

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Nonlinear mixed Jordan triple *-derivations on Standard operator algebras

Nadeem ur Rehmana, Junaid Nisara, Mohd Nazima

^aDepartment of Mathematics, Aligarh Muslim University, Aligarh-202002 India

Abstract. Let $\mathfrak A$ be a standard operator algebra on an infinite dimensional complex Hilbert space $\mathcal H$ containing identity operator I, which is closed under the adjoint operation. Suppose that $\delta: \mathfrak A \to \mathfrak A$ is the nonlinear mixed Jordan triple *- derivation. Then δ is an additive *-derivation.

1. Introduction

Let $\mathfrak A$ be an *-algebra over the complex field $\mathbb C$. For $S,T\in \mathfrak A$, $[S,T]_*=ST-TS^*$ and $S\bullet T=ST+TS^*$ denotes the skew Lie product and Jordan *- product of S and T respectively. In several research domains, the skew Lie product and Jordan *- product are becoming increasingly relevant, and its study has attracted several author's attention, see [1-4,6,8-15]. An additive map $\delta:\mathfrak A\to\mathfrak A$ is called an additive derivation if $\delta(ST)=\delta(S)T+S\delta(T)$ for all $S,T\in \mathfrak A$. If $\delta(S^*)=\delta(S)^*$ for all $S\in \mathfrak A$ then δ is additive *-derivation. Let $\delta:\mathfrak A\to\mathfrak A$ be a mapping (without the additivity assumption). We say ψ is a nonlinear *-Lie derivation or nonlinear Jordan *- derivation if

$$\delta([S, T]_*) = [\delta(S), T]_* + [S, \delta(T)]_*$$

or

$$\delta(S \bullet T) = \delta(S) \bullet T + S \bullet \delta(T)$$

holds for all $S,T\in\mathfrak{A}$ respectively. With the nonlinear Jordan *- derivation and nonlinear skew Lie derivations in mind, we can continue to grow them in a natural manner. A map $\delta:\mathfrak{A}\to\mathfrak{A}$ is said to be a nonlinear Jordan triple *-derivation or skew Lie triple derivation if

$$\delta(S \bullet T \bullet U) = \delta(S) \bullet T \bullet U + S \bullet \delta(T) \bullet U + S \bullet T \bullet \delta(U)$$

or

$$\delta([[S,T]_*,U]_*) = [[\delta(S),T]_*,U]_* + [[S,\delta(T)]_*,U]_* + [[S,T]_*,\delta(U)]_*$$

2020 Mathematics Subject Classification. Primary 47B47; Secondary 16W25, 46K15

Keywords. Mixed Jordan triple *- derivation, standard operator algebra

Received: 11 May 2022; Revised: 06 October 2022; Accepted: 12 October 2022

Communicated by Dijana Mosić

Research supported by the National Board of Higher Mathematics (NBHM), India, Grant No. 02011/16/2020 NBHM (R. P.) R and D II/7786.

Email addresses: nu.rehman.mm@amu.ac.in, rehman100@gmail.com (Nadeem ur Rehman), junaidnisar73@gmail.com (Junaid Nisar), mnazim1882@gmail.com (Mohd Nazim)

for all $S,T,U\in\mathfrak{A}$ respectively. In this paper, we will look into nonlinear mixed Jordan triple *-derivations on standard operator algebras. A map $\delta:\mathfrak{A}\to\mathfrak{A}$ is said to be a nonlinear mixed Jordan triple *-derivation if

$$\delta([S,T]_* \bullet U) = [\delta(S),T]_* \bullet U + [S,\delta(T)]_* \bullet U + [S,T]_* \bullet \delta(U)$$

for all $S, T, U \in \mathfrak{A}$. We prove that δ is a nonlinear mixed Jordan triple *- derivation on standard operator algebras if and only if δ is an additive *-derivation.

2. Notation and Preliminaries

Throughout this paper, \mathcal{H} represents a Banach space over \mathbb{F} , where \mathbb{F} is the real field \mathbb{R} or the complex field \mathbb{C} . $\mathcal{B}(\mathcal{H})$ represents the algebra of all bounded linear operators on \mathcal{H} . By $\mathcal{F}(\mathcal{H})$ we mean the subalgebra of bounded finite rank operators. It is to be noted that $\mathcal{F}(\mathcal{H})$ forms a *-closed ideal in $\mathcal{B}(\mathcal{H})$. An algebra $\mathfrak{A} \subset \mathcal{B}(\mathcal{H})$ is said to be standard operator algebra in case $\mathcal{F}(\mathcal{H}) \subset \mathfrak{A}$. An operator $P \in \mathcal{B}(\mathcal{H})$ is said to be a projection provided $P^* = P$ and $P^2 = P$. An algebra \mathfrak{A} is said to be prime if $A\mathfrak{A}\mathcal{B} = 0$ implies either A = 0 or B = 0. It is to be noted that every standard operator algebra is prime and its centre is $\mathbb{F}I$, where \mathbb{F} is either \mathbb{R} or \mathbb{C} . Any operator $S \in \mathcal{B}(\mathcal{H})$ can be expressed as $S = \Re(S) + i\mathfrak{T}(S)$, where $\Re(S) = \frac{S+S^*}{2}$ and $\mathfrak{T}(S) = \frac{S-S^*}{2i}$. Both $\Re(S)$ and $\mathfrak{T}(S)$ are self disjoint.

The following known results will help us in our proof:

Lemma 2.1. [7, Lemma 2.1] Let \mathfrak{A} be a standard operator algebra with the identity operator I on a complex Hilbert space which is closed under the adjoint operation. If $ST = TS^*$ holds true for all $T \in \mathfrak{A}$, then $S \in \mathbb{R}I$.

Lemma 2.2. [5, Problem 230] Suppose $\mathfrak A$ is a Banach algebra with the identity I. For any $S,T\in \mathfrak A$ and $\lambda\in \mathbb C$, if $[S,T]=\lambda I$, then $\lambda=0$.

3. Main Result

Now take a projection $P_1 \in \mathfrak{A}$ and let $P_2 = I - P_1$. We write $\mathfrak{A}_{jk} = P_j \mathfrak{A} P_k$ for j, k = 1, 2. Then by the Peirce decomposition of \mathfrak{A} , we have $\mathfrak{A} = \mathfrak{A}_{11} \oplus \mathfrak{A}_{12} \oplus \mathfrak{A}_{21} \oplus \mathfrak{A}_{22}$. Note that any operator $S \in \mathfrak{A}$ can be expressed as $S = S_{11} + S_{12} + S_{21} + S_{22}$ and $S_{jk}^* \in \mathfrak{A}_{kj}$ for any $S_{jk} \in \mathfrak{A}_{jk}$.

Theorem 3.1. Let $\mathfrak A$ be a standard operator algebra on an infinite dimensional complex Hilbert space $\mathcal H$ containing identity operator I, which is closed under the adjoint operation. Suppose that $\delta: \mathfrak A \to \mathfrak A$ satisfies $\delta([S,T]_* \bullet U) = [\delta(S),T]_* \bullet U + [S,\delta(T)]_* \bullet U + [S,T]_* \bullet \delta(U)$ for all $S,T,U \in \mathfrak A$. Then δ is an additive *-derivation.

This section's major aim is to prove our main theorem by proving several lemmas.

Lemma 3.2. $\delta(0) = 0$.

Proof. It is obvious that
$$\delta(0) = \delta([0,0]_* \bullet 0) = [\delta(0),0]_* \bullet 0 + [0,\delta(0)]_* \bullet 0 + [0,0]_* \bullet \delta(0) = 0.$$
 □

Lemma 3.3. For every $S_{11} \in \mathfrak{A}_{11}$, $T_{12} \in \mathfrak{A}_{12}$, $U_{21} \in \mathfrak{A}_{21}$, $V_{22} \in \mathfrak{A}_{22}$, we have

$$\delta(S_{11}+T_{12}+U_{21}+V_{22})=\delta(S_{11})+\delta(T_{12})+\delta(U_{21})+\delta(V_{22}).$$
 Proof. Let $M=\delta(S_{11}+T_{12}+U_{21}+V_{22})-(\delta(S_{11})+\delta(T_{12})+\delta(U_{21})+\delta(V_{22})).$ We have
$$\delta([P_j,S_{11}+T_{12}+U_{21}+V_{22}]_*\bullet P_i)=[\delta(P_j),S_{11}+T_{12}+U_{21}+V_{22}]_*\bullet P_i$$

+
$$[P_j, \delta(S_{11} + T_{12} + U_{21} + V_{22})]_* \bullet P_i$$

+ $[P_i, S_{11} + T_{12} + U_{21} + V_{22}]_* \bullet \delta(P_i).$

On the other hand, we have $[P_j, S_{11}]_* \bullet P_i = [P_j, V_{22}]_* \bullet P_i = 0$. Also, $[P_j, T_{12}]_* \bullet P_i = 0$ or $[P_j, U_{21}]_* \bullet P_i = 0$ for i, j = 1, 2 and $i \neq j$. Then

$$\begin{split} \delta([P_j,S_{11}+T_{12}+U_{21}+V_{22}]_* \bullet P_i) &= & \delta([P_j,S_{11}]_* \bullet P_i) + \delta([P_j,T_{12}]_* \bullet P_i) \\ &+ \delta([P_j,U_{21}]_* \bullet P_i) + \delta([P_j,V_{22}]_* \bullet P_i) \end{split}$$

$$&= & [\delta(P_j),S_{11}+T_{12}+U_{21}+V_{22}]_* \bullet P_i \\ &+ [P_j,\delta(S_{11})+\delta(T_{12})+\delta(U_{21})+\delta(V_{22})]_* \bullet P_i \\ &+ [P_j,S_{11}+T_{12}+U_{21}+V_{22}]_* \bullet \delta(P_i). \end{split}$$

By comparing the above two equations, we find $[P_j, M]_* \bullet P_i = 0$. This implies that $P_jMP_i + P_iM^*P_j = 0$. Multiplying both sides with P_j from the left, we obtain $P_jMP_i = 0$ with $i \neq j$. Hence, $M = M_{11} + M_{22}$. Again for every $B_{12} \in \mathfrak{A}_{12}$, we have

$$\delta([B_{12}, S_{11} + T_{12} + U_{21} + V_{22}]_* \bullet P_2) = [\delta(B_{12}), S_{11} + T_{12} + U_{21} + V_{22}]_* \bullet P_2 + [B_{12}, \delta(S_{11} + T_{12} + U_{21} + V_{22})]_* \bullet P_2 + [B_{12}, S_{11} + T_{12} + U_{21} + V_{22}]_* \bullet \delta(P_2).$$

On the other hand, by using Lemma 3.2, we have

$$\begin{split} \delta([B_{12},S_{11}+T_{12}+U_{21}+V_{22}]_* \bullet P_2) &= & \delta([B_{12},S_{11}]_* \bullet P_2) + \delta([B_{12},T_{12}]_* \bullet P_2) \\ &+ \delta([B_{12},U_{21}]_* \bullet P_2) + \delta([B_{12},V_{22}]_* \bullet P_2) \\ &= & [\delta(B_{12}),S_{11}+T_{12}+U_{21}+V_{22}]_* \bullet P_2 \\ &+ [B_{12},\delta(S_{11})+\delta(T_{12})+\delta(U_{21})+\delta(V_{22})]_* \bullet P_2 \\ &+ [B_{12},S_{11}+T_{12}+U_{21}+V_{22}]_* \bullet \delta(P_2). \end{split}$$

By comparing the last two expressions, we find $[B_{12}, M]_* \bullet P_2 = 0$. That means $B_{12}MP_2 + P_2M^*B_{12}^* = 0$. Multiplying both sides with P_1 from the left, we find $B_{12}MP_2 = 0$. By using the primeness of \mathfrak{A} , we obtain $P_2MP_2 = 0$. Thus, $M_{22} = 0$. Similarly, we can find $M_{11} = 0$. Hence, M = 0. \square

Lemma 3.4. For any S_{ij} , $T_{ij} \in \mathfrak{A}_{ij}$, $(1 \le i \ne j \le 2)$, we have

$$\delta(S_{ij} + T_{ij}) = \delta(S_{ij}) + \delta(T_{ij}).$$

Proof. Since, we have

$$[-\frac{i}{2}I, i(S_{ij} + P_i)]_* \bullet (T_{ij} + P_j) = (S_{ij} + T_{ij}) + S_{ij}^* + T_{ij}S_{ij}^*.$$

It follows from Lemma 3.3, that

$$\delta(S_{ij} + T_{ij}) + \delta(S_{ij}^{*}) + \delta(T_{ij}S_{ij}^{*}) = \delta\left((S_{ij} + T_{ij}) + S_{ij}^{*} + T_{ij}S_{ij}^{*}\right)$$

$$= \delta([-\frac{i}{2}I, i(S_{ij} + P_{i})]_{*} \bullet (T_{ij} + P_{j}))$$

$$= [\delta(-\frac{i}{2}I), i(S_{ij} + P_{i})]_{*} \bullet (T_{ij} + P_{j})$$

$$+[-\frac{i}{2}I, \delta(i(S_{ij} + P_{i}))]_{*} \bullet (T_{ij} + P_{j})$$

$$+[-\frac{i}{2}I, i(S_{ij} + P_{i})]_{*} \bullet \delta(T_{ij} + P_{j})$$

$$= \delta([-\frac{i}{2}I, iS_{ij}]_* \bullet T_{ij}) + \delta([-\frac{i}{2}I, iS_{ij}]_* \bullet P_j)$$

$$+\delta([-\frac{i}{2}I, iP_i]_* \bullet T_{ij}) + \delta([-\frac{i}{2}I, iP_i]_* \bullet P_j)$$

$$= \delta(T_{ij}S_{ij}^*) + \delta(S_{ij} + S_{ij}^*) + \delta(T_{ij})$$

$$= \delta(S_{ij}) + \delta(S_{ij}^*) + \delta(T_{ij}S_{ij}^*) + \delta(T_{ij}).$$

Hence, $\delta(S_{ij} + T_{ij}) = \delta(S_{ij}) + \delta(T_{ij})$. \square

Lemma 3.5. For any S_{ii} , $T_{ii} \in \mathfrak{A}_{ii}$, $(1 \le i \le 2)$, we have

$$\delta(S_{ii} + T_{ii}) = \delta(S_{ii}) + \delta(T_{ii}).$$

Proof. For i = 1, write $M = \delta(S_{11} + T_{11}) - \delta(S_{11}) - \delta(T_{11})$. We have

$$\delta([P_1, S_{11} + T_{11}]_* \bullet P_2) = [\delta(P_1), S_{11} + T_{11}]_* \bullet P_2 + [P_1, \delta(S_{11} + T_{11})]_* \bullet P_2 + [P_1, S_{11} + T_{11}]_* \bullet \delta(P_2).$$

On the other side, by using Lemma 3.2, we have

$$\delta([P_1, S_{11} + T_{11}]_* \bullet P_2) = \delta([P_1, S_{11}]_* \bullet P_2) + \delta([P_1, T_{11}]_* \bullet P_2)$$

$$= [\delta(P_1), S_{11} + T_{11}]_* \bullet P_2 + [P_1, \delta(S_{11}) + \delta(T_{11})]_* \bullet P_2$$

$$+ [P_1, S_{11} + T_{11}]_* \bullet \delta(P_2).$$

By comparing the last two equations, we get $[P_1, M]_* \bullet P_2 = 0$. That means $P_1 M P_2 + P_2 M^* P_1 = 0$. Multiplying both sides from left by P_1 , we get $P_1 M P_2 = 0$. Similarly, we can show $P_2 M P_1 = 0$.

For any $B_{ij} \in \mathfrak{A}_{ij}$, we have

$$\delta([B_{12}, S_{11} + T_{11}]_* \bullet P_1) = [\delta(B_{12}), S_{11} + T_{11}]_* \bullet P_1 + [B_{12}, \delta(S_{11} + T_{11})]_* \bullet P_1 + [B_{12}, S_{11} + T_{11}]_* \bullet \delta(P_1).$$

On the other side, by Lemma 3.2, we have

$$\delta([B_{12}, S_{11} + T_{11}]_* \bullet P_1) = \delta([B_{12}, S_{11}]_* \bullet P_1) + \delta([B_{12}, T_{11}]_* \bullet P_1)$$

$$= [\delta(B_{12}), S_{11} + T_{11}]_* \bullet P_1 + [B_{12}, \delta(S_{11}) + \delta(T_{11})]_* \bullet P_1$$

$$+ [B_{12}, S_{11} + T_{11}]_* \bullet \delta(P_1).$$

By comparing the above two equations and then multiplying both sides from right by P_2 , we obtain $B_{12}MP_2 = 0$. By using the primeness of \mathfrak{A} , we get $M_{22} = 0$. Hence, $M = M_{11}$. Now, again on the one hand, we have

$$\delta([S_{11} + T_{11}, B_{12}]_* \bullet P_2) = [\delta(S_{11} + T_{11}), B_{12}]_* \bullet P_2 + [S_{11} + T_{11}, \delta(B_{12})]_* \bullet P_2 + [S_{11} + T_{11}, B_{12}]_* \bullet \delta(P_2).$$

On the other hand, from Lemma 3.3 and Lemma 3.4 that for any $B_{12} \in \mathfrak{A}_{12}$, we have

$$\begin{split} \delta([S_{11} + T_{11}, B_{12}]_* \bullet P_2) &= \delta(S_{11}B_{12}) + \delta(T_{11}B_{12}) + \delta(B_{12}^*S_{11}^*) + \delta(B_{12}^*T_{11}^*) \\ &= \delta([S_{11}, B_{12}]_* \bullet P_2) + \delta([T_{11}, B_{12}]_* \bullet P_2) \\ &= [\delta(S_{11}) + \delta(T_{11}), B_{12}]_* \bullet P_2 + [S_{11} + T_{11}, \delta(B_{12})]_* \bullet P_2 \\ &+ [S_{11} + T_{11}, B_{12}]_* \bullet \delta(P_2). \end{split}$$

By comparing the last two expressions, we get $[M_{11}, B_{12}]_* \bullet P_2 = 0$. By using the primeness of \mathfrak{A} , we obtain $M_{11} = 0$. Hence, the proof is complete. Similarly, we can show the case for i = 2. \square

Lemma 3.6. δ *is additive.*

Proof. Let $S, T \in \mathfrak{A}$ and write $S = \sum_{i,j=1}^{2} S_{ij}$, $T = \sum_{i,j=1}^{2} T_{ij}$. Then by using Lemma 3.3, Lemma 3.4 and Lemma 3.5, we have

$$\delta(S+T) = \delta(\sum_{i,j=1}^{2} S_{ij} + \sum_{i,j=1}^{2} T_{ij})$$

$$= \delta(\sum_{i,j=1}^{2} (S_{ij} + T_{ij}))$$

$$= \sum_{i,j=1}^{2} \delta(S_{ij} + T_{ij})$$

$$= \sum_{i,j=1}^{2} \delta(S_{ij}) + \delta(T_{ij})$$

$$= \delta(\sum_{i,j=1}^{2} S_{ij}) + \delta(\sum_{i,j=1}^{2} T_{ij})$$

$$= \delta(S) + \delta(T).$$

Lemma 3.7. δ has the following properties:

- 1. $\delta(iI)^* = \delta(iI)$.
- 2. For any $\lambda \in \mathbb{R}$, $\delta(\lambda I) \in \mathbb{R}I$.
- 3. For all $S \in \mathfrak{A}$ with $S = S^*, \delta(S) = \delta(S)^*$.
- 4. For any $\lambda \in \mathbb{C}$, $\delta(\lambda I) \in \mathbb{C}I$.

Proof. (1) We have,

$$\delta([iI, iI]_* \bullet (iI)) = -4\delta(iI).$$

On the other hand, we have

$$\begin{split} \delta([iI,iI]_* \bullet (iI)) &= [\delta(iI),iI]_* \bullet (iI) + [iI,\delta(iI)]_* \bullet (iI) \\ &+ [iI,iI]_* \bullet \delta(iI) \\ &= -8\delta(iI) + 4\delta^*(iI). \end{split}$$

By comparing the above two equations, we get, $\delta(iI)^* = \delta(iI)$.

(2) For any $\lambda \in \mathbb{R}$, we have

$$0 = \delta([\lambda I, S]_* \bullet I) = [\delta(\lambda I), S]_* \bullet I = \delta(\lambda I)(S - S^*) - (S - S^*)\delta(\lambda I)^*.$$

Thus, $\delta(\lambda I)(S - S^*) = (S - S^*)\delta(\lambda I)^*$ holds for all $S \in \mathfrak{A}$ and hence $\delta(\lambda I)S = S\delta(\lambda I)^*$ for all $S = -S^* \in \mathfrak{A}$. Since every S is of the form of $S = S_1 + iS_2$, where $S_1 = \frac{S + S^*}{2}$ and $S_2 = \frac{S - S^*}{2i}$, it follows that $\delta(\lambda I)S = S\delta(\lambda I)^*$ for all $S \in \mathfrak{A}$. By Lemma 2.1, we have $\delta(\lambda I) \in \mathbb{R}I$.

(3) By using Lemma 3.7 (2), we have for $S = S^*$

$$0 = \delta([S, I]_* \bullet B) = [\delta(S), I]_* \bullet B + [S, \delta(I)]_* \bullet B + [S, I]_* \bullet \delta(B)$$
$$= [\delta(S), I]_* \bullet B$$
$$= (\delta(S) - \delta(S)^*) \bullet B$$
$$= (\delta(S) - \delta(S)^*)B - B(\delta(S) - \delta(S)^*)$$

for all $B \in \mathfrak{A}$. That means, $\delta(S) - \delta(S)^* = [\delta(S), I]_* \in \mathbb{F}I$. In particular, $\delta(S) - \delta(S)^* = \lambda I$ for some $\lambda \in \mathbb{C}$. Also, we have

$$0 = \delta([S, S]_* \bullet B)$$

$$= [\delta(S), S]_* \bullet B + [S, \delta(S)]_* \bullet B$$

$$= (S(\delta(S) - \delta(S)^*)) \bullet B$$

$$= \lambda(SB - BS)$$

for all $B \in \mathfrak{A}$. Suppose that $\lambda \neq 0$, then $S \in \mathbb{F}I$, which is a contradiction. Thus, $\lambda = 0$. Hence, $\psi(S) = \psi(S)^*$. (4) For any $\lambda \in \mathbb{C}$ and $S \in \mathfrak{A}$ with $S = S^*$. Using Lemma 3.7 (3), we see that

$$0 = \delta([S, \lambda I]_* \bullet T) = [\delta(S), \lambda I]_* \bullet T + [S, \delta(\lambda I)]_* \bullet T + [S, \lambda I]_* \bullet \delta(T) = [S, \delta(\lambda I)]_* \bullet T$$

for all $T \in \mathfrak{A}$. That means $[S, \lambda I]_* = [S, \lambda I] \in \mathbb{F}I$. Now, by using Lemma 2.2, we get $[S, \lambda I] = 0$. Thus, $\delta(\lambda I)S = S\delta(\lambda I)$ for all $S = S^*$. Since every S is of the form of $S = S_1 + iS_2$, where $S_1 = \frac{S+S^*}{2}$ and $S_2 = \frac{S-S^*}{2i}$. It follows that

$$\delta(\lambda I)S = S\delta(\lambda I)$$

for all $S \in \mathfrak{A}$. Hence, $\delta(\lambda I) \in \mathbb{C}I$.

Lemma 3.8. 1.
$$P_1\delta(P_1)P_2 = -P_1\delta(P_2)P_2$$
, $P_2\delta(P_1)P_1 = -P_2\delta(P_2)P_1$.
2. $P_1\delta(P_2)P_1 = P_2\delta(P_1)P_2 = 0$.

Proof. (1). Let $1 \le i \ne j \le 2$. It follows from Lemma 3.7 that

$$0 = \delta([P_1, P_2]_* \bullet P_1) = [\delta(P_1), P_2]_* \bullet P_1 + [P_1, \delta(P_2)]_* \bullet P_1 + [P_1, P_2]_* \bullet \delta(P_1)$$

= $-P_2\delta(P_1)P_1 - P_1\delta(P_1)P_2 + 2P_1\delta(P_2)P_1 - \delta(P_2)P_1 - P_1\delta(P_2)$.

Multiplying both sides by P_1 from left and by P_2 from the right, we get

$$P_1\delta(P_1)P_2 = -P_1\delta(P_2)P_2.$$

Similarly, we can show that $P_2\delta(P_1)P_1 = -P_2\delta(P_2)P_1$.

(2). On the other hand, we get

$$\begin{array}{lll} \delta([iI,iP_1]_* \bullet P_2) & = & [\delta(iI),iP_1]_* \bullet P_2 + [iI,\delta(iP_1)]_* \bullet P_2 + [iI,iP_1]_* \bullet \delta(P_2) \\ & = & -iP_1\delta(iI)P_2 + iP_2\delta(iI)P_1 + 2i\delta(iP_1)P_2 - 2iP_2\delta(iP_1) - 2P_1\delta(P_2) \\ & -2\delta(P_2)P_1. \end{array}$$

Multiplying both sides of the above equation by P_1 from left and right, we obtain that $P_1\delta(P_2)P_1=0$. Similarly, $P_2\delta(P_1)P_2=0$. \square

Let
$$M = P_1\delta(P_1)P_2 - P_2\delta(P_1)P_1$$
. Then $M = -M^*$. We define a map $\psi : \mathfrak{A} \to \mathfrak{A}$ by $\psi(S) = \delta(S) - (SM - MS)$

for all $S \in \mathfrak{A}$. It is easy to verify that ψ also satisfies $\psi([S,T]_* \bullet U) = [\psi(S),T]_* \bullet U + [S,\psi(T)]_* \bullet U + [S,T]_* \bullet \psi(U)$ and has following properties.

Remark 3.9. 1. $\psi(P_i) = P_i \delta(P_i) P_i \in \mathfrak{A}_{ii}, i = 1, 2.$

- 2. $\psi(iI)^* = \psi(iI)$.
- 3. $\psi(S) = \psi(S)^*$ for all $S = S^* \in \mathfrak{A}$.
- 4. ψ is additive.
- 5. ψ is a *-derivation if and only if δ is a *-derivation.

Lemma 3.10. $\psi(P_i) = 0$ and $\psi(\mathfrak{A}_{ii}) \subseteq \mathfrak{A}_{ii}$.

Proof. For any $S_{12} \in \mathfrak{A}_{12}$. By the properties of ψ , we have

$$\psi(iS_{12}) = \psi([\frac{i}{2}I, P_1]_* \bullet S_{12})$$

$$= [\frac{i}{2}I, \psi(P_1)]_* \bullet S_{12} + [\frac{i}{2}I, P_1]_* \bullet \psi(S_{12})$$

$$= i(\psi(P_1)S_{12} - S_{12}\psi(P_1)^* + P_1\psi(S_{12}) - \psi(S_{12})P_1)$$

$$= i(\psi(P_1)S_{12} + P_1\psi(S_{12}) - \psi(S_{12})P_1).$$

Multiplying both sides of the above equation by P_1 and P_2 from the left and right respectively, we get

$$P_1\psi(iS_{12})P_1 = P_2\psi(iS_{12})P_2 = 0.$$

Hence, $\psi(iS_{12}) = P_1\psi(iS_{12})P_2 + P_2\psi(iS_{12})P_1$. On the other hand, for all $B \in \mathfrak{A}$, we have

$$0 = \psi([iS_{12}, P_1]_* \bullet B) = [\psi(iS_{12}), P_1]_* \bullet B.$$

Thus, $\psi(iS_{12})P_1 - P_1\psi(iS_{12})^* \in \mathbb{R}I$. Multiplying both sides by P_2 from the left and P_1 from the right, we get $P_2\psi(iS_{12})P_1 = 0$. Thus, $\psi(iS_{12}) \subseteq \mathfrak{A}_{12}$. Since, S_{12} is arbitary. Hence, $\psi(\mathfrak{A}_{12}) \subseteq \mathfrak{A}_{12}$. Similarly, we can show that $\psi(\mathfrak{A}_{21}) \subseteq \mathfrak{A}_{21}$.

Now, by using the additivity of ψ and for any $S_{12} \in \mathfrak{A}_{12}$, we have

$$\psi([S_{12}, P_2]_* \bullet P_2) = \psi(S_{12} + S_{12}^*) = \psi(S_{12}) + \psi(S_{12}^*).$$

On the other hand, we have

$$\psi([S_{12}, P_2]_* \bullet P_2) = [\psi(S_{12}), P_2]_* \bullet P_2 + [S_{12}, \psi(P_2)]_* \bullet P_2 + [S_{12}, P_2]_* \bullet \psi(P_2)$$

$$= \psi(S_{12}) + \psi(S_{12})^* + 2S_{12}\psi(P_2) + \psi(S_{12})^* S_{12}^* + \psi(P_2)S_{12}^*.$$

By comparing the above two equations, we get

$$\psi(S_{12}^*) = \psi(S_{12})^* + 2S_{12}\psi(P_2) + \psi(S_{12})^*S_{12}^* + \psi(P_2)S_{12}^*.$$

Multiplying both sides of the above equation by P_1 from the left and by P_2 from the right, we have $S_{12}\psi(P_2)P_2=0$ for all $S_{12}\in\mathfrak{A}_{12}$. By using primeness of \mathfrak{A} , we get $P_2\psi(P_2)P_2=0$. Now, by using Remark 3.9 (1), we get $P_2\delta(P_2)P_2=0$. Hence, $\psi(P_2)=0$. Similarly, we can show that $\psi(P_1)=0$. For every $S_{11}\in\mathfrak{A}_{11}$, we have

$$0 = \psi([P_1, S_{11}]_* \bullet P_2) = [P_1, \psi(S_{11})]_* \bullet P_2 = P_1 \psi(S_{11}) P_2 + P_2 \psi(S_{11})^* P_1$$
(1)

and

$$0 = \psi([P_2, S_{11}]_* \bullet P_1) = [P_2, \psi(S_{11})]_* \bullet P_1 = P_2 \psi(S_{11}) P_1 + P_1 \psi(S_{11})^* P_2.$$
(2)

Multiplying both sides from the left by P_1 to equation (1) and by P_2 from left to equation (2), we have $P_1\psi(S_{11})P_2 = P_2\psi(S_{11})P_1 = 0$.

On the other hand, for any $M_{12} \in \mathfrak{A}_{12}$, we have

$$0 = \psi([M_{12}, S_{11}]_* \bullet P_2) = [M_{12}, \psi(S_{11})]_* \bullet P_2 = M_{12}\psi(S_{11})P_2 + P_2\psi(S_{11})^*M_{12}^*.$$

Multiplying both sides with P_2 from the right, we have $M_{12}\psi(S_{11})P_2=0$. By using the primeness of \mathfrak{A} , we get $P_2\psi(S_{11})P_2=0$. Hence, $\psi(\mathfrak{A}_{11})\subseteq\mathfrak{A}_{11}$. Similarly, we can show that $\psi(\mathfrak{A}_{22})\subseteq\mathfrak{A}_{22}$. \square

Lemma 3.11. For every S_{ii} , $T_{ii} \in \mathfrak{A}_{ii}$, S_{ij} , $T_{ij} \in \mathfrak{A}_{ij}$, $T_{ji} \in \mathfrak{A}_{ji}$, $T_{jj} \in \mathfrak{A}_{ji}$ $(1 \le i \ne j \le 2)$, we have

- 1. $\psi(S_{ij}T_{ji}) = \psi(S_{ij})T_{ji} + S_{ij}\psi(T_{ji}).$
- 2. $\psi(S_{ii}T_{ij}) = \psi(S_{ii})T_{ij} + S_{ii}\psi(T_{ij})$.
- 3. $\psi(S_{ij}T_{jj}) = \psi(S_{ij})T_{jj} + S_{ij}\psi(T_{jj})$.
- 4. $\psi(S_{ii}T_{ii}) = \psi(S_{ii})T_{ii} + S_{ii}\psi(T_{ii})$.

Proof. (1) It follows from Lemma 3.10 that

$$\psi(S_{ij}T_{ji}) = \psi([P_i, S_{ij}]_* \bullet T_{ji}) = [P_i, \psi(S_{ij})]_* \bullet T_{ji} + [P_i, S_{ij}]_* \bullet \psi(T_{ji})$$

= $\psi(S_{ij})T_{ij} + S_{ij}\psi(T_{ji}).$

(2) For every $X_{ii} \in \mathfrak{A}_{ji}$, $(1 \le i \ne j \le 2)$, we have from (1) that

$$\psi([S_{ii},T_{ij}]_* \bullet X_{ji}) = \psi(S_{ii}T_{ij}X_{ji}) = \psi(S_{ii}T_{ij})X_{ji} + S_{ii}T_{ij}\psi(X_{ji}).$$

On the other hand, we have

$$\psi([S_{ii}, T_{ij}]_* \bullet X_{ji}) = [\psi(S_{ii}), T_{ij}]_* \bullet X_{ji} + [S_{ii}, \psi(T_{ij})]_* \bullet X_{ji} + [S_{ii}, T_{ij}]_* \bullet \psi(X_{ji})$$

$$= \psi(S_{ii})T_{ij}X_{ji} + S_{ii}\psi(T_{ij})X_{ji} + S_{ii}T_{ij}\psi(X_{ji}).$$

By comparing the above two equations, we have $(\psi(S_{ii}T_{ij}) - \psi(S_{ii})T_{ij} - S_{ii}\psi(T_{ij}))X_{ji} = 0$ for all $X_{ji} \in \mathfrak{A}_{ji}$. By using the primeness of \mathfrak{A} , we have

$$\psi(S_{ii}T_{ij}) = \psi(S_{ii})T_{ij} + S_{ii}\psi(T_{ij}).$$

(3) For every $X_{ji} \in \mathfrak{A}_{ji}$, $(1 \le i \ne j \le 2)$, using Lemma 3.11, (1) and (2), we get

$$\psi(S_{ij}T_{jj})X_{ji} + S_{ij}T_{jj}\psi(X_{ji}) = \psi(S_{ij}T_{jj}X_{ji})
= \psi(S_{ij})T_{jj}X_{ji} + S_{ij}\psi(T_{jj}X_{ji})
= \psi(S_{ij})T_{ji}X_{ji} + S_{ij}\psi(T_{jj})X_{ji} + S_{ij}T_{ji}\psi(X_{ii}).$$

Hence, $(\psi(S_{ij}T_{jj}) - (\psi(S_{ij})T_{jj} + S_{ij}\psi(T_{jj})))X_{ji} = 0$ for all $X_{ji} \in \mathfrak{A}_{ji}$. Then, by using the primeness of \mathfrak{A} , we have $\psi(S_{ij}T_{jj}) = \psi(S_{ij})T_{jj} + S_{ij}\psi(T_{jj})$.

(4) For every $X_{ij} \in \mathfrak{A}_{ij}$, $(1 \le i \ne j \le 2)$, we have from (2) that

$$\psi(S_{ii}T_{ii})X_{ij} + S_{ii}T_{ii}\psi(X_{ij}) = \psi(S_{ii}T_{ii}X_{ij})
= \psi(S_{ii})T_{ii}X_{ij} + S_{ii}\psi(T_{ii}X_{ij})
= \psi(S_{ii})T_{ii}X_{ij} + S_{ii}\psi(T_{ii})X_{ij} + S_{ii}T_{ii}\psi(X_{ij}).$$

Hence, $(\psi(S_{ii}T_{ii}) - (\psi(S_{ii})T_{ii} + S_{ii}\psi(T_{ii})))X_{ij} = 0$ for all $X_{ij} \in \mathfrak{A}_{ij}$. Then, by using the primeness of \mathfrak{A} , we have $\psi(S_{ii}T_{ii}) = \psi(S_{ii})T_{ii} + S_{ii}\psi(T_{ii})$.

Now, by using (1), (2), (3), (4) and the additivity of ψ , we get $\psi(ST) = \psi(S)T + S\psi(T)$.

Lemma 3.12. $\psi(S^*) = \psi(S)^*$ for all $S \in \mathfrak{A}$.

Proof. We have $\psi(P_1) = 0$ and $\psi(P_2) = 0$. Then

$$0 = \psi(I) = -\psi((iI)(iI)) = \psi(iI)iI + iI\psi(iI) = 2i\psi(iI).$$

Thus, $\psi(iI) = 0$. Hence, $\psi(iS) = \psi(iI(S)) = i\psi(S)$. For any $S \in \mathfrak{A}$, applying Remark 3.9 (3), we have

$$\begin{split} \psi(S^*) &= \psi(\Re S - i\mathfrak{T}S) = \psi(\Re S) - \psi(i\mathfrak{T}S) \\ &= \psi(\Re S) - i\psi(\mathfrak{T}S) = \psi(\Re S)^* - i\psi(\mathfrak{T}S)^* \\ &= \psi(\Re S)^* + (i\psi(\mathfrak{T}S))^* = \psi(\Re S)^* + \psi(i\mathfrak{T}S)^* \\ &= \psi(\Re S + i\mathfrak{T}S)^* = \psi(S)^*. \end{split}$$

Proof of Theorem 3.1 By using Lemma 3.6, Lemma 3.11, Lemma 3.12 and the Remark 3.9, we get δ is an additive *-derivation. \square

Acknowledgement: The authors thank the referee for his/her careful reading of the article and suggesting valuable comments that improved the quality of this work.

References

- [1] R. An, J. Hou, A characterization of *-automorphism on B(H), Acta. Math. Sinica (English Series) 26 (2010) 287-294.
- [2] Z. Bai, S. Du, Maps preserving products XY YX* on von Neumann algebras, J. Math. Anal. Appl. 386 (2012) 103-109.
- [3] J. Cui, C. K. Li, Maps preserving product XY YX* on factor von Neumann algebras, Linear Algebra Appl. 431 (2009) 833-842.
- [4] L. Dai, F. Lu, Nonlinear maps preserving Jordan*-products, J. Math. Anal. Appl. 409 (2014) 180-188.
- [5] P. Halmos, A Hilbert Space Problem Book, 2nd ed, Springer-Verlag, New York-Heideberg-Berlin 1982.
- [6] D. Huo, B. Zheng, J. Xu, H. Liu, Nonlinear mappings pre- serving Jordan multiple *-product on factor von Neumann algebras, Linear Multilinear Algebra 63 (2015) 1026-1036.
- [7] W. Jing, Nonlinear *-Lie derivations of standard operator algebras, Quaestiones Mathematicae 39 (2016) 1037-1046.
- [8] C. Li, Y. Zhao, F. Zhao, Nonlinear maps preserving the mixed product [A B, C]₁ on von Neumann algebras, Filomat 35 (2021) 2775-2781.
- [9] C. Li, D. Zhang, Nonlinear Mixed Jordan Triple *-Derivations on *-Algebras, Sib. Math. J. 63 (2022) 735-742.
 [10] C. Li, Y. Zhao, F. Zhao, Nonlinear *-Jordan-type derivations on *-algebras, Rocky Mountain J. Math. 51 (2021) 601-612.
- [11] C. Li, F. Zhao, Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sinica (English Series) 32 (2016) 821-830.
- [12] W. Lin, Nonlinear *-Lie-type derivations on standard operator algebras, Acta Math. Hungar. 154 (2018) 480-500.
- [13] W. Lin, Nonlinear *-Lie-type derivations on von Neumann algebras, Acta Math. Hungar. 156 (2018) 112-131.
- [14] F. Zhao, C. Li, Nonlinear maps preserving the Jordan triple *-product between factors. Indag. Math. 29 (2017) 619-627.
- [15] F. Zhao, C. Li, Nonlinear *-Jordan triple derivations on von Neumann algebras, Math. Slovaca 68 (2018) 163-170.