

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Hom-symmetric spaces and Hom-Jordan Hom-symmetric spaces

Sami Chouaibia, Esmaeil Peyghanb

^aDepartment of Mathematics, Faculty of Sciences, Sfax University, Sfax, Tunisia ^bDepartment of Mathematics, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran

Abstract. In this paper, we introduce and study the notions of Hom-reflection space and Hom-symmetric space. We provide some examples of Hom-reflection spaces (resp. Hom-symmetric spaces) by using ordinary reflection (resp. symmetric) spaces. Also, we associate a Hom-reflection (resp. Hom-symmetric) space to a Hom-Lie group. Finally, we provide some properties of a Hom-Jordan algebra and show that there is a relationship between Hom-Jordan algebras and Hom-symmetric spaces.

Introduction

Symmetric spaces, which were introduced by O. Loos in [23] have many similarities to Lie groups (only the multiplication is changed to a group multiplication). There is a linear structure on the tangent bundle of a symmetric space, which is called Lie triple system. In fact, this system plays a role similar to Lie algebra for a Lie group. For an impulsive description of physical problems in terms of a theatrical group, one can use the theory of symmetric spaces (see [29] for more details).

The authors of [13] have introduced Hom-Lie algebras, as a generalization of Lie algebras, in the study of quantum deformations of Witt and Virasoro algebras. Because Hom-algebra structures are closely related to the discrete and deformed vector fields, many researchers became interested to this field [13, 20].

The notion of a Hom-group, as a non-associative analogue of a group, appeared in the study of the universal enveloping algebra and elements of group-like type in [21]. Then, M. Hassanzadeh studied some concepts on Hom-groups [14, 15]. Next, J. Jiang, S. K. Mishra and Y. Sheng by adding a smooth manifold structure on a Hom-group introduced the notion of Hom-Lie group in [18]. Also, by defining the left-invariant sections of the pullback bundle of a Hom-Lie group, they associated a Hom-Lie algebra to a Hom-Lie group. Recently, in [28] the authors studied the Kähler-Norden geometry on Hom-Lie groups. Hom-Jordan algebras are commutative algebras where the identities defining the structure are twisted by a homomorphism. They are first introduced by A. Makhlouf in his paper [24].

In this paper, we introduce Hom-reflection spaces and Hom-symmetric spaces which are obtained by twisting the usual identities by a map. We provide some examples of Hom-reflection spaces (resp. Hom-symmetric spaces) by using ordinary reflection (resp. symmetric) spaces. Also, we associate a Hom-reflection (resp. Hom-symmetric) space to a Hom-Lie group. Later on, we extend certain properties of a Jordan algebra to the Hom-version, more precisely the fundamental identity and the notion of inverses

2020 Mathematics Subject Classification. 22E05; 16W10

Keywords. Hom-Jordan algebra, Hom-Lie algebra, Hom-Lie group, Hom-reflection space, Hom-symmetric space

Received: 24 May 2022; Accepted: 28 August 2022

Communicated by Mića Stanković

Email addresses: chouaibi_sami@yahoo.fr (Sami Chouaibi), e-peyghan@araku.ac.ir (Esmaeil Peyghan)

for a Jordan algebra. Finally, we show that there is a relationship between Hom-Jordan algebras and Hom-symmetric spaces.

The paper is organized as follows. In Section 1, we recall some basic definitions and results concerning reflection spaces, symmetric spaces, Jordan symmetric algebras and Hom-Lie groups. Definitions and examples of Hom-reflection spaces and Hom-symmetric spaces are provided in section 2. In section 3, a Hom-version of the fundamental identity and the notion of inverses for a Jordan algebra has been given. We also show that there is a relationship between Hom-Jordan algebras and Hom-symmetric spaces.

1. Preliminaries

We recall the notion and some basic results of symmetric spaces, Jordan symmetric spaces, Hom-groups and Hom-Lie groups (see [5–7, 11, 17, 22, 23], for more details).

Definition 1.1. A pair (M, m) is called reflection space if M is a smooth manifold and $m : M \times M \to M$, $(x, y) \mapsto m(x, y) = xy = \sigma_x(y)$ is a smooth product map such that

(i) xx = x,

(ii)
$$x(xy) = y$$
, *i.e.*, $\sigma_x^2 = id_M$,

(iii)
$$x(yz) = (xy)(xz)$$
, i.e., $\sigma_x \in Aut(M, m)$,

for all x, y, $z \in M$. Moreover, if 2 is invertible in \mathbb{K} and $T_x(\sigma_x) = -id_{T_xM}$, where $T_x(\sigma_x)$ is the differential of σ_x and id_{T_xM} is the identity of T_xM , then (M, m) is said to be symmetric space (over \mathbb{K}).

Remark 1.2. From (ii) and (iii) of the above definition we conclude that the left multiplication operator σ_x is an automorphism of order two fixing x, which is called the symmetry around x. Also, in the real finite-dimensional case, $T_x(\sigma_x) = -id_{T_xM}$ if and only if for all $x \in M$, the fixed point x of σ_x is isolated.

Proposition 1.3. [22, 23] Let (M, m) be a symmetric space. Then the tangent bundle (TM, Tm) of a reflection (resp. symmetric) space is again a reflection (resp. symmetric) space, where

$$Tm(X,Y)(f)(a,b) = (X,Y)(f \circ m(a,b))$$

$$= X(f \circ R_b)(a) + Y(f \circ L_a)(b),$$
(1)

for all $f \in C^{\infty}(M)$ and $a, b \in M$ $(L_a(b) = m(a, b) = R_b(a)$ are the left and right translations).

Definition 1.4. A Jordan algebra is a commutative algebra A with a multiplication $\mu: A \times A \to A$, $(a,b) \mapsto \mu(a,b) =$ ab such that the multiplication satisfies

$$a(a^2b) = a^2(ab), \quad \forall a, b \in A. \tag{2}$$

A Jordan algebra is said to be unital if it admits an element e, called the unit, satisfying ea = a, for all $a \in A$.

Definition 1.5. Let A be a unital Jordan algebra over \mathbb{K} . An element a in a unital Jordan algebra A is said to be invertible if there is an element b such that ab = e and $a^2b = a$.

Theorem 1.6. Let A be a unital Jordan algebra such that A is a finite dimensional real vector space. Then the set I(A) of invertible elements is an open in A. Endowed with the multiplication $\mu: I(A) \times I(A) \to I(A)$ defined by

$$\mu(a,b) = P(a)b^{-1}, \quad \forall a,b \in I(A),$$
 (3)

where $P(a)b = 2a(ab) - a^2b$, I(A) is a symmetric space, which is called the Jordan symmetric space.

Definition 1.7. [14] A (regular) Hom-group is a quadruplet (G, μ, e, α) consisting of a set G with a distinguished member e (is called unit) of G, a map $\mu : G \times G \to G$ (multiplication map) and a map $\alpha : G \to G$ (bijection), such that

- 1. $\mu(\alpha(g), \mu(h, k)) = \mu(\mu(g, h), \alpha(k)), \forall g, h, k \in G$ (Hom-associativity property),
- 2. $\alpha(\mu(g,h)) = \mu(\alpha(g), \alpha(h))$ (α is multiplicative),
- 3. $\mu(g,e) = \mu(e,g) = \alpha(g)$, $\alpha(e) = e$ (Hom-unitarity condition),
- 4. $\forall g \in G, \exists g^{-1} \in G \text{ satisfying } \mu(g, g^{-1}) = \mu(g^{-1}, g) = e,$
- 5. $\mu(q,h)^{-1} = \mu(h^{-1},q^{-1})$ (the inverse map $q \mapsto q^{-1}$ is an antimorphism).

Moreover, if G is a smooth manifold, α is a diffeomorphism and the multiplication and inverse maps are smooth, then (G, μ, e, α) is called Hom-Lie group.

2. Hom-reflection space and Hom-symmetric space

Definition 2.1. An α -manifold is a triple (M, μ, α) in which M is a smooth manifold, $\mu : M \times M \to M$ is a smooth binary map and $\alpha : M \to M$ is a diffeomorphism such that

$$(\alpha \circ \mu)(a,b) = \mu(\alpha(a),\alpha(b)), \text{ or } l_{\alpha(a)} \circ \alpha = \alpha \circ l_a, r_{\alpha(b)} \circ \alpha = \alpha \circ r_b, \forall a,b \in M,$$

where $l_a(b) = \mu(a, b) = r_b(a)$.

Example 2.2. Let M be a smooth manifold with a multiplication $\mu: M \times M \to M$. We recall that a map $\alpha: M \to M$ is an automorphism of (M, μ) if it is a diffeomorphism of M and satisfies $(\alpha \circ \mu)(a, b) = \mu(\alpha(a), \alpha(b))$. So, if $\alpha: M \to M$ is an automorphism of (M, μ) , the binary operation $a \diamond b = \alpha(\mu(a, b))$ gives an α -manifold structure on M.

Definition 2.3. A Hom-reflection space is an α -manifold (M, μ, α) satisfying

- (i) $\mu(a,a) = \alpha(a)$ or $l_a(a) = \alpha(a)$,
- (ii) $\mu(\alpha(a), \mu(a,b)) = \alpha^2(b)$ (where $\alpha^2 = \alpha \circ \alpha$) or $l_{\alpha(a)} \circ l_a \circ \alpha^{-1} = \alpha$,
- (iii) $\mu(\alpha(a), \mu(b, c)) = \mu(\mu(a, b), \mu(a, c)) \text{ or } l_{\alpha(a)} \circ l_b = l_{l_a(b)} \circ l_a$,

for all $a, b, c \in M$.

Let $\triangle: M \to M \times M$ be the diagonal map on M defined by $\triangle(a) = (a,a)$, $\tau: M \times M \to M \times M$ be the flip map defined by $\tau(a,b) = (b,a)$ and $pr_2: M \times M \to M$ be the second projection on $M \times M$ defined by $pr_2(a,b) = b$. We can present an equivalent and axiomatic definition of the notion of Hom-reflection space. A Hom-reflection space is a triple (M,μ,α) , where M is a smooth manifold, $\mu: M \times M \to M$ is a smooth multiplication and $\alpha: M \to M$ is a diffeomorphism satisfying the following axioms:

(i)
$$M \times M \xrightarrow{\mu} M$$

$$\downarrow^{\alpha \times \alpha} \qquad \downarrow^{\alpha},$$

$$M \times M \xrightarrow{\mu} M$$

(ii)
$$M \xrightarrow{\Delta} M \times M$$

(iii)
$$M \times M \xrightarrow{\Delta \times id} M \times M \times M$$

$$\downarrow^{pr_2} \qquad \qquad \downarrow^{\alpha \times \mu} ,$$

$$M \xrightarrow{\alpha^2} M \xleftarrow{\mu} M$$

(iv)

Example 2.4. Let (M, m) be a reflection space and $\alpha : M \to M$ be an automorphism. Then the triple (M, μ, α) is a Hom-reflection space, where the product μ is given by

$$\mu(a,b) = m(\alpha(a),\alpha(b)), \ \forall a,b \in M. \tag{4}$$

Remark 2.5. Let (M, μ, α) be a Hom-reflection space. Then, we get a reflection space structure (M, m) equipped with the product $m: M \times M \to M$ defined by $m(a,b) = \alpha^{-1}(\mu(a,b))$, for all $a, b \in M$, which is called the compatible reflection space of (M, μ, α) .

Example 2.6. Considering a manifold M and a diffeomorphism $\alpha: M \to M$, the operator $\mu(a,b) = \alpha(b)$ for any $a,b \in M$, gives a Hom-reflection space.

Example 2.7. Let (G, \cdot) be a Lie group and $\alpha : G \to G$ be a diffeomorphism. Then (G, μ, α) is a Hom-reflection space, where $\mu(g,h) = \alpha(g) \cdot \alpha^2(h^{-1} \cdot g)$, for all $g,h \in G$.

Example 2.8. Take $M = \mathbb{R}^n$ with a reflection space structure defined by m(v, w) = 2v - w and let f be the automorphism of \mathbb{R}^n defined by f(v) = av + b, for some invertible a and some b. Then the binary map $\mu(v, w) = f(m(v, w)) = 2av - aw + b$ gives a Hom-reflection space structure on M.

Proposition 2.9. *Let* $(G, \diamond, e_{\alpha}, \alpha)$ *be a Hom-Lie group. Defining* $\cdot : G \times G \rightarrow G$ *by*

$$g \cdot h = g \diamond \alpha^{-1}(h^{-1} \diamond g), \tag{5}$$

the triple (G, \cdot, α) is a Hom-reflection space.

Proof. For all $g \in G$, we have

$$q \cdot q = q \diamond \alpha^{-1}(q^{-1} \diamond q) = q \diamond e_{\alpha} = \alpha(q),$$

i.e., (i) of Definition 2.3 holds. Next, by using the Hom-associativity of α and \diamond , one can show that

$$\alpha(g) \cdot (g \cdot h) = \alpha(g) \cdot (g \diamond \alpha^{-1}(h^{-1} \diamond g))$$

$$= \alpha(g) \diamond \left((\alpha^{-2}(g^{-1} \diamond h) \diamond \alpha^{-1}(g^{-1})) \diamond g \right)$$

$$= \alpha(g) \diamond \alpha^{-1} \left((g^{-1} \diamond h) \diamond (g^{-1} \diamond g) \right)$$

$$= \alpha(g) \diamond \alpha^{-1} \left((g^{-1} \diamond h) \diamond e_{\alpha} \right)$$

$$= \alpha(g) \diamond (g^{-1} \diamond h)$$

$$= (g \diamond g^{-1}) \diamond \alpha(h)$$

$$= e_{\alpha} \diamond \alpha(h)$$

$$= \alpha^{2}(h).$$

So (*ii*) holds. Finally, for all g, h, $k \in G$, by using the Hom-associativity of α and \diamond , we have

$$\begin{split} (g \cdot h) \cdot (g \cdot k) &= (g \cdot h) \diamond \alpha^{-1} \Big((g \cdot k)^{-1} \diamond (g \cdot h) \Big) \\ &= \Big(g \diamond \alpha^{-1} (h^{-1} \diamond g) \Big) \diamond \alpha^{-1} \Big((\alpha^{-1} (g^{-1} \diamond k) \diamond g^{-1}) \diamond (g \diamond \alpha^{-1} (h^{-1} \diamond g)) \Big) \\ &= \Big(g \diamond \alpha^{-1} (h^{-1} \diamond g) \Big) \diamond \alpha^{-1} \Big((g^{-1} \diamond k) \diamond (g^{-1} \diamond \alpha^{-1} (g \diamond \alpha^{-1} (h^{-1} \diamond g)) \Big) \\ &= \Big(g \diamond \alpha^{-1} (h^{-1} \diamond g) \Big) \diamond \alpha^{-1} \Big((g^{-1} \diamond k) \diamond (\alpha^{-1} (g^{-1} \diamond g) \diamond \alpha^{-1} (h^{-1} \diamond g)) \Big) \\ &= \Big(g \diamond \alpha^{-1} (h^{-1} \diamond g) \Big) \diamond \alpha^{-1} \Big((g^{-1} \diamond k) \diamond (e_{\alpha} \diamond \alpha^{-1} (h^{-1} \diamond g)) \Big) \\ &= \Big(g \diamond \alpha^{-1} (h^{-1} \diamond g) \Big) \diamond \alpha^{-1} \Big((g^{-1} \diamond k) \diamond (h^{-1} \diamond g) \Big) \\ &= \alpha(g) \diamond \Big(\alpha^{-1} (h^{-1} \diamond g) \diamond \alpha^{-2} ((g^{-1} \diamond k) \diamond (h^{-1} \diamond g)) \Big) \\ &= \alpha(g) \diamond \Big(\alpha^{-2} ((h^{-1} \diamond g) \diamond (g^{-1} \diamond k)) \diamond \alpha^{-1} (h^{-1} \diamond g) \Big). \end{split}$$

But

$$\begin{split} (h^{-1} \diamond g) \diamond (g^{-1} \diamond k) &= \alpha(h^{-1}) \diamond \left(g \diamond \alpha^{-1}(g^{-1} \diamond k)\right) \\ &= \alpha(h^{-1}) \diamond \left(\alpha^{-1}(g \diamond g^{-1}) \diamond k\right) \\ &= \alpha(h^{-1}) \diamond (e_{\alpha} \diamond k) \\ &= \alpha(h^{-1} \diamond k). \end{split}$$

Then

$$(g \cdot h) \cdot (g \cdot k) = \alpha(g) \diamond \alpha^{-1} \Big((h^{-1} \diamond k) \diamond (h^{-1} \diamond g) \Big)$$

$$= \alpha(g) \diamond \Big((\alpha^{-2} (h^{-1} \diamond k) \diamond \alpha^{-1} (h^{-1})) \diamond g \Big)$$

$$= \alpha(g) \diamond \alpha^{-1} \Big((\alpha^{-1} (h^{-1} \diamond k) \diamond h^{-1}) \diamond \alpha(g) \Big)$$

$$= \alpha(g) \diamond \alpha^{-1} \Big((h \diamond \alpha^{-1} (k^{-1} \diamond h))^{-1} \diamond \alpha(g) \Big)$$

$$= \alpha(g) \diamond \alpha^{-1} \Big((h \cdot k)^{-1} \diamond \alpha(g) \Big)$$

$$= \alpha(g) \cdot (h \cdot k).$$

Let (M, μ, α) be a Hom-reflection space. The pullback map $\alpha^* : C^{\infty}(M) \to C^{\infty}(M)$ is a morphism of the function ring $C^{\infty}(M)$, i.e.,

$$\alpha^*(fg) = \alpha^*(f)\alpha^*(g), \ \forall f, g \in C^{\infty}(M).$$

A Hom-bundle is a vector bundle $A \to M$ with a smooth map $\alpha : M \to M$ and an algebra morphism $\alpha_A : \Gamma(A) \to \Gamma(A)$ satisfying

$$\alpha_A(fx) = \alpha^*(f)\alpha_A(x), \ \forall x \in \Gamma(A), \ f \in C^{\infty}(M),$$

where $\Gamma(A)$ is the $C^{\infty}(M)$ -module of sections of $A \to M$ and it is denoted by $(A \to M, \alpha, \alpha_A)$. The triple $(\alpha^!TM, \alpha, Ad_{\alpha^*})$ is a famous example of a Hom-bundle, where $\alpha^!TM$ is the pullback bundle of TM along the diffeomorphism $\alpha: M \to M$ and $Ad_{\alpha^*}(x) = \alpha^* \circ x \circ (\alpha^*)^{-1}$, for any $x \in \Gamma(\alpha^!TM)$. Considering

$$x(f) = X(f) \circ \alpha, \ \ \forall f \in C^{\infty}(M),$$

where $X \in \Gamma(TM)$ and $x \in \Gamma(\alpha^!TM)$, it is seen that there is a one-to-one correspondence between $\Gamma(TM)$ and $\Gamma(\alpha^!TM)$ (see [18], for more details).

Proposition 2.10. Let (M, μ, α) be a Hom-reflection space and (M, m) be its compatible reflection space. Then $(\Gamma(\alpha^!TM), \alpha^!\mu, Ad_{(\alpha^{-1})^*})$ is a Hom-reflection space, where the product $\alpha^!\mu$ is defined by

$$\alpha' \mu(x, y)(f)(a, b) = x(f \circ r_b \circ \alpha^{-1})(a) + y(f \circ l_a \circ \alpha^{-1})(b), \tag{6}$$

for all $f \in C^{\infty}(M)$ and for all $a, b \in M$.

Proof. Let $x, y \in \Gamma(\alpha^! TM)$ and let X, Y be the corresponding sections of TM, i.e., $x = X \circ \alpha$ and $y = Y \circ \alpha$. Then we obtain

$$\alpha^{!}\mu(x,y)(f)(a,b) = x(f \circ r_{b} \circ \alpha^{-1})(a) + y(f \circ l_{a} \circ \alpha^{-1})(b)$$

$$= X(f \circ R_{\alpha(b)})(\alpha(a)) + Y(f \circ L_{\alpha(a)})(\alpha(b)), \quad \forall f \in C^{\infty}(M), \quad \forall a,b \in M,$$
(7)

where $R_{\alpha(b)}(a) = m(a, \alpha(b)) = \mu(\alpha^{-1}(a), b) = r_b \circ \alpha^{-1}(a)$ and $L_{\alpha(a)}(b) = m(\alpha(a), b) = \mu(a, \alpha^{-1}(b)) = l_a \circ \alpha^{-1}(b)$. But

$$X(f \circ R_{\alpha(b)})(\alpha(a)) + Y(f \circ L_{\alpha(a)})(\alpha(b)) = X(f \circ R_{\alpha(b)} \circ \alpha \circ \alpha^{-1})(\alpha(a)) + Y(f \circ L_{\alpha(a)} \circ \alpha \circ \alpha^{-1})(\alpha(b))$$

$$= X((f \circ \alpha) \circ R_b \circ \alpha^{-1})(\alpha(a)) + Y((f \circ \alpha) \circ L_a \circ \alpha^{-1})(\alpha(b))$$

$$= Ad_{(\alpha^{-1})^*}(X((f \circ \alpha) \circ R_b)(a)) + Ad_{(\alpha^{-1})^*}(Y((f \circ \alpha) \circ L_a)(b))$$

$$= Ad_{(\alpha^{-1})^*}(X((f \circ \alpha) \circ R_b)(a) + Y((f \circ \alpha) \circ L_a)(b))$$

$$= Ad_{(\alpha^{-1})^*}((X, Y)((f \circ \alpha) \circ m(a, b)))$$

$$= Ad_{(\alpha^{-1})^*}(X, Y)(f \circ m(\alpha(a), \alpha(b)))$$

$$= Ad_{(\alpha^{-1})^*}(Tm(X, Y)(f)(\alpha(a), \alpha(b))) .$$

So $\alpha^! \mu(x, y)(f)(a, b) = Ad_{(\alpha^{-1})^*}(Tm(X, Y)(f)(\alpha(a), \alpha(b)))$. Therefore, according to Proposition 1.3 and Example 2.4, the proposition is proved. \square

Definition 2.11. A Hom-symmetric space is a Hom-reflection space (M, μ, α) satisfying

$$x(f \circ l_a \circ \alpha^{-1})(a) = -Ad_{\alpha^*}(x)(f)(a), \quad \forall a \in M, \ \forall x \in \Gamma(\alpha^! TM).$$
(8)

The examples of Hom-reflection spaces in the previous subsection are also Hom-symmetric spaces. Let $x \in \Gamma(\alpha^!TM)$ and X be the corresponding sections of TM, i.e., $x = X \circ \alpha$. Then we have

$$X(f \circ L_{\alpha(a)})(\alpha(a)) = -X(f)(\alpha(a)).$$

So, $T_{\alpha(a)}L_{\alpha(a)} = -id_{T_{\alpha(a)}M}$ and consequently $T_al_a = T_a(L_{\alpha(a)} \circ \alpha) = (T_{\alpha(a)}L_{\alpha(a)})T_a\alpha = -T_a\alpha$.

Lemma 2.12. *Let* (M, μ, α) *be a Hom-symmetric space. Then,*

$$x(f \circ r_a \circ \alpha^{-1})(a) = 2Ad_{\alpha^*}(x)(f)(a), \forall a \in M, \forall x \in \Gamma(\alpha^!TM).$$

Proof. By Proposition 2.10 and (i) of Definition 2.3, we have

$$x(f \circ r_a \circ \alpha^{-1})(a) + x(f \circ l_a \circ \alpha^{-1})(a) = Ad_{\alpha^*}(x)(f)(a).$$

But $x(f \circ l_a \circ \alpha^{-1})(a) = -Ad_{\alpha^*}(x)(f)(a)$. Then

$$x(f \circ r_a \circ \alpha^{-1})(a) = 2Ad_{\alpha^*}(x)(f)(a).$$

П

Proposition 2.13. Let (M, μ, α) be a Hom-symmetric space and (M, m) be its compatible symmetric space. Then $(\Gamma(\alpha^!TM), \alpha^!\mu, Ad_{\alpha^*})$ is a Hom-symmetric space, where

$$\alpha^{!}\mu(x,y)(f)(a,b) = x(f \circ r_b \circ \alpha^{-1})(a) + y(f \circ l_a \circ \alpha^{-1})(b), \quad \forall f \in C^{\infty}(M), \quad \forall a,b \in M.$$

$$\tag{9}$$

Moreover

$$\alpha' \mu(x, y)(f)(a, b) = 2Ad_{\alpha'}(x)(f)(a) - Ad_{\alpha'}(y)(f)(b). \tag{10}$$

Proof. Similar to Proposition 2.10 we can obtain (9). Also, Lemma 2.12 gives us (10). □

3. Hom-Jordan Hom-symmetric space

Definition 3.1. A triple (V, μ, α) consisting of a \mathbb{K} -linear space V, a bilinear map $\mu: V \times V \to V$ (called multiplication or product) and a linear map $\alpha: V \to V$ is called a Hom-Jordan algebra if μ is commutative and satisfies the Hom-Jordan identity

$$\mu(\alpha^2(x), \mu(\mu(x, x), y)) = \mu(\alpha(\mu(x, x)), \mu(\alpha(x), y)), \quad \forall x, y \in V, \tag{11}$$

where $\alpha^2 = \alpha \circ \alpha$.

Example 3.2. If (V, μ, α) is a Hom-associative algebra over \mathbb{K} with product $(x, y) \mapsto \mu(x, y) = xy$, then $V^+ = (V, \mu', \alpha)$ is a Hom-Jordan algebra, where

$$\mu'(x,y) = \frac{xy + yx}{2}, \ \forall x,y \in V.$$

Recall that a Hom-associative algebra is a triple (V, μ, α) consisting of a \mathbb{K} -linear space V, a linear map $\alpha : V \to V$ and a multiplication $\mu : V \otimes V \to V$ satisfying

$$\mu(\alpha(x),\mu(y,z)) = \mu(\mu(x,y),\alpha(z)), \quad \forall x,y,z \in V.$$

Definition 3.3. A Hom-Jordan algebra (V, μ, α) is called multiplicative (resp. regular) if for any $x, y \in V$, $\alpha(\mu(x,y)) = \mu(\alpha(x), \alpha(y))$ (resp. α is invertible). Also, it is called unital if there exists an element $e \in V$ (called the Hom-unit of V) such that $\alpha(e) = e$ and for all $x \in V$, $\mu(e,x) = \alpha(x)$ (it is denoted by (V, μ, e, α)).

Proposition 3.4. *If* (V, μ, α) *is a multiplicative Hom-Jordan algebra, then* $(\widehat{V}, \bullet, e, \widehat{\alpha})$ *is a unital Hom-Jordan algebra, where*

- 1. $\widehat{V} = \mathbb{K} \oplus V$ (any element of \widehat{V} can be written as (a, x), $a \in \mathbb{K}$ and $x \in V$),
- 2. *the Hom-unit is* e = (1, 0),
- 3. $\widehat{\alpha} = id \times \alpha$,
- 4. For all (a, x), $(b, y) \in \widehat{V}$,

$$(a,x) \bullet (b,y) = (ab,a\alpha(y) + b\alpha(x) + \mu(x,y)). \tag{12}$$

Proof. For all $x, y \in V$, we write $\mu(x, y) = xy$ and $\mu(x, x) = x^2$. It is evident that the commutativity of the product " \bullet " is a consequence of the commutativity of the multiplication μ and the commutativity of the multiplication on \mathbb{K} . Let A = (a, x) and B = (b, y) be two elements of \widehat{V} , then we have

$$\widehat{\alpha}^{2}(A) \bullet ((A \bullet A) \bullet B) = (a, \alpha^{2}(x)) \bullet ((a^{2}, 2a\alpha(x) + x^{2}) \bullet (b, y))$$

$$= (a, \alpha^{2}(x)) \bullet (a^{2}b, a^{2}\alpha(y) + 2ab\alpha^{2}(x) + b\alpha(x^{2}) + 2a\alpha(x)y + x^{2}y)$$

$$= (a^{3}b, a^{3}\alpha^{2}(y) + 2a^{2}b\alpha^{3}(x) + ab\alpha^{2}(x^{2}) + 2a^{2}\alpha^{2}(x)\alpha(y) + a\alpha(x^{2}y)$$

$$+ \alpha^{2}(x)(a^{2}b\alpha^{3}(x) + a^{2}\alpha(y) + 2ab\alpha^{2}(x) + b\alpha(x^{2}) + 2a\alpha(x)y + x^{2}y))$$

$$= (a^{3}b, a^{3}\alpha^{2}(y) + 2a^{2}b\alpha^{3}(x) + ab\alpha^{2}(x^{2}) + 2a^{2}\alpha^{2}(x)\alpha(y) + a\alpha(x^{2}y) + a^{2}b\alpha^{3}(x)$$

$$+ a^{2}\alpha^{2}(x)\alpha(y) + 2ab\alpha^{2}(x)\alpha^{2}(x) + b\alpha^{2}(x)\alpha(x^{2}) + 2a\alpha^{2}(x)(\alpha(x)y) + \alpha^{2}(x)(x^{2}y))$$

$$= (a^{3}b, a^{3}\alpha^{2}(y) + 3a^{2}b\alpha^{3}(x) + 3ab\alpha^{2}(x^{2}) + 3a^{2}\alpha^{2}(x)\alpha(y) + a\alpha(x^{2})\alpha(y)$$

$$+ b\alpha^{2}(x)\alpha(x^{2}) + 2a\alpha^{2}(x)(\alpha(x)y) + \alpha^{2}(x)(x^{2}y)),$$

and

$$\widehat{\alpha}(A \bullet A) \bullet (\widehat{\alpha}(A) \bullet B) = (a^{2}, 2a\alpha^{2}(x) + \alpha(x^{2})) \bullet ((a, \alpha(x)) \bullet (b, y))$$

$$= (a^{2}, 2a\alpha^{2}(x) + \alpha(x^{2})) \bullet (ab, a\alpha(y) + b\alpha^{2}(x) + \alpha(x)y)$$

$$= (a^{3}b, a^{3}\alpha^{2}(y) + a^{2}b\alpha^{3}(x) + a^{2}\alpha(\alpha(x)y) + 2a^{2}b\alpha^{3}(x) + ab\alpha^{2}(x^{2})$$

$$+ (2a\alpha^{2}(x) + \alpha(x^{2}))(a\alpha(y) + b\alpha^{2}(x) + \alpha(x)y))$$

$$= (a^{3}b, a^{3}\alpha^{2}(y) + a^{2}b\alpha^{3}(x) + a^{2}\alpha(\alpha(x)y) + 2a^{2}b\alpha^{3}(x) + ab\alpha^{2}(x^{2}) + 2a^{2}\alpha^{2}(x)\alpha(y)$$

$$+ 2ab\alpha^{2}(x)\alpha^{2}(x) + 2a\alpha^{2}(x)(\alpha(x)y) + a\alpha(x^{2})\alpha(y) + b\alpha(x^{2})\alpha^{2}(x) + \alpha(x^{2})(\alpha(x)y))$$

$$= (a^{3}b, a^{3}\alpha^{2}(y) + 3a^{2}b\alpha^{3}(x) + 3ab\alpha^{2}(x^{2}) + 3a^{2}\alpha^{2}(x)\alpha(y) + a\alpha(x^{2})\alpha(y)$$

$$+ b\alpha^{2}(x)\alpha(x^{2}) + 2a\alpha^{2}(x)(\alpha(x)y) + \alpha(x^{2})(\alpha(x)y)).$$

But $\alpha^2(x)(x^2y) = \alpha(x^2)(\alpha(x)y)$. Hence the product " \bullet " satisfies the Hom-Jordan Identity, i.e.,

$$\widehat{\alpha}^2(A) \bullet ((A \bullet A) \bullet B) = \widehat{\alpha}(A \bullet A) \bullet (\widehat{\alpha}(A) \bullet B),$$

for all A = (a, x), $B = (b, y) \in \widehat{V}$. For all $A = (a, x) \in \widehat{V}$, it follows that

$$e \bullet A = (1,0) \bullet (a,x) = (a,\alpha(x)).$$

Thus $(\widehat{V}, \bullet, e, \widehat{\alpha})$ is a unital Hom-Jordan algebra. \square

3.1. Fundamental identities

Let (V, μ, α) be a multiplicative Hom-Jordan algebra. In terms of left and right multiplications l(x)y = xy and r(x)y = yx the definition of a Hom-Jordan algebra may be written as

$$l(x) = r(x), \tag{13}$$

$$l(\alpha^2(x))l(x^2) = l(\alpha(x^2)l(\alpha(x)), \tag{14}$$

where $l(x)l(y) = l(x) \circ l(y)$. Replace x by $x + \lambda y$ ($\lambda \neq 0 \in \mathbb{K}$) in (14) to obtain $T = l(\alpha(x + \lambda y)^2)l(\alpha(x + \lambda y)) - l(\alpha^2(x + \lambda y))l((x + \lambda y)) = 0$. Using the linearity of l(x), we may write $T = T_0 + \lambda T_1 + \lambda^2 T_2 + \lambda^3 T_3$, where $T_0 = l(\alpha(x^2))l(\alpha(x)) - l(\alpha^2(x))l(x^2)$, $T_1 = 2\left[l(\alpha(xy))l(\alpha(x)) - l(\alpha^2(x))l(xy)\right] + l(\alpha(x^2))l(\alpha(y)) - l(\alpha^2(y))l(x^2)$, $T_2 = 2\left[l(\alpha(xy))l(\alpha(y)) - l(\alpha^2(y))l(xy)\right] + l(\alpha(y^2))l(\alpha(y)) - l(\alpha^2(x))l(y^2)$ and $T_3 = l(\alpha(y^2))l(\alpha(y)) - l(\alpha^2(y))l(y^2)$. From (14), we have $T = T_0 = T_3 = 0$. So, for every $\lambda \neq 0 \in \mathbb{K}$, we obtain $\lambda T_1 + \lambda^2 T_2 = 0$. Hence $T_1 + \lambda T_2 = 0$, for every $0 \neq \lambda \in \mathbb{K}$.

Lemma 3.5. Let (V, μ, α) be a multiplicative Hom-Jordan. Then for all $x, y \in V$, we have

$$2[l(\alpha(xy))l(\alpha(x)) - l(\alpha^{2}(x))l(xy)] + l(\alpha(x^{2}))l(\alpha(y)) - l(\alpha^{2}(y))l(x^{2}) = 0.$$
(15)

Proof. From the above, we have $T_1 + \lambda T_2 = 0$ (for every $\lambda \neq 0 \in \mathbb{K}$), where $T_1 = 2 \Big[l(\alpha(xy)) l(\alpha(x)) - l(\alpha^2(x)) l(xy) \Big] + l(\alpha(x^2)) l(\alpha(y)) - l(\alpha^2(y)) l(x^2)$, and $T_2 = 2 \Big[l(\alpha(xy)) l(\alpha(y)) - l(\alpha^2(y)) l(xy) \Big] + l(\alpha(y^2)) l(\alpha(y)) - l(\alpha^2(x)) l(y^2)$. Let λ_1 and λ_2 be two non-zero scalars in \mathbb{K} . We see that $T_1 + \lambda_1 T_2 = T_1 + \lambda_2 T_2 = 0$, $(\lambda_1 - \lambda_2) T_2 = 0$, $T_1 = T_2 = 0$. Hence the lemma is proven. \square

We next replace x by $x + \lambda z$ in (15) to obtain $U = 2 \Big[l(\alpha(xy + \lambda zy)) l(\alpha(x) + \lambda \alpha(z)) - l(\alpha^2(x) + \lambda \alpha^2(z)) l(xy + \lambda zy) \Big] + l(\alpha(x^2) + 2\lambda\alpha(xz) + \lambda^2\alpha(z^2)) l(\alpha(y)) - l(\alpha^2(y)) l(x^2 + 2\lambda xz + \lambda^2 z^2) = U_0 + 2\lambda U_1 + \lambda^2 U_2 = 0$. Here $U_0 = T_1 = 0$ and $U_2 = 2 \Big[l(\alpha(zy)) l(\alpha(z)) - l(\alpha^2(z)) l(zy) \Big] + l(\alpha(z^2)) l(\alpha(y)) - l(\alpha^2(y)) l(z^2) = 0$. So, we have the following lemma:

Lemma 3.6. Let (V, μ, α) be a multiplicative Hom-Jordan. Then for all $x, y, z \in V$, we have

$$l(\alpha(xy))l(\alpha(z)) + l(\alpha(yz))l(\alpha(x)) + l(\alpha(xz))l(\alpha(y)) = l(\alpha^2(x))l(yz) + l(\alpha^2(y))l(xz) + l(\alpha^2(z))l(xy). \tag{16}$$

Proof. Computing U_1 , we find

$$U_1 = l(\alpha(xy))l(\alpha(z)) + l(\alpha(yz))l(\alpha(x)) + l(\alpha(xz))l(\alpha(y)) - l(\alpha^2(x))l(yz) - l(\alpha^2(y))l(xz) - l(\alpha^2(z))l(xy).$$

From the above, we have $U_1 = 0$. Thus the lemma holds. \square

Now, applying the identity (16) to a quantity w and using the commutativity of the product, we obtain

$$\alpha(xy)(w\alpha(z)) + \alpha(xz)(w\alpha(y)) + \alpha(yz)(w\alpha(x)) = ((xy)w)\alpha^2(z) + ((xz)w)\alpha^2(y) + ((yz)w)\alpha^2(x). \tag{17}$$

We write $as_{\alpha}(x, y, z)$ for the α -associator $(xy)\alpha(z) - \alpha(x)(yz)$. Then equation (17) can be rewritten as

$$as_{\alpha}(xy, w, \alpha(z)) + as_{\alpha}(xz, w, \alpha(y)) + as_{\alpha}(yz, w, \alpha(x)) = 0.$$
(18)

By replacing w by $\alpha(w)$, the equation (17) becomes

$$\alpha(xy)\alpha(wz) + \alpha(xz)\alpha(wy) + \alpha(yz)\alpha(wx) = ((xy)\alpha(w))\alpha^2(z) + ((xz)\alpha(w))\alpha^2(y) + ((yz)\alpha(w))\alpha^2(x). \tag{19}$$

Interchange *z* and *w* and use the commutativity of the product to write

$$\alpha(xy)\alpha(zw) + \alpha(yz)\alpha(xw) + \alpha(xz)\alpha(yw) = ((xy)\alpha(z))\alpha^2(w) + \alpha^2(y)(\alpha(z)(xw)) + \alpha^2(x)(\alpha(z)(yw)). \tag{20}$$

Then, we have the following lemma:

Lemma 3.7. *Let* (V, μ, α) *be a multiplicative Hom-Jordan. Then,*

$$l(\alpha(xy))l(\alpha(z))\alpha + l(\alpha(yz))l(\alpha(x))\alpha + l(\alpha(xz))l(\alpha(y))\alpha = l((xy)\alpha(z))\alpha^{2} + l(\alpha^{2}(y))l(\alpha(z))l(x) + l(\alpha^{2}(x))l(\alpha(z))l(y),$$

$$(21)$$

for all $x, y, z \in V$.

Lemma 3.8. Let (V, μ, α) be a multiplicative Hom-Jordan. Then,

$$l((xz)\alpha(y) - (yz)\alpha(x))\alpha^{2} = l(\alpha^{2}(z))[l(\alpha(x))l(y) - l(\alpha(y))l(x)]$$
$$- [l(\alpha^{2}(x))l(\alpha(y)) - l(\alpha^{2}(y))l(\alpha(x))]l(z), \tag{22}$$

for all $x, y, z \in V$.

Proof. Since the left hand side of (21) is symmetric in y and z, we get

$$l(\alpha(xz))l(\alpha(y))\alpha + l(\alpha(yz))l(\alpha(x))\alpha + l(\alpha(xy))l(\alpha(z))\alpha = l((xz)\alpha(y))\alpha^2 + l(\alpha^2(z))l(\alpha(y))l(x) + l(\alpha^2(x))l(\alpha(y))l(z).$$

Also, the left hand side of the above equation is symmetric in x and y. This shows the lemma. \Box

An important role in the theory of Jordan algebras plays the so-called quadratic representation. In the sequel, we will extend this notion for Hom-Jordan algebras.

Definition 3.9. Let (V, μ, α) be a multiplicative Hom-Jordan. The Hom-quadratic representation of V is the map $Q: V \to End(V)$ defined by

$$Q(x) = 2l(\alpha(x))l(x) - l(x^2)\alpha.$$
(23)

Example 3.10. If (A, μ, α) is a Hom-associative algebra, then the Hom-quadratic representation of A^+ (see example 3.2) is given by $Q(x)y = \alpha(x)(yx) = (xy)\alpha(x)$, for all $x, y \in A$.

Lemma 3.11. Let (V, μ, α) be a multiplicative Hom-Jordan. Then the Hom-quadratic representation Q satisfies

$$l(\alpha^2(x))Q(x) - Q(\alpha(x))l(x) = 0, \quad \forall x \in v.$$
(24)

Proof. Let $x \in V$. Considering $\alpha l(x) = l(\alpha(x))\alpha$ we get

$$\begin{split} l(\alpha^2(x))Q(x) - Q(\alpha(x))l(x) &= 2l(\alpha^2(x))l(\alpha(x))l(x) - l(\alpha^2(x))l(x^2)\alpha \\ &- 2l(\alpha^2(x))l(\alpha(x))l(x) + l(\alpha(x^2))\alpha l(x) \\ &= -l(\alpha^2(x))l(x^2)\alpha + l(\alpha(x^2))l(\alpha(x))\alpha \\ &= (l(\alpha(x^2))l(\alpha(x)) - l(\alpha^2(x))l(x^2))\alpha \\ &= 0. \end{split}$$

Hence the lemma holds. \Box

Now, set the map Q(x, y) given by

$$Q(x,y) = Q(x+y) - Q(x) - Q(y), \quad \forall x, y \in V.$$
(25)

Using the definition of the map *Q* given by (23), we obtain easily

$$Q(x,y) = 2(l(\alpha(x))l(y) + l(\alpha(y))l(x) - l(xy)\alpha) \text{ and } Q(x,x) = 2Q(x).$$
(26)

Lemma 3.12. *Let* (V, μ, α) *be a multiplicative Hom-Jordan. Then, we have*

$$Q(xy,\alpha(x))\alpha - Q(\alpha(x))l(y) - l(\alpha^2(y))Q(x) = 0, \quad \forall x,y \in V.$$
(27)

Proof. Let $x, y \in V$. Using (26), we have

$$Q(xy,\alpha(x))\alpha - Q(\alpha(x))l(y) - l(\alpha^{2}(y))Q(x) = 2(l(\alpha(xy))l(\alpha(x)) + l(\alpha(\alpha(x)))l(xy)$$

$$- l((xy)\alpha(x))\alpha)\alpha - 2l(\alpha^{2}(x))l(\alpha(x))l(y) + l(\alpha(x^{2}))l(\alpha(y))\alpha$$

$$- 2l(\alpha^{2}(y))l(\alpha(x))l(x) + l(\alpha^{2}(y))l(x^{2})\alpha$$

$$= 2(l(\alpha(xy))l(\alpha(x))\alpha + l(\alpha^{2}(x))l(xy)\alpha - l((xy)\alpha(x))\alpha^{2})$$

$$- 2l(\alpha^{2}(x))l(\alpha(x))l(y) + l(\alpha(x^{2}))l(\alpha(y))\alpha$$

$$- 2l(\alpha^{2}(y))l(\alpha(x))l(x) + l(\alpha^{2}(y))l(x^{2})\alpha.$$

But, replacing z by x in (21), we find

$$l(\alpha(xy))l(\alpha(x))\alpha - l((xy)\alpha(x))\alpha^{2} = l(\alpha^{2}(x))l(\alpha(x))l(y) + l(\alpha^{2}(y))l(\alpha(x))l(x)$$
$$-l(\alpha(xy))l(\alpha(x))\alpha - l(\alpha(x^{2}))l(\alpha(y))\alpha.$$

Hence,

$$Q(xy,\alpha(x))\alpha - Q(\alpha(x))l(y) - l(\alpha^2(y))Q(x) = 2(l(\alpha^2(x))l(xy) - l(\alpha(xy))l(\alpha(x)))\alpha + (l(\alpha^2(y))l(x^2) - l(\alpha(x^2))l(\alpha(y))).$$

So, by (15),
$$Q(xy, \alpha(x))\alpha - Q(\alpha(x))l(y) - l(\alpha^2(y))Q(x) = 0$$
.

Lemma 3.13. *Let* (V, μ, α) *be a multiplicative Hom-Jordan. Then,*

$$l(\alpha^2(x))Q(x,y) - Q(\alpha(x),\alpha(y))l(x) = Q(\alpha(x))l(y) - l(\alpha^2(y))Q(x), \quad \forall x,y \in V.$$
(28)

Proof. This identity is obtained by replacing x by $x + \lambda y$ in (24). \Box

Next, we set l(x, y) defined by

$$l(x,y)(z) = \{xyz\} = Q(x,z)y, \quad \forall z \in V.$$
(29)

Using (26), we observe

$$l(x,y) = 2(l(\alpha(x))l(y) - l(\alpha(y))l(x) + l(xy)\alpha). \tag{30}$$

Remark 3.14. For all x, y and $z \in V$, xyz = Q(x, z)y = Q(z, x)y = zyx.

Lemma 3.15. *Let* (V, μ, α) *be a multiplicative Hom-Jordan. Then*

$$Q(\alpha^2(x))l(y,x) = l(\alpha^2(x), \alpha^2(y))Q(x), \quad \forall x, y \in V.$$
(31)

Proof. We have

$$\frac{1}{2}Q(\alpha^2(x))l(y,x) = Q(\alpha^2(x))l(\alpha(y))l(x) - Q(\alpha^2(x))l(\alpha(x))l(y) + Q(\alpha^2(x))l(xy)\alpha, \ x,\ y \in V.$$

But $Q(\alpha^2(x))l(\alpha(x)) = l(\alpha^3(x))Q(\alpha(x))$ and $Q(\alpha^2(x))l(\alpha(y)) = Q(\alpha(xy), \alpha^2(x))\alpha - l(\alpha^3(y))Q(\alpha(x))$. Hence

$$\begin{split} \frac{1}{2}Q(\alpha^2(x))l(y,x) &= \left(Q(\alpha(xy),\alpha^2(x))\alpha - l(\alpha^3(y))Q(\alpha(x)\right)l(x) - l(\alpha^3(x))Q(\alpha(x))l(y) + Q(\alpha^2(x))l(xy)\alpha \right. \\ &= \left(Q(\alpha(xy),\alpha^2(x))\alpha - l(\alpha^3(y))Q(\alpha(x)\right)l(x) + Q(\alpha^2(x))l(xy)\alpha \right. \\ &\quad - l(\alpha^3(x))\left(Q(xy,\alpha(x))\alpha - l(\alpha^2(y))Q(x)\right) \\ &= Q(\alpha(xy),\alpha^2(x))l(\alpha(x))\alpha - l(\alpha^3(y))l(\alpha^2(x))Q(x) - l(\alpha^3(x))Q(xy,\alpha(x))\alpha \right. \\ &\quad + l(\alpha^3(x))l(\alpha^2(y))Q(x) + Q(\alpha^2(x))l(xy)\alpha \\ &= \left(Q(\alpha(xy),\alpha^2(x))l(\alpha(x))\alpha - l(\alpha^3(x))Q(xy,\alpha(x))\alpha\right) \\ &\quad + \left(l(\alpha^3(x))l(\alpha^2(y)) - l(\alpha^3(y))l(\alpha^2(x))\right)Q(x) + Q(\alpha^2(x))l(xy)\alpha. \end{split}$$

But (28) implies

$$Q(\alpha(xy), \alpha^2(x))l(\alpha(x)) - l(\alpha^3(x))Q(xy, \alpha(x)) = l(\alpha^2(xy))Q(\alpha(x)) - Q(\alpha^2(x))l(xy).$$

So

$$\begin{split} \frac{1}{2}Q(\alpha^2(x))l(y,x) &= \Big(l(\alpha^3(x))l(\alpha^2(y)) - l(\alpha^3(y))l(\alpha^2(x))\Big)Q(x) + l(\alpha^2(xy))Q(\alpha(x))\alpha \\ &= \frac{1}{2}l(\alpha^2(x),\alpha^2(y))Q(x), \end{split}$$

because $Q(\alpha(x))\alpha = \alpha Q(x)$. \square

As a consequence of this lemma, we have the following:

Corollary 3.16. *Let* (V, μ, α) *be a multiplicative Hom-Jordan. Then*

$$Q(\alpha^{2}(x))l(y,x) = l(\alpha^{2}(x), \alpha^{2}(y))Q(x) = Q(Q(x)y, \alpha^{2}(x))\alpha^{2}, \quad \forall x, y \in V,$$
(32)

which is called the Homotopy Hom-formula.

Proof. Using (29) and (31) we get

$$Q(\alpha^{2}(x))l(y,x)z = l(\alpha^{2}(x),\alpha^{2}(y))Q(x)z = Q(Q(x)z,\alpha^{2}(x))\alpha^{2}(y).$$
(33)

Since $Q(\alpha^2(x))l(y,x)z = Q(\alpha^2(x))Q(y,z)x$ and Q(y,z) is symmetric, then $Q(\alpha^2(x))l(y,x)z$ is symmetric with respect to y and z. Therefore (33) implies

$$Q(\alpha^2(x))l(y,x)z = Q(Q(x)y,\alpha^2(x))\alpha^2(z),$$

which conclude the proof. \Box

So, using the notation in (29), one can show

Proposition 3.17. Let (V, μ, α) be a multiplicative Hom-Jordan. Then, for all $x, y, z \in V$, we have

$$\{\alpha^{4}(x)\{\alpha^{2}(y)\alpha^{2}(x)\{zxy\}\}\alpha^{4}(x)\} = \{\alpha^{4}(x)\alpha^{4}(y)\{\alpha^{2}(x)\{zxy\}\alpha^{2}(x)\}\}$$

$$= \{\alpha^{4}(x)\alpha^{4}(y)\{\alpha^{2}(x)\alpha^{2}(z)\{xyx\}\}\}.$$
(34)

Proof. Considering (32) and Q(x, x) = 2Q(x), we have

$$\{\alpha^2(x)\{yxz\}\alpha^2(x)\} = \{\alpha^2(x)\alpha^2(y)\{xzx\}\},\$$

and so the proposition holds. \Box

Next, replace x by $x + \lambda z$ in (27), we have the following:

Lemma 3.18. *Let* (V, μ, α) *be a multiplicative Hom-Jordan. Then, we have*

$$Q(yz,\alpha(x))\alpha + Q(xy,\alpha(z))\alpha = Q(\alpha(x),\alpha(z))l(y) + l(\alpha^2(y))Q(x,z), \quad \forall x,y,z \in V.$$
 (35)

Corollary 3.19. *Let* (V, μ, α) *be a multiplicative Hom-Jordan. Then, we have*

$$l(\alpha(x), \alpha(u))l(y) + l(xy, \alpha(u))\alpha = l(\alpha(x), yu)\alpha + l(\alpha^{2}(y))l(x, u), \quad \forall x, y, z \in V.$$
(36)

Proof. Applying (35) to $u \in V$, we obtain

$$Q(yz,\alpha(x))\alpha(u) + Q(xy,\alpha(z))\alpha(u) = Q(\alpha(x),\alpha(z))l(y)u + l(\alpha^2(y))Q(x,z)u.$$

But

$$Q(yz,\alpha(x))\alpha(u) + Q(xy,\alpha(z))\alpha(u) = l(yz,\alpha(u))\alpha(x) + l(xy,\alpha(u))\alpha(z),$$

and

$$Q(\alpha(x),\alpha(z))l(y)u+l(\alpha^2(y))Q(x,z)u=l(\alpha(x),yu)\alpha(z)+l(\alpha^2(y))l(x,u)z.$$

Computing $l(yz, \alpha(u))\alpha(x)$, we find

$$l(yz,\alpha(u))\alpha(x)=l(\alpha(x),\alpha(u))l(y)z.$$

Hence the corollary holds. \Box

Using the notation in (29), we obtain by the identity (36)

$$\alpha^{2}(y)\{uvw\} = \{(yu)\alpha(v)\alpha(w)\} - \{\alpha(u)(yv)\alpha(w)\} + \{\alpha(u)\alpha(v)(yw)\}. \tag{37}$$

Using (22), we get

$$D_2\{uvw\} = \{D_1(u)\alpha^2(v)\alpha^2(w)\} + \{\alpha^2(u)D_1(v)\alpha^2(w)\} + \{\alpha^2(u)\alpha^2(v)D_1(w)\},\tag{38}$$

where $D_1 = l(\alpha(x))l(y) - l(\alpha(y))l(x)$ and $D_2 = l(\alpha^3(x))l(\alpha^2(y)) - l(\alpha^3(y))l(\alpha^2(x))$. Using (37) and (38) (replace y by xy), we find

$$\{\alpha^{2}(x)\alpha^{2}(y)\{uvw\}\} - \{\alpha^{2}(u)\alpha^{2}(v)\{xyw\}\} = \{\{xyu\}\alpha^{2}(v)\alpha^{2}(w)\} - \{\alpha^{2}(u)\{yxv\}\alpha^{2}(w)\}.$$
(39)

Also, we have

$$l(\alpha^{2}(x), \alpha^{2}(y))l(u, v) - l(\alpha^{2}(u), \alpha^{2}(v))l(x, y) = l(\{xyu\}, \alpha^{2}(v))\alpha^{2} - l(\alpha^{2}(u), \{yxv\})\alpha^{2}$$

$$= l(l(x, y)u, \alpha^{2}(v))\alpha^{2} - l(\alpha^{2}(u), l(y, x)v)\alpha^{2}$$

$$= l(Q(x, u)y, \alpha^{2}(v))\alpha^{2} - l(\alpha^{2}(u), Q(y, v)x)\alpha^{2}.$$
(40)

A particular case of this equation is (setting u = x, v = y and α invertible)

$$l(Q(x)y, \alpha^2(v)) = l(\alpha^2(x), Q(y)x). \tag{41}$$

Furthermore we observe that the left hand side of (39) is skew-symmetric in the pairs (x, y), (u, v), hence

$$\{\{xyu\}\alpha^{2}(v)\alpha^{2}(w)\} - \{\alpha^{2}(u)\{yxv\}\alpha^{2}(w)\} = \{\alpha^{2}(x)\{vuy\}\alpha^{2}(w)\} - \{\{uvx\}\alpha^{2}(y)\alpha^{2}(w)\}. \tag{42}$$

Replace u by y, y by u, x by v, v by u and w by v in (42) to write

$$\{\alpha^{2}(y)\{uvu\}\alpha^{2}(v)\} = 2\{\{vuy\}\alpha^{2}(u)\alpha^{2}(v)\} - \{\alpha^{2}(v)\{uyu\}\alpha^{2}(v)\}. \tag{43}$$

Theorem 3.20. Let (V, μ, α) be a multiplicative Hom-Jordan. Then, for all $u, v \in V$, we have

$$Q(Q(\alpha^2(u))\alpha^2(v))\alpha^4 = Q(\alpha^4(u))Q(\alpha^2(v))Q(u). \tag{44}$$

If the map α *is invertible, the formula (44) becomes*

$$Q(Q(u)v)\alpha^2 = Q(\alpha^2(u))Q(v)Q(\alpha^{-2}(u))\alpha^{-2}.$$
(45)

This identity is said to be the Hom-fundamental formula.

Proof. Note first of all that we have $\alpha^2(Q(u)v) = Q(\alpha^2(u))\alpha^2(v)$, for all u,v. Next, we substitute x by $\{uvu\} = 2Q(u)v$ and w by u in (39) and rewrite (39) for x, $\alpha^2(y)$, $\alpha^2(u)$, $\alpha^2(v)$ and $\alpha^2(w)$, we find

$$\begin{split} 8Q(Q(\alpha^{2}(u)\alpha^{2}(v))\alpha^{4}(y) &= 8Q(\alpha^{2}(Q(u)v))\alpha^{4}(y) \\ &= 4\{\alpha^{2}(Q(u)v)\alpha^{4}(y)\alpha^{2}(Q(u)v)\} \\ &= \{\alpha^{2}(x)\alpha^{4}(y)\{\alpha^{2}(u)\alpha^{2}(v)\alpha^{2}(u)\}\} \\ &= 2\{\alpha^{4}(u)\alpha^{4}(v)\{\alpha^{2}(u)\alpha^{2}(y)\{uvu\}\}\} - \{\alpha^{4}(u)\{\alpha^{2}(y)\{uvu\}\alpha^{2}(v)\}\alpha^{4}(u)\}. \end{split}$$

But

$$\{\alpha^2(y)\{uvu\}\alpha^2(v)\} = 2\{\{vuy\}\alpha^2(u)\alpha^2(v)\} - \{\alpha^2(v)\{uyu\}\alpha^2(v)\}.$$

Hence

$$\begin{split} 8Q(Q(\alpha^2(u)\alpha^2(v))\alpha^4(y) &= 2\{\alpha^4(u)\alpha^4(v)\{\alpha^2(u)\alpha^2(y)\{uvu\}\}\} - 2\{\alpha^4(u)\{\{vuy\}\alpha^2(u)\alpha^2(v)\}\alpha^4(u)\} \\ &+ \{\alpha^4(u)\{\alpha^2(v)\{uyu\}\alpha^2(v)\}\alpha^4(u)\}. \end{split}$$

By Proposition 3.17, we have $\{\alpha^4(u)\alpha^4(v)\{\alpha^2(u)\alpha^2(y)\{uvu\}\}\} = \{\alpha^4(u)\{\{vuy\}\alpha^2(u)\alpha^2(v)\}\alpha^4(u)\}$. So

$$\begin{split} 8Q(Q(\alpha^2(u)\alpha^2(v))\alpha^4(y) &= \{\alpha^4(u)\{\alpha^2(v)\{uyu\}\alpha^2(v)\}\alpha^4(u)\} \\ &= 8Q(\alpha^4(u))Q(\alpha^2(v))Q(u)y. \end{split}$$

Suppose α is invertible. Using $\alpha^2(Q(u)v) = Q(\alpha^2(u))\alpha^2(v)$ and $\alpha^{-2}(Q(u)v) = Q(\alpha^{-2}(u))\alpha^{-2}(v)$, the above identity can be written as $\alpha^2(Q(Q(u)v)\alpha^2(y)) = \alpha^2(Q(\alpha^2(u))Q(v)Q(\alpha^{-2}(u))\alpha^{-2}(y))$. So $Q(Q(u)v)\alpha^2(y) = Q(\alpha^2(u))Q(v)Q(\alpha^{-2}(u))\alpha^{-2}(y)$. This ends the proof. \square

Remark 3.21. When the twisting map α is equal to the identity map, we recover the usual fundamental formula [19][26][16].

3.2. Inverses

Definition 3.22. Let (V, μ, e, α) be a unital multiplicative Hom-Jordan algebra. An element x in V is said to be invertible if there is an element y such that $\mu(x, y) = e$ and $\mu(\mu(x, x), \alpha(y)) = \alpha^2(x)$. In this case y is called the inverse of x and we write $y = x^{-1}$.

Proposition 3.23. Let (V, μ, e, α) be a unital multiplicative Hom-Jordan algebra and $x \in V$. If x is invertible with inverse y, then $Q(x)y = \alpha^2(x)$ and $Q(\alpha^3(x))\alpha^2(\mu(y,y)) = e$. If α is a bijection, then x is invertible with the inverse y if and only if $Q(x)y = \alpha^2(x)$ and $Q(\alpha(x))\mu(y,y) = e$.

Proof. We write $\mu(x, y) = xy$ and $\mu(x, x) = x^2$, for all $x, y \in V$. Let x be an invertible element in V with the inverse y, so, we have

$$Q(x)y = (2l(\alpha(x))l(x) - l(x^2)\alpha)y = 2\alpha(x)(xy) - x^2\alpha(y) = 2\alpha(x)e - \alpha^2(x) = 2\alpha^2(x) - \alpha^2(x) = \alpha^2(x).$$

From the identity (15), we have $2[l(\alpha(xy))l(\alpha(x)) - l(\alpha^2(x))l(xy)] + l(\alpha(x^2))l(\alpha(y)) - l(\alpha^2(y))l(x^2) = 0$. But

$$(l(\alpha(xy))l(\alpha(x)) - l(\alpha^{2}(x))l(xy))u = (l(e)l(\alpha(x) - l(\alpha^{2}(x))l(e))u$$

$$= e(\alpha(x)u) - \alpha^{2}(x)(eu)$$

$$= \alpha^{2}(x)\alpha(u) - \alpha^{2}(x)\alpha(u)$$

$$= 0, \forall u \in V.$$

So,

$$l(\alpha(x^2))l(\alpha(y)) - l(\alpha^2(y))l(x^2) = 0.$$

$$\tag{46}$$

Similarly, using (15), one can show

$$l(\alpha(y^2))l(\alpha(x)) - l(\alpha^2(x))l(y^2) = 0. \tag{47}$$

Applying (46) to $\alpha(y)$, we find $\alpha(x^2y^2) = e$. Therefore

$$Q(\alpha^{3}(x))\alpha^{2}(y^{2}) = (2l(\alpha^{4}(x))l(\alpha^{3}(x)) - l(\alpha^{3}(x^{2}))\alpha)\alpha^{2}(y^{2})$$

$$= 2\alpha^{4}(x)(\alpha^{3}(x)\alpha^{2}(y^{2})) - \alpha^{3}(x^{2}y^{2})$$

$$= 2\alpha^{4}(x)\alpha^{4}(y) - e$$

$$= e.$$

If α is invertible, using $\alpha^2(Q(u)v) = Q(\alpha^2(u))\alpha^2(v)$, we obtain $Q(\alpha(x))y^2 = e$. Now we will show the other way for the invertibility of α , i.e., suppose that $Q(x)y = \alpha^2(x)$ and $Q(\alpha(x))y^2 = e$ and show that x is invertible. The equation $Q(\alpha(x))y^2 = e$ gives $Q(Q(\alpha(x))y^2) = Q(e)$. So $Q(Q(\alpha(x))y^2)\alpha^2 = Q(e)\alpha^2$. Using $Q(e) = \alpha^2$ and (45), we obtain $Q(\alpha^3(x))Q(y^2)Q(\alpha^{-1}(x))\alpha^{-2} = \alpha^4$. Applying α^{-2} from the left to the both sides of this equation and using $\alpha^{-2}Q(u) = Q(\alpha^{-2}(u))\alpha^{-2}$, we get

$$(Q(\alpha(x))\alpha^{-2})(Q(y^2)\alpha^{-2}))Q(\alpha(x)) = \alpha^2.$$

$$(48)$$

But, from (45), $y^2 = Q(\alpha^{-1}(y))e$ and $\alpha^2(Q(u)v) = Q(\alpha^2(u))\alpha^2(v)$, we have

$$Q(y^{2})\alpha^{2} = Q(Q(\alpha^{-1}(y))e)\alpha^{2} = Q(\alpha(y))Q(e)Q(\alpha^{-3}(y))\alpha^{-2} = Q(\alpha(y))\alpha^{2}Q(\alpha^{-3}(y))\alpha^{-2} = Q(\alpha(y))Q(\alpha^{-1}(y)).$$

Hence

$$Q(y^{2}) = Q(\alpha(y))Q(\alpha^{-1}(y))\alpha^{-2} = (Q(\alpha(y))\alpha^{-2})Q(\alpha(y)).$$
(49)

Therefore the equation (48) becomes

$$(Q(\alpha(x))\alpha^{-2})(Q(\alpha(y))\alpha^{-2})(Q(\alpha(y))\alpha^{-2})Q(\alpha(x)) = \alpha^{2}.$$

Applying α^{-2} from the left to both sides of the above equation, we obtain

$$(Q(\alpha(x))\alpha^{-2})(Q(\alpha(y))\alpha^{-2})(Q(\alpha(y))\alpha^{-2})(Q(\alpha(x))\alpha^{-2}) = id,$$
(50)

where id is the identity map. So both $(Q(\alpha(x))\alpha^{-2})$ and $(Q(\alpha(y))\alpha^{-2})$ are invertible. Applying α to the identity $Q(x)y = \alpha^2(x)$, we obtain $Q(\alpha(x)\alpha(y)) = \alpha^3(x)$. This gives $Q(Q(\alpha(x))\alpha(y))\alpha^2 = Q(\alpha^3(x))\alpha^2 = \alpha^2Q(\alpha(x))$. So, from (45), we obtain

$$Q(\alpha^3(x))Q(\alpha(y))Q(\alpha^{-1}(x))\alpha^{-2} = \alpha^2 Q(\alpha(x)). \tag{51}$$

Next, from $\alpha^2(Q(u)v) = Q(\alpha^2(u))\alpha^2(v)$ and $\alpha^{-2}(Q(u)v) = Q(\alpha^{-2}(u))\alpha^{-2}(v)$, the identity (51) becomes

$$\alpha^2(Q(\alpha(x))\alpha^{-2})(Q(\alpha(y))\alpha^{-2})Q(\alpha(x)) = \alpha^2Q(\alpha(x)).$$

Applying α^{-2} from the left to both sides of this equation, we obtain

$$(Q(\alpha(x))\alpha^{-2})(Q(\alpha(y))\alpha^{-2})Q(\alpha(x)) = Q(\alpha(x)).$$

Therefore, by applying α^{-2} from the right to both sides of this equation, we have

$$(Q(\alpha(x))\alpha^{-2})(Q(\alpha(y))\alpha^{-2})(Q(\alpha(x))\alpha^{-2}) = (Q(\alpha(x))\alpha^{-2}).$$

$$(52)$$

So $Q(\alpha(x))\alpha^{-2}$ and $Q(\alpha(y))\alpha^{-2}$ are each other's inverses. Thus $Q(\alpha(y))$ is invertible and we have $Q(\alpha(y))^{-1} = \alpha^{-2}Q(\alpha(x))\alpha^{-2}$. But, from $\alpha Q(y) = Q(\alpha(y))\alpha$, we have $Q(y) = \alpha^{-1}Q(\alpha(y))\alpha$. So Q(y) is invertible and $Q(y)^{-1} = \alpha^{-2}Q(x)\alpha^{-2}$.

Moreover, we have $Q(\alpha(y))l(y) = l(\alpha^2(y))Q(y)$. Applying on the left $Q(\alpha(y))^{-1}$ for both sides of this equation, we obtain $l(y) = Q(\alpha(y))^{-1}l(\alpha^2(y))Q(y)$. Therefore, by applying on the right $Q(y)^{-1}$, we have $Q(y)^{-1}l(y) = Q(\alpha(y))^{-1}l(\alpha^2(y))$. Hence, from $\alpha^{-2}l(\alpha^2(y)) = l(y)\alpha^{-2}$ and by applying α to the above identity, one can show that

$$l(\alpha(y)\alpha^{-1}Q(x)\alpha^{-2} = \alpha^{-1}Q(\alpha(x))l(y)\alpha^{-2}.$$
(53)

This acting to e gives $\alpha(y)x^2 = Q(x)y = \alpha^2(x)$. From (53), we have $l(\alpha(y)\alpha^{-1}Q(x) = \alpha^{-1}Q(\alpha(x))l(y)$. Applying α to both sides and using $\alpha l(u) = l(\alpha(u))\alpha$, we find $l(\alpha^2(y))Q(x) = Q(\alpha(x))l(y)$. Acting this identity on y we get $l(\alpha^2(y))Q(x)y = Q(\alpha(x))l(y)y = Q(\alpha(x))y^2$. But $Q(x)y = \alpha^2(x)$ and $Q(\alpha(x))y^2 = e$. Hence $\alpha^2(y)\alpha^2(x) = e$. Thus the proposition holds. \square

Proposition 3.24. Let (V, μ, e, α) be a regular unital multiplicative Hom-Jordan algebra and $x \in V$. x is invertible if and only if Q(x) defines a bijection on V. Moreover $x^{-1} = (Q(x))^{-1}\alpha^2(x)$ and $Q(x)^{-1} = \alpha^{-2}Q(x^{-1})\alpha^{-2}$.

Proof. If x is invertible then the above implies Q(x) is invertible with inverse $Q(x)^{-1} = \alpha^{-2}Q(x^{-1})\alpha^{-2}$. Any inverse y of x satisfies $Q(x)y = \alpha^2(x)$. So $y = Q(x)^{-1}\alpha^2(x)$. Conversely if Q(x) invertible, then $Q(x)y = \alpha^2(x)$, where $y = Q(x)^{-1}\alpha^2(x)$. So (45) implies $Q(\alpha(x))y^2 = e$. \square

Proposition 3.25. Let (V, μ, e, α) be a regular unital multiplicative Hom-Jordan algebra and $x, y \in V$. Q(x)y is invertible if and only if x and y are invertible, in which case $(Q(x)y)^{-1} = Q(x^{-1})y^{-1}$.

Proof. We have Q(x)y is invertible if and only if Q(Q(x)y) is invertible. But

$$Q(Q(x)y) = Q(\alpha^{2}(x))Q(y)Q(\alpha^{-2}(x))\alpha^{-4} = \alpha^{2}Q(x)\alpha^{-2}Q(y)\alpha^{-2}Q(x)\alpha^{-2}.$$

Since α is invertible, this implies Q(x) and Q(y) are invertible. Thus x and y are invertible. A simple calculation allows us to prove that the inverse of Q(x)y is $Q(x^{-1})y^{-1}$:

$$Q(Q(x)y)Q(x^{-1})y^{-1} = Q(Q(x)y)\alpha^{2}\alpha^{-2}Q(x^{-1})y^{-1}$$

$$= Q(\alpha^{2}(x))Q(y)Q(\alpha^{-2}(x))\alpha^{-4}Q(x^{-1})y^{-1}$$

$$= Q(\alpha^{2}(x))Q(y)\alpha^{-2}Q(x)\alpha^{-2}Q(x^{-1})y^{-1}.$$

But $\alpha^{-2}Q(x)\alpha^{-2} = Q(x^{-1})^{-1}$. Hence

$$Q(Q(x)y)Q(x^{-1})y^{-1} = Q(\alpha^2(x))Q(y)y^{-1} = Q(\alpha^2(x))\alpha^2(y) = \alpha^2(Q(x)y).$$

Similarly, one can show $Q(\alpha(Q(x)y))(Q(x^{-1})y^{-1})^2 = e$.

Proposition 3.26. Let (V, μ, e, α) be a regular unital multiplicative Hom-Jordan algebra and $x \in V$ be an invertible element. Then, we have

$$l(x^{-1}) = Q(\alpha(x))^{-1}l(\alpha^{2}(x))\alpha^{2},$$
(54)

and

$$l(\alpha(x^{-1}))l(x) = l(\alpha(x))l(x^{-1}). \tag{55}$$

Proof. Let $x \in V$ be an invertible element. From (32), we have $Q(\alpha^3(a))l(b,\alpha(a)) = Q(Q(\alpha(a))b,\alpha^3(a))\alpha^2$, for all $a,b \in V$. Set $b=y^2$ with $y=x^{-1}$ and a=x. Then $Q(\alpha(x))y^2=e$ and $Q(e,\alpha^3(x))=2l(\alpha^4(x))\alpha$. Since $l(\alpha(y^2))l(\alpha(x))-l(\alpha^2(x))l(y^2)=0$ (from 47), $l(y,\alpha(x))=2l(\alpha^2(y))\alpha$. So $Q(\alpha^3(x))l(\alpha^2(y))\alpha=l(\alpha^4(x))\alpha^3$. Applying α^{-2} for both sides, we obtain $Q(\alpha(x))l(y)=l(\alpha^2(x))\alpha^2$. Thus, $l(y)=Q(\alpha(x))^{-1}l(\alpha^2(x))\alpha^2$. From (53), one can show $l(b)Q(a)^{-1}=Q(\alpha(a))^{-1}l(\alpha^2(b))$, for two invertibles elements $a,b \in V$. Taking $a=b=\alpha(x)$, we have $l(\alpha(x))Q(\alpha(x))^{-1}=Q(\alpha^2(x))^{-1}l(\alpha^3(x))$. Therefore

$$\begin{split} l(\alpha(x))l(x^{-1}) &= l(\alpha(x))Q(\alpha(x))^{-1}l(\alpha^{2}(x))\alpha^{2} \\ &= Q(\alpha^{2}(x))^{-1}l(\alpha^{3}(x))l(\alpha^{2}(x))\alpha^{2} \\ &= Q(\alpha^{2}(x))^{-1}l(\alpha^{3}(x))\alpha^{2}l(x) \\ &= l(\alpha(x^{-1}))l(x). \end{split}$$

Theorem 3.27. Let (V, μ, e, α) be a regular unital multiplicative Hom-Jordan algebra of finite dimension over \mathbb{R} . The set M of invertible elements of V is open in V and becomes a Hom-symmetric space with the product

$$x \star y = Q(x)y^{-1},\tag{56}$$

and the twist map α^2 , which is called the Hom-Jordan Hom-symmetric space of V.

Proof. Let x be an element of M, i.e., x is invertible. By the Proposition 3.24 this is equivalent to Q(x) is invertible. In finite dimension Q(x) is invertible if and only if $det(Q(x)) \neq 0$. Hence, M is an open. Next, let $x \in M$, we have

$$x \star x = Q(x)x^{-1} = Q(x)Q(x)^{-1}\alpha^{2}(x) = \alpha^{2}(x). \tag{57}$$

Hence (i) of Definition 2.3 holds. For all $x, y \in M$, it easily follows that

$$\alpha^{2}(x) \star (x \star y) = Q(\alpha^{2}(x))(x \star y)^{-1}$$

$$= Q(\alpha^{2}(x))(Q(x)y^{-1})^{-1}$$

$$= Q(\alpha^{2}(x))Q(x^{-1})y \text{ (from Proposition (3.25)}$$

$$= (Q(\alpha^{2}(x))\alpha^{2}Q(x)^{-1})\alpha^{2}(y)$$

$$= (\alpha^{2}Q(x)Q(x)^{-1})\alpha^{2}(y)$$

$$= \alpha^{4}(y),$$

which implies that the product ★ satisfies (ii) of Definition 2.3. Next, we have

$$\alpha^2(x) \star (y \star z) = Q(\alpha^2(x))(y \star z)^{-1} = Q(\alpha^2(x))(Q(y)z^{-1})^{-1} = Q(\alpha^2(x))Q(y^{-1})z,$$

and

$$\begin{split} (x \star y) \star (x \star z) &= Q(x \star y)(x \star z)^{-1} \\ &= Q(Q(x)y^{-1})Q(x^{-1})z \\ &= Q(Q(x)y^{-1})\alpha^2\alpha^{-2}Q(x^{-1})z \\ &= Q(\alpha^2(x))Q(y^{-1})Q(\alpha^{-2}(x))\alpha^{-4}Q(x^{-1})z \\ &= Q(\alpha^2(x))Q(y^{-1})\alpha^{-2}Q(x)\alpha^{-2}Q(x^{-1})z, \quad \forall x, y, z \in V. \end{split}$$

But $\alpha^{-2}Q(x)\alpha^{-2}Q(x^{-1})=id$. So $(x \star y) \star (x \star z)=Q(\alpha^2(x))Q(y^{-1})z$, and the product \star satisfies (iii) of Definition 2.3. Now, to complete the proof, we must prove that the differential of the left multiplication $s(x)(y)=Q(x)\star y^{-1}$ at a point h is equal to $-d_h\alpha^2$, where $d_h\alpha^2$ is the differential of α^2 at h. But α^2 is a linear map, thus the differential of α^2 is itself. Let $j:M\to V$, $x\to j(x)=x^{-1}=Q(x)^{-1}\alpha^2(x)$. For all $x,h\in M$ and $t\in\mathbb{R}$, we have

$$j(x+th) - j(x) = Q(x+th)^{-1}\alpha^{2}(x+th) - Q(x)^{-1}\alpha^{2}(x)$$

$$= tQ(x+th)^{-1}\alpha^{2}(h) + (Q(x+th)^{-1} - Q(x)^{-1})\alpha^{2}(x)$$

$$= tQ(x+th)^{-1}\alpha^{2}(h) - Q(x)^{-1}(Q(x+th) - Q(x))Q(x+th)^{-1}\alpha^{2}(x).$$

But
$$Q(x + th) = Q(x) + tQ(x, h) + t^2Q(h)$$
. Thus

$$j(x+th) - j(x) = t \Big[Q(x+th)^{-1} \alpha^2(h) - Q(x)^{-1} (Q(x,h) + tQ(h)) Q(x+th)^{-1} \alpha^2(x).$$

Therefore

$$\frac{d}{dt_{|t=0}}(j(x+th)-j(x))=Q(x)^{-1}\alpha^2(h)-Q(x)^{-1}Q(x,h)Q(x)^{-1}\alpha^2(x).$$

Now, $Q(x,h)Q(x)^{-1}\alpha^2(x) = Q(x,h)x^{-1} = 2\alpha^2(h)$, since $l(\alpha(x^{-1}))l(x) = l(\alpha(x))l(x^{-1})$. It follows that

$$\frac{d}{dt_{t+0}}(j(x+th)-j(x)) = -Q(x)^{-1}\alpha^2(h).$$

As a result

$$\frac{d}{dt_{t+0}}Q(x)(j(x+th)-j(x)) = -Q(x)Q(x)^{-1}\alpha^2(h) = -\alpha^2(h).$$

Hence (8) holds and (M, \star, α^2) is a Hom-symmetric space. \Box

3.3. Examples of Hom-Jordan Hom-symmetric spaces

We construct examples of Hom-Jordan Hom-symmetric spaces using theorem 3.27.

Example 3.28. (Hom-Jordan Hom-symmetric space of dimension 2)

Let $E = \{e_1, e_2\}$ be a basis of of a 2-dimensional linear space V over \mathbb{K} . The following multiplication μ and linear map α on V define a unital Hom-Jordan algebra, with unit e_1 , over \mathbb{K}^2 :

$$\mu(e_1, e_1) = e_1, \mu(e_1, e_2) = \mu(e_2, e_1) = -e_2, \mu(e_2, e_2) = e_1$$

$$\alpha(e_1) = e_1, \alpha(e_2) = -e_2.$$

Therefore each element x in the Hom-Jordan algebra (V, μ, e_1, α) is given by its coordinate vector in the base E;

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, x_1, x_2 \in \mathbb{K}.$$

Therefore, for all $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ in (V, μ, e_1, α) , the associated matrix of the Hom-quadratic representation Q(x) (definition 3.9) in the base E is of the form

$$Q(x) = \begin{pmatrix} x_1^2 + x_2^2 & 2x_1x_2 \\ 2x_1x_2 & x_1^2 + x_2^2 \end{pmatrix}.$$

The determinant of this matrix is equal $\det(Q(x)) = (x_1 - x_2)^2(x_1 + x_2)^2$. Then, Q(x) is invertible if and only if $x_1 \neq \pm x_2$. Moreover, the inverse of an element $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ in (V, μ, e_1, α) is presented in the base E by the vector $x^{-1} = \frac{1}{x_1^2 - x_2^2} \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$. The set of invertible elements in (V, μ, e_1, α) is $M_2 = \{x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in (V, \mu, e_1, \alpha) \mid x_1 \neq \pm x_2\}$. Therefore, according to the theorem 3.27, $(M_2, \triangleright, id)$ is Hom-symmetric space, where the product \triangleright is defined by:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \triangleright \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \frac{1}{y_1^2 - y_2^2} \begin{pmatrix} y_1(x_1^2 + x_2^2) - 2x_1x_2y_2 \\ 2x_1x_2y_1 - y_2(x_1^2 + x_2^2) \end{pmatrix}.$$

Example 3.29. (Hom-Jordan Hom-symmetric space of dimension 3)

Let W be a 3-dimensional linear space over \mathbb{K} with a basis $\mathcal{B} = \{w_1, w_2, w_3\}$. The tuple (W, μ, w_1, β) is a unital Hom-Jordan algebra, with the unit w_1 , where the product is given by the following table

W	w_1	w_2	w_3
w_1	w_1	aw_2	bw_3
w_2	aw_2	0	0
w_3	bw_3	0	0

and the linear map $\beta: W \to W$ is defined by

$$\beta(w_1) = w_1, \beta(w_2) = aw_2, \beta(w_3) = bw_3,$$

such that a and b are two non-zero scalars in K.

In the basis \mathcal{B} , an element x in W is given by the column vector $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.

By definition 3.9, the associated matrix of the Hom-quadratic representation Q(x) in the base \mathcal{B} is of the form

$$Q(x) = \begin{pmatrix} x_1^2 & 0 & 0 \\ 2a^2x_1x_2 & a^2x_1^2 & 0 \\ b^2x_1x_3 & 0 & b^2x_1^2 \end{pmatrix}.$$

So, Q(x) is invertible if and only if $x_1 \neq 0$. By the Proposition 3.24, the inverse of invertible element $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in (W, \mu, w_1, \beta)$ is given by

$$x^{-1} = \frac{1}{x_1^2} \begin{pmatrix} x_1 \\ -x_2 \\ -x_3 \end{pmatrix}.$$

Denote the set of invertible elements in (W, μ, w_1, β) by M_3 . Thus, $M_3 = \{x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in (V, \mu, e_1, \alpha) \mid x_1 \neq 0\}$. According to Theorem 3.27, (M_3, \bullet, φ) is a Hom-symmetric space, where the product \bullet is given by:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \bullet \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \frac{x_1}{y_1^2} \begin{pmatrix} x_1 y_1 \\ a^2 (2x_2 y_1 - x_1 y_2) \\ b^2 (2x_3 y_1 - x_1 y_3) \end{pmatrix}$$

and the map $\varphi: M_3 \to M_3$ is defined by

$$\varphi \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ a^2 x_2 \\ b^2 x_3 \end{pmatrix}.$$

References

- [1] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
- [2] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications 18 (1967) 145-174.
- [3] P. Erdös, S. Shelah, Separability properties of almost-disjoint families of sets, Israel Journal of Mathematics 12 (1972) 207–214.
- [4] N. Aizawa and H. Sato, q-deformation of the Virasoro algebra with central extension, Phys. Lett. B, 256 (1991), 185–190.
- [5] W. Bertram and M. Didry, Symmetric bundles and representations of Lie triple systems, J. Gen. Lie Theory Appl., 3(4) (2009), 261–284.
- [6] W. Bertram and K.-H. Neeb, *Projective completions of Jordan pairs. Part II: Manifold structures and symmetric spaces*, Geom. Dedicata, 112(2) (2005), 73–113.
- [7] H. Braun and M. Koecher, Jordan-Algebren, Springer-Verlag, Berlin, 1966.
- [8] M. Chaichian, P. Kulish and J. Lukierski, q-deformed Jacobi identity, q-oscillators and q-deformed infinite-dimensional algebras, Phys. Lett. B, 237 (1990), 401–406.
- [9] S. Chouaibi, A. Makhlouf, E. Peyghan and I. Basdouri, Free Hom-groups, Hom-rings and Semisimple modules, arXiv:2101.03333.
- [10] T. L. Curtright and C. K. Zachos, Deforming maps for quantum algebras, Phys. Lett. B, 243 (1990), 237-244.
- [11] M. Didry, Structures algébriques associéees aux espaces syméetriques, thesis, Institut Elie Cartan, Nancy 2006 (see http://www.iecn.u-nancy.fr/e didrym/).
- [12] Y. Fregier and A. Gohr, On Hom-type algebras, J. Gen. Lie Theory Appl., 4 (2010), 16 pages.
- [13] J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra, 295(2) (2006), 314–361.
- [14] M. Hassanzadeh, *Hom-groups, representations and homological algebra*, Colloquium Mathematicum **158** (2019), 21–38.
- [15] M. Hassanzadeh, Lagrange's theorem For Hom-Groups, Rocky Mountain J. Math., 49(3) (2019), 773–787.
- [16] N. Jacobson, *Lectures on quadratic Jordan algebras*, Tata Institute of Fundamental Research Lectures on Mathematics, 45, Bombay: Tata Institute of Fundamental Research, MR 0325715 (1969).
- [17] N. Jacobson, Structure and Representations of Jordan Algebras, American Mathematical Society Colloquium XXXIX, Providence, Rhode Island, 1968.
- [18] J. Jiang, S. K. Mishra and Y. Sheng, Hom-Lie algebras and Hom-Lie groups, integration and differentiation, Sigma, 16 (2020), 22 pages.
- [19] M. Koecher, The Minnesota notes on Jordan algebras and their applications, Lecture Notes in Mathematics, 1710, Springer, ISBN 3-540-66360-6, Zbl 1072.17513(1999).
- [20] D. Larsson and S. D. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra, 288(2) (2005), 321–344.
- [21] C. Laurent-Gengoux, A. Makhlouf and J. Teles, *Universal algebra of a Hom-Lie algebra and group-like elements*, J. Pure Appl. Algebra, 222(5), (2018), 1139–1163.
- [22] O. Loos, Spiegelungsräume und homogene symmetrische Räume, Math. Z., 99 (1967), 141-170.
- [23] O. Loos, Symmetric Spaces I, Benjamin, New York 1969.
- [24] A. Makhlouf, Hom-alternative and Hom-Jordan algebras, Int. Electron. J. Algebra, 8 (2010), 177–190.
- [25] A. Makhlouf and S.D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2(2) (2008), 51-64.
- [26] K. Meyberg, Lectures on algebras and triple systems, University of Virginia (1972).
- [27] E. Peyghan and L. Nourmohammadifar, Almost contact Hom-Lie algebras and Sasakian Hom-Lie Algebras, J. Algebra Appl., (2022) 2250005 (27 pages).
- [28] E. Peyghan, L. Nourmohammadifar, A. Makhlouf and A. Gezer, Kähler-Norden structures on Hom-Lie groups and Hom-Lie algebras, arXiv:2002.03436.
- [29] H. Tilgner, Symmetric Spaces in Relativity and Quantum Theories, Group Theory in Non-Linear Problems, (1974), 143-184.
- [30] D. Yau, Hom-Maltsev, Hom-alternative, and Hom-Jordan algebras, Int. E. J. Alg., 11 (2012), 177–217.