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Nonlinear mixed Jordan triple *-derivations on Standard operator
algebras
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Abstract. Let A be a standard operator algebra on an infinite dimensional complex Hilbert space H
containing identity operator I, which is closed under the adjoint operation. Suppose that 6 : A — U is the
nonlinear mixed Jordan triple *- derivation. Then ¢ is an additive *-derivation.

1. Introduction

Let A be an *-algebra over the complex field C. For S,T € A, [S,T]. = ST -TS*and Se T = ST + TS*
denotes the skew Lie product and Jordan - product of S and T respectively. In several research domains,
the skew Lie product and Jordan *- product are becoming increasingly relevant, and its study has attracted
several author’s attention, see [1-4, 6, 8-15]. An additive map 6 : A — W is called an additive derivation
if 6(ST) = 6(S)T + SO(T) for all S, T € A. If 6(5*) = 6(S)* for all S € A then 6 is additive *-derivation. Let
0 : A — A be a mapping (without the additivity assumption). We say ¢ is a nonlinear *-Lie derivation or
nonlinear Jordan #- derivation if

o([S, T).) = [6(5), T]. + [S, &(T)]

or

5(SeT)=05(S)eT+S edT)

holdsforall S, T € Arespectively. With the nonlinear Jordan *- derivation and nonlinear skew Lie derivations
in mind, we can continue to grow them in a natural manner. A map 6 : A — A is said to be a nonlinear
Jordan triple *-derivation or skew Lie triple derivation if

(SeTell)=0(S)eTel+Seo(T)elU+SeTedU)

or
o([[S, T1., Ul.) = [[6(S), T1., U]. + [[S, 6(T)]., U]. + [[S, T1., 6(L)].
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forall S, T, U € A respectively. In this paper, we will look into nonlinear mixed Jordan triple *-derivations
on standard operator algebras. A map 6 : A — W is said to be a nonlinear mixed Jordan triple *-derivation
if

O([S, Tl e U) =[6(S), Tl e U+ [S,6(T)]. e U+ [S,T]. e 0(U)

for all 5, T,U € A. We prove that 6 is a nonlinear mixed Jordan triple *- derivation on standard operator
algebras if and only if 6 is an additive *-derivation.

2. Notation and Preliminaries

Throughout this paper, H represents a Banach space over IF, where F is the real field R or the complex
field C. B(H) represents the algebra of all bounded linear operators on H. By 7 () we mean the subalgebra
of bounded finite rank operators. It is to be noted that 7 () forms a *-closed ideal in B(H). An algebra
A C B(H) is said to be standard operator algebra in case F(H) C A. An operator P € B(H) is said to be a
projection provided P* = P and P? = P. An algebra  is said to be prime if AAB = 0 implies either A = 0 or
B = 0. It is to be noted that every standard operator algebra is prime and its centre is [Fl, where F is either
R or C. Any operator S € B(H) can be expressed as S = R(S) + iZ(S), where R(S) = % and I(S) = %
Both R(S) and T(S) are self disjoint.

The following known results will help us in our proof:

Lemma 2.1. [7, Lemma 2.1] Let W be a standard operator algebra with the identity operator I on a complex Hilbert
space which is closed under the adjoint operation. If ST = TS* holds true for all T € U, then S € RI.

Lemma 2.2. [5, Problem 230] Suppose W is a Banach algebra with the identity I. For any S,T € Wand A € C, if
[S,T] = Al then A = 0.

3. Main Result

Now take a projection P; € € and let P, = I — P;. We write 2, = P;AP; for j, k = 1,2. Then by the Peirce
decomposition of A, we have A = Aq; & Ay, & Ay & Wpy. Note that any operator S € A can be expressed as
S =511+ S12+ Sy + 52 and S;k € Sl[k]‘ for any Sjk [S Qljk.

Theorem 3.1. Let N be a standard operator algebra on an infinite dimensional complex Hilbert space ‘H containing
identity operator I, which is closed under the adjoint operation. Suppose that 6 : W — U satisfies 5([S, T]. ® U) =
[0(S), T]. e U+ [S,0(T)]. e U+[S, Tl e 6(U) forall S, T, U € A. Then § is an additive =-derivation.

This section’s major aim is to prove our main theorem by proving several lemmas.
Lemma 3.2. 6(0) = 0.

Proof. It is obvious that
6(0) = 5([0, 0]. @ 0) = [6(0), 0]. ® 0 + [0, 5(0)]. ® 0 + [0, 0]. ® 5(0) = 0.
|

Lemma 3.3. For every 511 S 9111, T12 € %[12, LI21 € sl[zl, V22 € ‘2[22, we have
0(S11 + T12 + Ux1 + Vo) = 6(S11) + 0(T12) + 6(U21) + 6(V2).

PFOOf. LetM = 5(511 +To+ Uy + sz) - (5(511) + 6(T12) + 5(UQ1) + 6(V22)). We have

O([Pj, S11 + T1o + U + Vol @ Pi) = [6(P)), S11 + Tz + Un1 + Vol @ P
+[Pj,6(S11 + T12 + Uy + V2)l @ P;
+[Pj, S11 + T12 + Uz + Vol. @ O6(P)).
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On the other hand, we have [P, S11]. @ P; = [P}, V2]. @ P; = 0. Also, [P}, T12]. ® P; = 0 or [P}, U21]. @ P; = 0 for
i,j=1,2and i # j. Then

O([Pj,S11 + T12 + Uy + Vol @ P)) O([Pj, S11]« @ P;) + 6([Pj, T12]« ® P;)

+6([Pj, Un ]« ® Pi) + 6([Pj, Vao]. ® Pi)

= [0(P)),S11+ Tz + Uy + Vol @ P;
+[Pj,6(511) + 6(T12) + 6(U21) + 6(V22)]« @ P;

+[Pj, S11 + T12 + U + Vol @ 6(P)).

By comparing the above two equations, we find [P;, M]. e P; = 0. This implies that P;MP; + P;M*P; = 0.
Multiplying both sides with P; from the left, we obtain P;MP; = 0 with i # j. Hence, M = M1 + M»,.
Again for every By € Ujp, we have

O([B12, 511 + T12 + Uy + Vol @ Po) = [6(B12),S11 + T12 + Uz + Vol @ P>
+[B12,6(S11 + T12 + Uy + Vo). @ P
+[B12, S11 + T12 + Uzt + Vol. @ 8(Ps).

On the other hand, by using Lemma 3.2, we have

O([B12, S11 + T1z2 + Uay + V2. @ P3) 0([B12, S11]« @ P2) + 6([B12, T12]« ® P2)

+06([B12, Uz1]« @ P2) + 6([B12, V2. @ P)

= [6(B12),S11 + Tia + Uy + Vol o P2
+[B12,6(511) + 6(T12) + 6(Uz1) + 6(V22)]. @ P2

+[B12, S11 + T12 + Uzt + Vl. @ 8(Ps).

By comparing the last two expressions, we find [Bi2, M]. ¢ P, = 0. That means B;,MP, + P,M*B}, = 0.
Multiplying both sides with P; from the left, we find B;,MP, = 0. By using the primeness of 2, we obtain
P,MP, = 0. Thus, My, = 0. Similarly, we can find Mi; = 0. Hence, M =0. O

Lemma 3.4. Forany S;j, Tjj € Wj, (1 < i # j < 2), we have
0(Sij + Tij) = 6(Sij) + &(Tij).
Proof. Since, we have
i . . .
[—EI, l(S,‘]‘ + Pi)]* ° (T’] + P]) = (51] + T’]) + Sij + TUSU

It follows from Lemma 3.3, that

5(Si; + Typ) + 8(S) + (T3 5((5,-,- FTy)+ S+ Tijs;j)

= O 5Li(Sy; + POl o (Ty; + P)

= [B(-2D,i(S; + P)). o (Ty + P)
Ha 1,80 + P (T + P)

+[—é1, i(Sij + P)]. @ 5(Tij + P;)
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i . i,
= 5([—51, iSj]. @ Tj) + 5([—51, iSj]. o P;)

+(S([—%I, iP;]. o Tjj) + 6([—%1, iP;]. e P))
= 6(T,-]-Sj].) +0(Sij + Sl’fj) +0(T;))
= 0(S;) + 6(51*»]») + 6(T1~]~S:].) + 0(Ty).
Hence, 6(S;; + Tij) = 6(Sij) + 6(T3j). O
Lemma 3.5. Forany S;;, Tii € Wy;, (1 < i < 2), we have
0(Sii + Tit) = 6(Sii) + 0(Ti).
Proof. Fori =1, write M = 6(511 + T11) — 0(511) — 6(T11). We have
O([P1,S11 + T11]. @ P) = [6(P1), 511 + T11]« ® P2 + [P1,6(511 + T11)]. @ P
+[P1, 511 + T11] @ O(Py).
On the other side, by using Lemma 3.2, we have
O([P1,S511 + Tu1l. @ P2) = O([P1,S11]. ® P2) + 6([P1, T11]. ® P2)
= [6(P1),S11 + T11]. ® P2 + [P1,6(S11) + 6(T11)]. ® P2
+[P1, 511 + T11]« @ 6(Pa).
By comparing the last two equations, we get [P1, M]. ® P, = 0. That means P1MP, + P,M"P; = 0. Multiplying

both sides from left by P;, we get PyMP, = 0. Similarly, we can show P,MP; = 0.
For any B;; € %;;, we have

0([Bi2, S11 + T11]l. ® P1) = [06(B12), 511 + T11]. ® P1 + [B12,0(511 + T11)]. ® P4
+[B12, S11 + T11]« ® 6(P1).

On the other side, by Lemma 3.2, we have

O([B12,S11 + T11l- ® P1) = 0([B12, S11]« ® P1) + 6([B12, T11]« ® P1)
= [6(B12),S11 + T11]. ® P1 + [B12,6(S11) + 6(T11)]« @ Py
+[B12, 511 + T11]. ® 6(P1).
By comparing the above two equations and then multiplying both sides from right by P,, we obtain
B1oMP, = 0. By using the primeness of U, we get M, = 0. Hence, M = M;;. Now, again on the one hand,
we have
0([S11 + T11, Biz2]. @ P2) = [6(S11 + T11), Bi2]. ® P2 + [S11 + T11,6(B12)]« @ P2
+[S11 + T11, B12]. @ 6(P2).
On the other hand, from Lemma 3.3 and Lemma 3.4 that for any By, € Uj», we have
0([S11 + T11, B12]. @ P) 0(511B12) + 0(T11B12) + 6(B1,57;) + 6(B,T75)
0([S11, B12]« @ P2) + 6([T11, B12]« ® P2)
[6(S11) + 6(T11), B12]. ® P2 + [S11 + T11,6(B12)]« @ P2
+[S11 + T11, B12]. @ 6(P2).

By comparing the last two expressions, we get [M1, B2]. ® P> = 0. By using the primeness of 2%, we obtain
M1 = 0. Hence, the proof is complete. Similarly, we can show the case fori =2. [
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Lemma 3.6. 0 is additive.

Proof. LetS, T € Aand write S = szzl Sij, T = Zijzl T;;. Then by using Lemma 3.3, Lemma 3.4 and Lemma
3.5, we have

(S(S + T) = 6(i Sl’]' + i T,])

i,j=1 ij=1
2

= 5(2(51‘]‘ +Tj)))

ij=1

2
= ) 6(Sij + Ty)

ij=1

2
= Z 5(Sij) + 6(T)

=1

2 2
=6() i) +8()_, Ty)

i,j=1 ij=1
= 5(S) + &(T).

O

Lemma 3.7. 0 has the following properties:

1. o@D = o(il).

2. Forany A € R, 5(AI) € RL.

3. Forall S € Wwith S = S*,6(S) = 6(S)".
4. Forany A € C,6(AI) € CI.

Proof. (1) We have,
O([iI, iI]. e (iI)) = —406(iI).
On the other hand, we have
o([41, iI]. e (il)) [0GID), iI]. e (i) + [il, 6(il)]. e (il)

+[il, iI]. ® 5(i])
—85(il) + 46" (il).

By comparing the above two equations, we get, 6(i)* = 6(il).
(2) For any A € R, we have
0 = O([AL, S]. o I) = [6(AI), S]. o I = O(AI)(S — S*) — (S — S")O(AI)".

Thus, 6(AI)(S — S*) = (S — S*)O(AI)" holds for all S € A and hence 6(AI)S = SO(AI)* for all S = —S* € A. Since
every S is of the form of S = 51 +iS,, where §; = % and S, = %, it follows that 6(AI)S = S6(AI)* for all
S € A. By Lemma 2.1, we have 6(AI) € RI.
(3) By using Lemma 3.7 (2), we have for S = §*
0=0(S,Il.eB) = [6(S),I].®B+][S,06()].eB+]S,I].e*05(B)
[6(S5),1].eB
(6(5) = o6(5)) e B
(6(5) = 6(5))B = B(5(S) = 6(5)")
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for all B € A. That means, 6(S) — 6(S)* = [0(S), I]. € FI. In particular, 6(S) — 6(S)* = Al for some A € C. Also,
we have

0 = &(SSl.eB)
= [5(S),Sl. e B+[S,5(S)]. o B
= (S(5(S) - 5(S)) » B
= A(SB-BS)

for all B € A. Suppose that A # 0, then S € [FI, which is a contradiction. Thus, A = 0. Hence, ¢(S) = 1(S)".
(4) For any A € Cand S € A with S = §*. Using Lemma 3.7 (3), we see that

0 =5([S,M]. o T) = [5(S), AIl, T + [S, S(AD)]. ® T + [S, AIl. ® 5(T) = [S, 5(AD)]. ® T

for all T € A. That means [S, Al]. = [S,AI] € FI. Now, by using Lemma 2.2, we get [S,AI] = 0. Thus,
O(AI)S = SO(Al) for all S = S*. Since every S is of the form of S = S; +iS;, where 51 = % and S, = % It
follows that

O(AI)S = SO(AI)
for all S € A. Hence, 6(AI) € CI.
Lemma3.8. 1. P;6(Py)Ps = —P16(P2)Pa,  Pa8(P1)Py = —Pa6(Pa)P;.

2. P18(P2)P1 = P2o(P1)P; = 0.

Proof. (1). Let1 <i# j < 2. It follows from Lemma 3.7 that

0= 06([P1, P2l @ P1) = [6(P1),P2]. @ P1+[P1,0(P)]. ® Py + [Py, P2]. @ 6(P1)

= —P0(P1)P1 — P16(P1)P2 + 2P16(P2)P1 — 6(P2)P1 — P16(P2).

Multiplying both sides by Py from left and by P, from the right, we get

P16(P1)P; = —P16(P2)P;.

Similarly, we can show that P,6(P1)P1 = —P»0(P2)P;.
(2). On the other hand, we get
O([il,iP1]. @ P;) = [0(il),iP1]. ® Py + [il, 0(iP1)]. ® Py + [il, iP1]. ® 6(P>)
= —iP16(il)Py + iP,6(i)P1 + 2i6(iP1)P, — 2iP,6(iP1) — 2P16(P>)
—206(P3)P;.

Multiplying both sides of the above equation by P; from left and right, we obtain that P16(P;)P; = 0.
Similarly, P,0(P1)P, =0. O

Let M = P16(P1)P; — P26(P1)P;1. Then M = —M*. We define a map ¢ : 4 — A by
P(S) = 5(S) — (SM — MS)

forall S € A. Itis easy to verify that ¢ also satifies ([S, T].  U) = [i(S), T]. e U+[S, P(T)]. e U+[S, T]. e (U)
and has following properties.

Remark 3.9. 1. IP(Pi) =P; (3(Pi) P;eW;,i=1,2.
2. @D = ().
3. P(S) = P(S) forall S = S* € U.
4. ¢ is additive.
5. 1 is a *-derivation if and only if 6 is a »-derivation.

Lemma 3.10. (P;) = 0 and (2;;) € Uj;.
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Proof. For any S5 € ;. By the properties of ¢, we have

P (iS12)

¢([§I/P1]* ®51)

= [GLYPDL * Sz + [5L Pl o Y(S12)
= i(Y(P1)S12 = Sua(P1)" + P1(S12) = ¥(S12)P1)
= i((P1)S12 + P1y(S12) — P(S12)P1).
Multiplying both sides of the above equation by P; and P, from the left and right respectively, we get
P1(iS12)P1 = Py (iS512)P> = 0.
Hence, (iS12) = P1y(iS12)P2 + P21)(iS12)P1. On the other hand, for all B € U, we have
0 = ¢([iS12, P1]. ® B) = [{(iS12), P1]. ® B.

Thus, (iS12)P1 — P1(iS12)* € RI. Multiplying both sides by P, from the left and P; from the right, we get
P>(iS12)P1 = 0. Thus, (iS12) € Wio. Since, Sq; is arbitary. Hence, Y(Uin) € g, Similarly, we can show
that l,b(?lﬂ) C Apq.
Now, by using the additivity of i) and for any S, € 2, we have

P([S12, P2l @ P2) = P(S12 + S3,) = P(S12) + ¢(S7y).

On the other hand, we have

P([S12, P2]. ® P3) [{(S12), P2]. ® P2 + [S12, P(P2)]« ® Py + [S12, P2]. ® (P2)

P(S12) + P(S12)" + 2512P(P2) + P(S12)*S], + P(P2)S7,.

By comparing the above two equations, we get

P(STy) = ¥(S12)" + 2512¢(P2) + P(S12) ST, + Y(P2)ST,-

Multiplying both sides of the above equation by P; from the left and by P, from the right, we have
S12¢(P2)P> = 0 for all 51, € Ayp. By using primeness of A, we get Pry(P2)P> = 0. Now, by using Remark 3.9
(1), we get P,6(P,)P, = 0. Hence, i(P,) = 0. Similarly, we can show that {(P;) = 0.

For every Si1 € Uj;, we have

0 = ¢([P1, S11]« ® P2) = [P1, Y(S11)]« ® Py = P1(S11)P2 + P2p(S11)"P1 1)

and

0 = 9([P2, S11]- ® P1) = [P2,Y(S11)]. ® Py = P2y(S11)P1 + P11(511)"Pa. )

Multiplying both sides from the left by P; to equation (1) and by P, from left to equation (2), we have
P1(S11)P2 = P21(511)P1 = 0.
On the other hand, for any Mj; € UAjp, we have

0 = ([M12, S11]+ ® P2) = [M12, Y(S11)]. ® P2 = M12y(S11)P2 + P2p(S11)"My,.

Multiplying both sides with P, from the right, we have M1,y(511)P> = 0. By using the primeness of A, we
get Po1(511)P, = 0. Hence, (A1) € Ayq. Similarly, we can show that {(Ux) C Ap. O
Lemma 3.11. For every S, Ti € ‘l[i,', Si]‘, T,']' (S ‘l[ij/ Tﬁ € QI]'I', T]] S QI]](l <i# ] < 2), we have

1. 9(SiiTi) = Y(Sip)Tji + Sijp(Ti)-

2. Y(SiTij) = Y(Sii)Tij + Sith(T).

3. Y(SiiTjj) = Y(SiTj; + Sijp(Tj).

4. P(SiTy) = Y(Si)Tii + Sip(Ty).
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Proof. (1) It follows from Lemma 3.10 that

Y(SiiTii) = Y([P;, Sijl- o Tji) = [Py, Y(Sij)l. @ Tji + [Py, Sijl @ P(T}7)

= P(Si)Tij + Sip(Tj).

(2) For every Xj; € j;, (1 <i# j <2), we have from (1) that

Y([Sii, Tijl. © Xji) = P(SiTiiXji) = Y(SuTip) Xji + SiTip(Xi)-
On the other hand, we have

Y([Sii, Tijl. # Xii) = [(Sii), Tijl. ® Xji + [Sis, P(Tij)]. @ Xji + [Sii, Tijl @ (X;i)
Y(Si)TiiXji + Si(Tij) Xji + SiTijp(Xji).

By comparing the above two equations, we have (V(S;iTij) — Y(Sii)Ti; — Sip(Ti;))X;i = 0 for all Xj; € Aj;. By
using the primeness of A, we have

Y(SiiTij) = Y(Si)Tij + Sii(Ti))-
(3) For every Xj; € Uj;, (1 <i# j <2),using Lemma 3.11, (1) and (2), we get
(ST Xii + SiTjjp(Xe) - = (SiiTjXGi)
P(SiTjXji + Si(TjiX;i)
S TjiXi + Sip(TjXi + SiTjip(XGi)-
Hence, ({(S;;Tjj) — (Y(Sij)Tj; + Sijp(T})))Xji = 0 for all Xj; € Aj;. Then, by using the primeness of A, we have
W(SiiTjj) = Y(SijTjj + Sijip(Tj).
(4) For every X;; € W, (1 <i# j <2), we have from (2) that
Y(SiTin)Xij + SiTup(Xij) = P(SiTiXij)
= PSi)TiXij + Sip(Tii Xij)
= PS)TuXij + SiP(Ti) Xij + Sii Tiip(Xij).
Hence, ((SiiTi) — ((Si)Tii + Sitp(Ti)))Xij = 0 for all X;; € U;;. Then, by using the primeness of 2, we have
Y(SiTi) = Y(Si)Tii + Siip(Ti;).
Now, by using (1), (2), (3), (4) and the additivity of i, we get Y(ST) = P(S)T + Sy(T).
[

Lemma 3.12. (5*) = ¢(S)* forall S € W.

Proof. We have 1(P1) = 0 and ¢/(P;) = 0. Then
0 = () = —y(GD@ED) = Y@l + il (l) = 2ip(il).

Thus, (iI) = 0. Hence, (iS) = P (il(S)) = i)(S). For any S € U, applying Remark 3.9 (3), we have
P(S) = YRS —iTS) = Y(RS) - Y(TS)

PRS) — ip(TS) = Y(RS)” - iP(TS)*

PRS)" + (iP(TS))" = P(RS)” + P(ITS)*
(RS +iTS)* = Y(S)".

O

Proof of Theorem 3.1 By using Lemma 3.6, Lemma 3.11, Lemma 3.12 and the Remark 3.9, we get 6 is an
additive #-derivation. O
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