax(x)). Hence

%Q(az(x))l(y, x) = (Qa(xy), ®())a - Ua®(y)Qa) I(x) - e (®)Qax)I(Y) + Qa(X)I(xy)ar
= (Qa(xy), a*(@¥)a - [’ () Qa())i(x) + Q> (X)(xy)a
— (@ ())(Qlxy, a(x))er - 1(@* (1)) Q)
= Q(alxy), (@)l(x)a - (NI (X))Q) - I(e* (X)Q(xy, a(x))a
+ (@ () (1)Q) + Q@ ()(xy)a
= (Qatxy), a*(@)l(a()a - (o (x)Q(xy, a(x)a)
+ (L) (1)) - P W)IP(1))Q) + QU (X)(xy)er.
But (28) implies
Qla(xy), a?(@)la(x)) — e (XNQ(ry, alx)) = I (xy)Q(e(x)) — Qe ()I(xy).
So

%Q(sz(x))l(yr x) = (1(043(x))l(a2(y)) - l(a3(y))l(0¢2(x)))Q(x) + (0 (xy)) Q(ev(x))ax
= S, ()W,
because Q(a(x))a = aQ(x). O

As a consequence of this lemma, we have the following:

Corollary 3.16. Let (V, u, ) be a multiplicative Hom-Jordan. Then

QA ())I(y, x) = I(a*(x), &*(¥)QWX) = QQMy, &*()a?, Vx,y €V, (32)

which is called the Homotopy Hom-formula.
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Proof. Using (29) and (31) we get
Q@ ())(y, 1)z = l(a*(x), A (¥)QW)z = QQAM)z, a*(x)a’ (y). (33)

Since Q(a?(x)l(y, x)z = Q(&(x))Q(y, z)x and Q(y,z) is symmetric, then Q(a*(x))l(y, x)z is symmetric with
respect to y and z. Therefore (33) implies

Q@ ())(y, )z = QQM)Y, a*(x))a’(2),
which conclude the proof. [J
So, using the notation in (29), one can show
Proposition 3.17. Let (V, i, &) be a multiplicative Hom-Jordan. Then, for all x,y, z € V, we have
{a*(){e®W)a® (izxylat (V) = {a* (et () a*@){zxyla® ()
= (2" (@) (fa? (0)a® (2)xyx))). (34)
Proof. Considering (32) and Q(x, x) = 2Q(x), we have

(@) Yzl (@) = (@2 (@) (y){xzx)),
and so the proposition holds. [J
Next, replace x by x + Az in (27), we have the following:

Lemma 3.18. Let (V, i1, @) be a multiplicative Hom-Jordan. Then, we have

Qyz, a(x)a + Qlxy, a(z))a = Qa(x), a(2)l(y) + (a*(Y)Q(,2), Yx,y,z€ V. (35)
Corollary 3.19. Let (V, i1, &) be a multiplicative Hom-Jordan. Then, we have

a(x), a)l(y) + 1(xy, a@))a = (o), yu)a + (@), w), Vx,y,z€ V. (36)
Proof. Applying (35) to u € V, we obtain

Qlyz, a(x))alu) + Qy, az))a(w) = Qa), a@)(y)u + (a*(y)Q, 2.

But
Qyz, a(x))a(u) + Qlxy, az))a(u) = l(yz, a(u))a(x) + I(xy, a(u))a(z),

e Qla(x), a@)(y)u + (a*(y)Q(, 2)u = la(x), yu)a(z) + (a*(y)l(x, u)z.
Computing I(yz, a(u))a(x), we find
(yz, a(u)a(x) = (a(x), a(u)(y)z.
Hence the corollary holds. [J
Using the notation in (29), we obtain by the identity (36)
2 (y){uow) = {(yw)a@)a(w)} - fa(w)(yo)a(w)} + {a(w)a(@)(yw)). (37)
Using (22), we get

Dy{uvw} = {D1(u)a?(v)a?(w)} + (@) D1 (0)a(w)} + {a®(u)a? (@)D (w)}, (38)
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where Dy = I(a(x))I(y) — Ka(y))l(x) and Dy = I(a®(x))l(a*(y)) — I(a®(y))l(¢?(x)). Using (37) and (38) (replace y
by xy), we find
(@ () () {uow)) — (P (wa @) xyw)) = {xyula® (©)a’ W)} - (o W) {yxola®(w)). (39)
Also, we have
(e (%), &*(y)l(u, v) = (e (), o @)I(x, y) = I({xyu}, a*(©))a? = I(a® (), {yxo})a?
= I(I(x, y)u, ()’ = (o (w), [y, x)v)a’

= 1(Q(x, Wy, a*(v)a® — la*(u), Qy, v)x)a’. (40)

A particular case of this equation is (setting # = x, v = y and « invertible)

(Q()y, a*(v)) = la?(x), Q(y)x)- (41)
Furthermore we observe that the left hand side of (39) is skew-symmetric in the pairs (x, y), (1, v), hence

{fxyula? (@) (w)) = fa? W)lyxola®(w)} = (@ (@louyla’(w)) - Huvx)a® (y)a? (w)). (42)
Replace u by v, y by u, x by v, v by u and w by v in (42) to write

(@ ({uvua®(©)} = 2{{ouy)a®W)a® (@)} - {@* @)uyu)a® ©)). (43)
Theorem 3.20. Let (V, u, ) be a multiplicative Hom-Jordan. Then, for all u,v € V, we have

QP )a ()’ = Qa* (u))Qa? () Qu). (44)
If the map « is invertible, the formula (44) becomes

QQ)v)a* = Qe () Q) Qe (u))a™. (45)

This identity is said to be the Hom-fundamental formula.

Proof. Note first of all that we have a?(Q(u)v) = Q(a*(u))a*(v), for all u,v. Next, we substitute x by
{uou} = 2Q(u)v and w by u in (39) and rewrite (39) for x, a(y), a*(u), a*(v) and a*(w), we find

8Q(Q(@? ()’ (v))a*(y) = 8Q(a*(Q(u)v))ar* (y)
= Ha*(Qu)v)a* (y)a? (Qu)v)}
= (P (@) (y){a? (w)a® (0)a (u)})
= 2{a*(w)a* (0){a? (W) (y) {woul}} — (o (w){? (y)fuoula® (©)}a (u)).
But
(@ (y){uoua?(v)) = 2{{ouyla®(w)a® (0)} — (@ @) {uyula’ ().
Hence
8Q(Q(* (w)a?(v))a(y) = 2{a* (wa* (v){a* (o (Y){uvul}} — 2{a* (w){fouyla® (w)a® ()} (1)
+ {a* (o () fuyu)a® ()}t ().
By Proposition 3.17, we have {a*(u)a*(v){a?(u)a?(y){uoul}} = {a* (u){{vuyla®(u)a?(0)la*(u)}. So
8Q(Q(* (W) (v)a (y) = {a* (w)a® (o) uyula® (v)}o* ()
= 8Q(a* (1)) Qe () Q(u)y.

Suppose a is invertible. Using a%(Q(u)0) = Q(a%(1))a%(0) and a-2(Q(u)0) = Q(a~2(u))a~2(v), the above iden-

tity can be written as a*(Q(Q(u)v)a’ () = a*(Q(a*(1)Q@)Q(a*()a~*(y)))-So QQW)v)a*(y) = Q(a*(1))Q@)Q(a*(u))a>(:
This ends the proof. [

Remark 3.21. When the twisting map « is equal to the identity map, we recover the usual fundamental formula
[19][26][16].
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3.2. Inverses

Definition 3.22. Let (V, u, e, a) be a unital multiplicative Hom-Jordan algebra. An element x in V is said to be

invertible if there is an element y such that u(x, y) = e and p(u(x, x), a(y)) = a2(x). In this case y is called the inverse

of x and we write y = x71.

Proposition 3.23. Let (V, u, e, ) be a unital multiplicative Hom-Jordan algebra and x € V. If x is invertible with
inverse y, then Q(x)y = a?(x) and Q(a®(x))a*(u(y, y)) = e. If a is a bijection, then x is invertible with the inverse y
if and only if Q(x)y = a(x) and Q(a(x))u(y, y) = e.

Proof. We write u(x,y) = xy and p(x,x) = x%, for all x, y € V. Let x be an invertible element in V with the
inverse y. so, we have

Q)Y = U(a(x))(x) - [(x*)a)y = 2a(x)(xy) — ¥a(y) = 2a(x)e — a*(x) = 2a°(x) — a*(x) = a*(x).
From the identity (15), we have 2[l(a(xy))l(a(x)) - l(az(x))l(xy)] + (@) (y)) — I(@®(y))I(x?) = 0. But

(Uxy) (%)) = I @)lxy))u = (@) a(x) = La?(x))l(e))u
= e(a(x)u) — a®(x)(eu)

= a?(x)a(u) — a*(x)a(u)

=0, YueV.
So,

(a(?)((y)) = (P )I(*) = 0. (46)
Similarly, using (15), one can show

(a(y?)Ue(x)) = L@ (@)I(y?) = 0. (47)

Applying (46) to a(y), we find a(x*y?) = e. Therefore
Q@) (y?) = Ua* ()@’ () — Ua® () )a(y?)
= 20" (¥)(@*(¥)a’(y) - @’ (y?)
=20 (x)a(y) e

=e.

If a is invertible, using a?(Q(u)v) = Q(a?(u))a*(v), we obtain Q(a(x))y* = e. Now we will show the other
way for the invertibility of a, i.e., suppose that Q(x)y = a*(x) and Q(«(x))y?> = e and show that x is invertible.

The equation Q(a(x))y* = e gives Q(Q(a(x))y?) = Q(e). So Q(Q(a(x))y*)a* = Q(e)a?. Using Q(e) = a* and
(45), we obtain Q(&?(x))Q(y*)Q(a~! (x))a~? = a*. Applying a2 from the left to the both sides of this equation
and using a2Q(u) = Q(a~%(u))a 2, we get

(Qa(®)a ) Q) ) Qa(x)) = a®. (48)
But, from (45), y* = Q(a~!(y))e and a?(Q(u)v) = Q(a*(u))a*(v), we have

Q) = Q' ()e)a® = Qa(y)QEQ (W) = QaW)a’* Qe (y))a~* = Qay) Q™ ().

Hence

QYY) = Q) (y)a~? = (Qay)a )Qa(y))- (49)
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Therefore the equation (48) becomes
(Qa(x)a ) (Qa(y)a ) (Qaw)a)Qa(x) = o,
Applying a2 from the left to both sides of the above equation, we obtain
(Qa()a Q) ) (Qa(y)a ) Qx))a™?) = id, (50)
where id is the identity map. So both (Q(a(x))a2) and (Q(a(y))a2) are invertible. Applying « to the identity
Q(x)y = a*(x), we obtain Q(a(x)a(y)) = a*(x). This gives Q(Q(a(M))a(y))a® = Q*(x))a* = a*Q(a(x)). So,

from (45), we obtain
Q@ ()Qa(y)Qa ()™ = a’Q(a(x))- (51)
Next, from a?(Q(u)v) = Q(a*(u))a?(v) and a~2(Q(u)v) = Q(a~2(u))a%(v), the identity (51) becomes
a*(Qa(x)a)(Qay)a ) Qa(x)) = a*Q(a(x)).
Applying a2 from the left to both sides of this equation, we obtain
(Qa()a)(Q(y)a ) Qa(x)) = Q(a(x)).
Therefore, by applying a2 from the right to both sides of this equation, we have
(Qa()a )(Qa(y)a ) (Qax)a™?) = (Qa(x)a~?). (52)

So Q(a(x))a~? and Q(a(y))a 2 are each other’s inverses. Thus Q(a(y)) is invertible and we have Q(a(y))™ =
a2Q(a(x))a 2. But, from aQ(y) = Q(a(y))a, we have Q(y) = a'Q(a(y))a. So Q(y) is invertible and
Q) = a2Qa2.

Moreover, we have Q(a(y))I(y) = I(a*(y))Q(y). Applying on the left Q(a(y))~* for both sides of this equation,

we obtain I(y) = Q(a(y))(¢?(y))Q(y). Therefore, by applying on the right Q(y)™!, we have Q(y)'I(y) =
Qa(y)) ' l(a*(y)). Hence, from a~2l(a*(y) = I(y)a~? and by applying a to the above identity, one can show
that

la(y)a™' Q)a~? = a™ ' Qa())(y)a™. (53)

This acting to e gives a(y)x*> = Q(x)y = a?(x). From (53), we have l(a(y)a'Q(x) = a ' Q(a(x))I(y). Applying
a to both sides and using al(u) = I(a(u))a, we find I(a*(y))Q(x) = Q(a(x))I(y). Acting this identity on y we

get (@*(1))Q()y = Qa()l(y)y = Qa(x))y*. But Q(x)y = a*(x) and Q(a(x))y* = e. Hence a?(y)a’(x) = e.
Thus the proposition holds. O

Proposition 3.24. Let (V, u, e, &) be a reqular unital multiplicative Hom-Jordan algebra and x € V. x is invertible if
and only if Q(x) defines a bijection on V. Moreover x* = (Q(x))'a?(x) and Q(x)™! = a2Q(x a2

Proof. If x is invertible then the above implies Q(x) is invertible with inverse Q(x)™! = a2Q(x )a~2. Any
inverse y of x satisfies Q(x)y = a?(x). So y = Q(x)"'a?(x). Conversely if Q(x) invertible, then Q(x)y = a?(x),
where y = Q(x)*a?(x). So (45) implies Q(a(x))y* =e. O

Proposition 3.25. Let (V,u,e, ) be a regular unital multiplicative Hom-Jordan algebra and x,y € V. Q(x)y is
invertible if and only if x and y are invertible, in which case (Q(x)y)™! = Q(x Hy .

Proof. We have Q(x)y is invertible if and only if Q(Q(x)y) is invertible. But
QQW)Y) = QM)A (M)a™* = A?Q)a*Qy)a*Qx)a™>.
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Since a is invertible, this implies Q(x) and Q(y) are invertible. Thus x and y are invertible. A simple
calculation allows us to prove that the inverse of Q(x)y is Q(x 1)y~ :

QWYY ™ = QQEYa*a~2Q(x )y ™
= Q@ (0))QW)Qa*())a*Qx My ™!
= Q@ ()Qa?Q)a?Q(x )y
But a2Q(x)a? = Q(x~")~!. Hence
QWYY = Q@AWY = Qa*(1)a’(y) = a*(QM)Y).-
Similarly, one can show Q(a(Q))(Qx )y )* =e. O

Proposition 3.26. Let (V, u, e, ) be a reqular unital multiplicative Hom-Jordan algebra and x € V be an invertible
element. Then, we have

I(x7!) = Qa(x) ' l(a*(x))a?, (54)
and

(o™ NIx) = Ka()lx™). (55)
Proof. Let x € V be an invertible element. From (32), we have Q(a*(a))I(b, a(a)) = Q(Q(a(a))b, a3(a))a?, for

alla,b € V. Setb = y*> with y = x™! and a = x. Then Q(a(x))y* = e and Q(e, &*(x)) = 2l(a*(x))a. Since
La(y*)(a(x) = (a?(x)(y*) = 0 (from 47), I(y, a(x)) = 2I(a*(y)). So Q(a’(x))(a?(y))a = l(a*(x))a’. Applying
a2 for both sides, we obtain Q(a(x))l(y) = I(¢*(x))a?. Thus, I(y) = Q(a(x))"(¢?(x))a?. From (53), one can
show 1(6)Q(@)! = Q(a(a)) tI(a?(b)), for two invertibles elements a,b € V. Taking a = b = a(x), we have
I(a(x))Q(a(x))™! = Q(a?(x))'I(a*(x)). Therefore
(e())l(x ") = la(x)Q(a(x)) ™ (o (x))a’

= Q(@? (1) (e’ (X))@ (x))o?

= Q@ (%)) l(@®(x))a’l(x)

— lax)I().

|

Theorem 3.27. Let (V, u, e, @) be a regular unital multiplicative Hom-Jordan algebra of finite dimension over R. The
set M of invertible elements of V is open in V and becomes a Hom-symmetric space with the product

xxy=Q@y, (56)
and the twist map a?, which is called the Hom-Jordan Hom-symmetric space of V.

Proof. Let x be an element of M, i.e., x is invertible. By the Proposition 3.24 this is equivalent to Q(x) is
invertible. In finite dimension Q(x) is invertible if and only if det(Q(x)) # 0. Hence, M is an open. Next, let
x € M, we have

xxx=Q)x! = QM) a*(x) = a?(x). (57)
Hence (i) of Definition 2.3 holds. For all x, y € M, it easily follows that
(@) % (xx y) = QP @) * )
= Q@ ()NQ)y™H™
= Q(az(x))Q(x‘l)y (from Proposition (3.25)
= (Q@*(x)a* Q) Ha*(y)
= (@*QX)Q() ™ (y)
=a(y),
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which implies that the product * satisfies (ii) of Definition 2.3. Next, we have

22(x) * (y * 2) = Q@)Y * 2)7' = Q*())(QW)z )" = QP (*)Q(y )z,
and

(x * ) * (x * z) = Q(x * y)(x % 2)”"
= QQMWY HQ(™)z
= QM) Hata?Qx )z
= Q@ ()Qy QM ()™ *Q(x )z
= Q@ ()QY Na?QWa?Qx Nz, Vx,y,z€ V.

3277

But a2Q(x)a™2Q(x7!) = id. So (x * y) * (x x z) = Q(a*(x))Q(y~1)z, and the product * satisfies (iii) of
Definition 2.3. Now, to complete the proof, we must prove that the differential of the left multiplication
s(x)(y) = Q(x) x y~! at a point & is equal to —d,a?, where dja? is the differential of a? at h. But a? is a linear
map, thus the differential of a? is itself. Let j : M — V, x — j(x) = x™! = Q(x)"'a?(x). For all x,h € M and

t € R, we have
jlx 4+ th) — j(x) = Q(x + th)_laz(x + th) — Q(x)_lozz(x)
= tQ(x + th) L (h) + (Q(x + th) ™ — Q(x) Ha(x)
= tQ(x + th) ™o’ (h) — Q)™ (Q(x + th) — Q(x)Q(x + th) ' a?(x).

But Q(x + th) = Q(x) + tQ(x, h) + t*Q(h). Thus

jlx +th) — j(x) = f[Q(x +th) o (h) — Q(x) ™ (Q(x, h) + tQ(M)Q(x + th) &P (x).
Therefore

4

T (j(x + th) — j(x)) = Q) a*(h) — Q) ' Qx, h)Q(x) " a?(x).

Now, Q(x, 1)Q(x)~1a2(x) = Q(x, )x~! = 2a2(h), since la(x-1)I(x) = la()I(x~1). Tt follows that
(e + ) ~ @) = ~QE) a2
=0

As a result

4

o QU)(j(x + th) = j(x)) = —QM)QM) & (h) = —a*(h).

Hence (8) holds and (M, %, a?) is a Hom-symmetric space. [J

3.3. Examples of Hom-Jordan Hom-symmetric spaces

We construct examples of Hom-Jordan Hom-symmetric spaces using theorem 3.27.

Example 3.28. (Hom-Jordan Hom-symmetric space of dimension 2)

Let E = {eq, e2} be a basis of of a 2—dimensional linear space V over K. The following multiplication y and linear map

a on V define a unital Hom-Jordan algebra, with unit e;, over K2 .

pler, e1) = e, uler, e2) = plez, e1) = —ea, ez, €2) = €1
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aler) = ey, a(er) = —ep.

Therefore each element x in the Hom-Jordan algebra (V, u, e1, o) is given by its coordinate vector in the base E;

X
X :( 1),xl,xz e K.
X2

Therefore, for all x = ;Cl in (V, u, e1, o), the associated matrix of the Hom-quadratic representation Q(x) ( definition
2
3.9) in the base E is of the form

Qx) = (

2 +x3 201
2x1x, X3+ x3)

The determinant of this matrix is equal det(Q(x)) = (x1 — x2)*(x1 + x2)?. Then, Q(x) is invertible if and only if
X1 # *x. Moreover, the inverse of an element x = (2) in (V, u,e1,a) is presented in the base E by the vector

= A5 x; . The set of invertible elements in (V,u,e1,a) is My = {x =
—X2

LT

H € (‘/Il’llella) | X1 * ixZ}'

Therefore, according to the theorem 3.27, (M, », id) is Hom-symmetric space, where the product v is defined by:
X1 Wy _ 1 yl(x% + x%) - 2x1x2y2
> = 2 2y
X2 Y2 y% — y% 2x1x2y1 - yz(xl + x2)

Example 3.29. (Hom-Jordan Hom-symmetric space of dimension 3)

Let W be a 3—dimensional linear space over K with a basis B = {wy, w,, ws}. The tuple (W, u, w1, B) is a unital
Hom-Jordan algebra, with the unit wy, where the product is given by the following table

4% w1 wy w3
wy | wy | aw, | bws
wy | aw, 0 0
w3 bZU3 0 0

and the linear map p : W — W is defined by

B(w1) = wy, f(w2) = awy), f(ws) = bws,

such that a and b are two non-zero scalars in K.

X1
In the basis B, an element x in W is given by the column vector x = {xz].
X3
By definition 3.9,the associated matrix of the Hom-quadratic representation Q(x) in the base 8 is of the form

x? 0 0
Qx) = |2%x1x, a®x3 0 |.
Pxixs 0 b3

X1
So, Q(x) is invertible if and only if x; # 0. By the Proposition 3.24, the inverse of invertible element x = [Xz] €

X3
(W, u, w1, B) is given by

X
L1
X =—|—X2]1.
X2

1\—X3
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X1

Denote the set of invertible elements in (W, u, w1, B) by Ms. Thus, M3 = {x = |x2| € (V, y,e1,a) | x1 # 0}. According
X3

to Theorem 3.27, (M3, o, ) is a Hom-symmetric space, where the product e is given by:

X1 n X X111
x|e|y2| = = |20y - x1y2)

) \ys) Y1 \BPQxsyn — x1ys)
and the map ¢ : Mz — Mj is defined by

X1 X1

@|x2| = [ax2

X3 b%x;
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