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On the weighted maximal operators of Marcinkiewicz type Cesaro
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Istvan Blahota?, Kéroly Nagy®
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Abstract. In this paper we investigate the behaviour of the weighted maximal operators of Marcinkiewicz
type (C,a)-means 0,”(f) := sup,p % in the Hardy space H,(G*) (0 < @ < 1and p < 2/(2 + a)). Itis
showed that the maximal operators o, ”(f) are bounded from the dyadic Hardy space H,(G?) to the Lebesgue
space LF(G?), and that this is in a sense sharp. It was also proved a strong convergence theorem for the
Marcinkiewicz type (C, @) means of Walsh-Fourier series in H,(G?).

1. Introduction

In 1987, Simon [26] proved a strong summation theorem for Walsh-Fourier series. Namely, he certified
that for any function f € H;(G) the following inequality holds
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This result has a trigonometric analogue verified by Smith [28]. Analogical theorems with respect to
Vilenkin and Vilenkin-like systems were proved by Gét [5] (even in the unbounded case) and Blahota [1].

Later, Simon [27] proved a similar result, he showed that there exists a constant C, depending only on p,
such that the inequality
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holds for all f € H,(G) (0 < p < 1). Tephnadze in [30] proved that sequence {kz‘p ke ]P} in expression (1)

is sharp. The next strong summation theorem for Fejér means was proved also by Tephnadze [29]. There
exists a constant ¢, > 0 which depends only on p, that
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holds for all f € H, (0 < p < 1/2), where [x] denotes the integer part of x. Blahota, Tephnadze and Toledo
[2, 3] generalized this result for (C, a) means (see later inequalities (2) and (3)).

Weisz [32] investigated the maximal operator 0** (0 < a < 1) of (C, @) means of one-dimensional Walsh-
Fourier series. Several results were proved with respect to this operator. Weisz proved that 0**: H,(G) —
LP(G) is bounded for p > 1/(1 + a). Later, Goginava proved that ¢** is not bounded from the dyadic
Hardy space Hi/1+a)(G) to the space LY/1+9(G) [9]. This means that the endpoint of the boundedness of
the maximal operator 0% is pg := 1/(1 + a). Weisz and Simon [24] also investigated the properties of
the maximal operator ¢%" in this endpoint. They showed that the maximal operator is bounded from the
dyadic Hardy space Hj(1+4)(G) to the space weak-LY(*®)(G). Blahota and Tephnadze [2] continued the
investigations of this topic. In 2014, they proved that the exact rate of the deviant behaviour of the nth (C, &)
means is log' (1 + 1). In addition they proved the next strong summation theorem. Let 0 < a < 1, than
there exists a positive constant c(a) depending only on ¢, such that

logn Z

holds for all F € Hij1+a)(G). Analogical theorems for p < pg = 1/(1 + a) are discussed in [3] by the first
author, Tephnadze and Toledo. Namely, the following result was proved. There exists a positive constant
Ca,p Which depends only on a and p such that
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holds for all F € Hy, (p < po = 1/(1 + a)). The case of Fejér means (setting @ = 1) was proved by
Tephnadze [29]. The properties of the maximal operator of Fejér means were investigated by several
authors [4, 12, 13, 23, 25, 31, 35].

Goginava discussed the two-dimensional situation. He investigated the maximal operator ¢** (0 < a <
1) of Marcinkiewicz type (C, @) means [9]. Namely, he proved that the maximal operator

a*(f) —sup |a (f)| —sup A" ZAa 15]](f)

is bounded from the two-dimensional dyadic martingale Hardy space H,(G?) to the space LF(G?) for
p > 2/(2 + a). Moreover, he showed that the assumption p > 2/(2 + a) is essential for the boundedness of
this operator, which means that the endpoint of the boundedness of two-dimensional Marcinkiewicz type
maximal operator 0" is pg := 2/(2 + a).

The maximal operator 0®* is not bounded from the dyadic Hardy space H,(G?) to the space weak-L/(G?)
for0 < p < 2/(2+a), it can be proved by interpolation. That is why the behaviour of this maximal operator in
the endpoint case (when pg = 2/(2 + a)) interesting. Goginava [11] proved the boundedness of the maximal
operator ¢** from the dyadic Hardy space Hy/+)(G?) to the space weak-L??*%(G?). In the special case,
while a = 1 we get the so-called Marcinkiewicz means of Walsh-Fourier series. This case was discussed
by several authors [12, 14, 18, 20-22, 36]. For recent investigations connected to this topic with respect to
almost everywhere convergence see [6], [7] and [15], to strong convergence see [17].

In the paper [19], Nagy and Salim defined the weighted maximal operator 6** by

57(f) o= sup o)

nep log® 2 (n + 1)

and they showed that the weighted maximal operator is bounded from the dyadic Hardy space Ha/+a)(G?)
to the space L@*9(G?). Moreover, they proved the sharpness of the sequence {log**/?(n + 1) : n € P}.
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That is, they stated that the exact rate of deviant behaviour of nth Marcinkiewicz type (C, &) mean, it is
log®®2(n + 1) in the end point case py = 2/(2 + ). They also proved a two-dimensional analogue of
the strong summation theorem given in the inequality (2). Namely, there exists a positive constant c(«)
depending only on «, such that

2/(2+a)

Z H ?"(f ||Hz/2+a) “ “2/ 2+q)
10gn — Hyj2+a)

holds forall f € Hz/(2+a)(G2).
In this paper, we deal with the case 0 < p < pp = 2/(2 + a), while 0 < a < 1. We define the maximal
operator

| a(fﬂ

g _
(f) su 2/p 2+a) "

We prove its boundedness from the martingale Hardy space H,(G?) to the Lebesgue space LP(G?). We
prove the sharpness of the sequence {n?7~?*®}, as well. At the end of this article, we prove a strong
summation theorem for the Marcinkiewicz type (C, @) means of Walsh-Fourier series in the Hardy space H,,
(0 <p <po=2/(2+ a)). That is, we prove the two-dimensional version of the strong summation theorem
given in the inequality (3).

2. Definitions and notation

L? (G2) ,0 < p < oo with norms or quasi-norms [IIl, denotes the Lebesque spaces, as usual. If 1 < p < oo,
for two-dimensional Walsh-Paley system the number

)= [ 16yt it
is called (i, j)th Walsh-Fourier coefficient of function f. For more details see [33, 34]. For two-dimensional
Walsh-Fourier series the rectangular partial sums are defined by

-1 M-1

Snm(f,x, ) = £, pwi)wi(y).
i=0 j=0

Let0O <a <1andlet

N (j+0() (@+D)(@+2)...(a+7)
A% = . = -
! j /!

, (jeNja#-1,-2,...).
It is known that
n
AT~ 0, AT AS ~ AT Y AR = AL
k=0

(see Zygmund [38], page 42.).
The Marcinkiewicz type (C, a) means of the two-dimensional Walsh-Fourier series are defined as the
(C, a) means of the quadratic partial sums. That is,

on(f,x,y) = A“ ZA L Skk(f, X, ).

n-1 j=1
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The kernel function is given by

n

1
Ki(wy) = o= ) AIDADA(y).
n=1 k=1

For trigonometric system the behaviour of Marcinkiewicz means (@ = 1) was investigated by Marcinkiewicz
[16] and the properties of Marcinkiewicz type (C, &) means was discussed by Zhizhiashvili [37].

It is well-know that the L! norm of the kernels K¢ (0 < & < 1) are uniformly bounded [8]. That is, there
exists a positive constant c. such that

||K,‘I||1 <c forallmeN. (4)

3. Auxiliary results

Our proofs are based on two lemmas of Goginava [11, page 20, 22] and some results of Weisz [34].

Lemma 3.1 (Goginava [11]). Let (x,y) € Iy X (Iy\Ip+1), where 0 <b <N, n > 2N Then

fINXN(K"‘(x+u y+v)|dy(u v) < WZDZ’(V"'eh)

holds.

In order to apply Lemma 3.1, we decompose the set I in the following way.

N-1 N
Iy= U(Ib\1b+1) and  Ip\lp+1 = U I, ©)
b=0 s=b+1

whereI =Lua0,...,y»=1,0,...,ys =1) fors <Nandli\’ =1INQ....,y» =1,0,...,0). We use it later.

Lemma 3.2 (Goginava [11]). Let (x,v) € (I;\ls+1) X (It\Ip+1), 0 <a<b<Nandn > 2N Then

f K (x + 1, y + 0)ldu(u,v) < 25\1 )a pb+aa Z D,i(x + ¢,)
InXIN 2 j=a
N b+1
+2a—b Z 2](a_1)D27'(y +ep + xb+1’]-_1) Z ZmD2b+1 (X +e; + em) ,
j=b+1 m=a+1
where x;j := Zgzi Xses, Xij—1 := 0.
For the simplicity we introduce the notation
b C(O( 2b+aa
(Km (x,y) := N ZDZ’ X+ e;)
and
N b+1
c(a)2°? .
Waub(x y) = 22N Z 2](a DDZ;(y +eép + xh+1,]-_1) Z 2mD2b+1 (x +eé;, + Em).

j=b+1 m=a+1
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The o-algebra generated by the dyadic 2-dimensional cubes I7 is denoted by 7 (k € IN). f = (f, : n € N)
denotes a one-parameter martingale with respect to the sequence of o-algebras (¥, 7 € IN). The maximal
function of a martingale f is defined by

f*=sup | fn‘ .
neN
For 0 < p < oo the Hardy martingale space H,(G?) consists of all martingales for which
171, = N

For f € L}(G?) the sequence (S »:(f) : n € N) is a martingale. The maximal function can be given in the
form

< 00.
P

. 1
fxy) SUp T X (@) fl . fu,0)dp(u,v)|.

The concept of Walsh-Fourier coefficient of a function f can be extended to martingales in the usual way
(see Weisz [33, 34]). The Walsh-Fourier coefficients of f € L!(G?) are the same as the ones of the martingale
(S2120(f) : n € IN) obtained from f. Consequently, partial sums, Marcinkiewicz means and (C, @) means of
quadratic partial sums are defined for martingales, as well.

A useful property of the Hardy spaces H,(G?) is the atomic structure. A bounded measurable function
a is a p-atom, if there exists a dyadic two-dimensional cube I?, such that

a) fp adu =0,
b) |lalle < p(I?)717,

c) suppa C I
The operator T is said to be p-quasilocal if there exists a positive constant ¢,, such that

f [T(a)Pdu < ¢,

InXIn
holds for all arbitrary p-atom a with support Iy X Iy.

Lemma 3.3 (Weisz [33]). Let 0 < p < 1. Suppose that the operator T is o-sublinear and p-quasilocal. If T is
bounded from Le, to Leo, then

ITfllp < cpliflls,  for all f € H,,.

For the martingale

f = i (fn _fn—l)
n=0

the conjugate transforms are defined as

o]

=Y r O (o~ i),

n=0

where t € G is fixed. We note that ;‘6 = f. It is well-known (see [33]) that
— —||P
170, = Wl el ~ [ 7w ©
@M = SO
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4. The properties of the weighted maximal function UZ’*( §)

Theorem 4.1. Let 0 <a<1and 0 <p <2/(2+ a).

a) Then the maximal operator

o o)
op ()= sup oo e

is bounded from the dyadic Hardy space H,(G?) to the space LF(G?).
b) Let ¢ : P — [1, 00) be a non-decreasing function satisfying the condition
' 12/p-(2+a)
P o)
Then the weighted maximal operator
w0
is not bounded from the Hardy space H,(G?) to the space weak-LP(G?).

Proof. First, we prove part a).

2986

Inequality (4) yields the boundedness of the operator o, from the space L™ to the space L*. Applying
Lemma 3.3, we have to show that the maximal operator ;" is p-quasilocal. That is, there exists a constant

c(a) > 0 such that

L|Uf;'*(ﬂ)|p du < c(a) < oo

for every p-atom a, where the dyadic cube I is the support of the p-atom a.

Let a be an arbitrary p-atom with support I? and p(I?) = 272V, Without loss of generality, we may assume
that I2 := Iy X Iy. It is easily seen that 0%(a) = 0 if n < 2V. Therefore, we set n > 2N. We know that

llalleo < 22N/P. Thus,

|0Z(a; X, y)| < [ ! la(u, v)| |Kﬁ(x +u,y+ v)( du(u,v)
NXIN

c(a)2*NP f
InXIn

Ki(x+u,y+ U)|
24 (a)] < c(a)2?NlP f ‘"—d u,v).
|05 (@)| < c(a) up | e w(u, v)

IA

Ky +u,y+ v)| du(u,v)

and

We decompose the set Iy X Iy as
InXIy = (INXE>U<EXIN)U(EXE).
This yields that

f (afj’*(a)lp du f B (G;"*(a)(p du + f |ag'*(a)|p du
InXIy InXIy INXIn

f ‘G;"*({Il)‘p dy =:L1+ Ly +Ls.
InxIn

+

(®)
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First, we discuss the expression L (the expression L, is discussed analogously). Lemma 3.1 and decompo-
sition (5) imply that

IA

b=0 s=b+1

N-1 N p
c(a)22Np
L1 Z Lx[s [ZN(z/p o a)2N+a(N b) Z DZ/(]/ + eb) dtu(x y)

22N 2sp 2—N —s
2N(2 2p—pa)+Np+pa(N—-b)

IA

a

D
™1

IA
2
2
o
il g
N
Z
2

There are three cases. 0 <p <1/(1+a),p=1/1+a)and 1/(1+a) <p <2/2+ a).
Letusset0 <p <1/(1+ a). Then

c(a)
L < N(-p) < c(a).

Now, we set p = 1/(1 + ). We get that

()N
Ny = @)

Ly <

Let1/(1 + a) <p < 2/(2 + a). In this case, we immediately write that

2N(pa+p—1) 2N(2—2p+p—1)
R ) [m——
ON(1-p) ON(1-p)

=c(a)

Ly <c(a)

Now, we discuss the expression Lz. We introduce the notation J, := I,\I,+1. We write that

N-1N-1
* P
Ly = f |o;’” (a)| du
a=0 b=0 ¥ Joxb
N-1a-1 N-1N-1
MUY SUENTZ
= f oo (@) du + f |05 (@) du
a=0 b=0 Jax a=0 b=a JaX]p
= L3,1 + L32

We discuss L3, (by symmetry the discussion of L3 ; is analogous). Inequality (8) and Lemma 3.2 yield that

N-1N-1 (](aab p
2N
LS,Z 0()2 Z Z j];ij [n>2N nZ/p (2+a)] d!’l

a=0 b

1N-1 7(0(,11,17 P
ZN
+c(@)2 Zﬁxh {n>2N 20 (z+a)] du

a= =a

IN

. 71 2
=: L3/2+L3,2.
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Decomposition (5), Lemma 3.2 and p < 2/(2 + a) give that

N-1N-1 N ob+ac s P
1 2N .
Ly = cla)2 Z f 22N+aNN@/p-(+a) ZDZ’(’”E‘*) du(x, y)
a=0 b=a s=a+1 Y TxJ j=a
N-1N-1 N —eb
- C(a{)ZZN Z Z 2(b+aa+s)p s
- 2(2N+aN)p2N(2—p(2+a))
a=0 b=a s=a+1
N-1 -1 N
= o) Z paap Z ob(p=1) Z 2s(p=1)
a=0 b=a s=a+1

N-1 N-1
< c(oz) Z 2aap+2u(p—l) — c(oz) Z 2a(p(a+2)—2) — c(a).
a=0 a=0

At last, we discuss L3 ,. Wj;b (x,y) # 0 implies that

x € IN(0,...,0,x,=1,0,...,0,x, =1,0,...,0,Xps1, ..., XN-1) = I?\}r(x)
and

y € IN(O, cry yh = 1/ xb+l/ e /xq—ll 1 - xq/ yq+1/ crey yN—l) = Is+1(-7zb+l,q)

for some g and r, for whicha <r < b < g < N (see [11]). Consequently, we have

(@)
«zg/b(x/ y) S 22Nn0( 2a+y+qa' (9)

1 N-1 Da+r+qa p
(2N(2+a)2N(2/p—2—a) ) d‘u

IA

o

&

i
D1~
!

2
L3,2

ie(b+1,..,N—1) I @XIL (Rpe1,9)
N-1N-1 b 1 N-1
= c(a) Z Z Z f zp(aﬂwa)dy
170 b = ze{b+xll,._.€,l\l—l}q_b+1lf\}'(x)><[,?+1(fb+1,q)
N-1N-1 b 1 N-1
< C(OC) Z Z 2p(u+r+qa)2—N—q
a=0 b=a r=a x;=0, g=b+1
ie{b+1,..,.N-1}
N-1N-1 b
< o) Zzp(tHHba)szszNfb
a=0 b=a r=a
N-1N-1
< C(O() Z 2p(ﬂ+b)2b(pa72)
a=0 b=a
N-1
< c(a) Z 293P +pa=2) < ().
a=0

Let us discuss part b) of Theorem 4.1. Let B € IP and

fo(x1,x2) := (Dgzs+1 (x1) — Doz (x1))(Dazena (x2) — Dyze(x2)).
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In this case, we have

(1 i e, 0y,
fa(i ]):{ J

otherwise.
We obtain
(Di(x1) = D2 (x1)) ifi, je (226 +1,...,2%+1),
Sifaix1,%2) = fB<;ff§;(:§2) “Dul) —
0 otherwise.
Using

fg(x1,x2) = sup |SM,1,Mn(fB;x1/x2)| = |f3(x1,
nelN

we get that

* 2
I1f8llH, f5llp = IDy2se1 — Doas]l,

1/p\?
((f 2ZBp + (223+1 _ 223)p) ]
Lp\p+1 g

By \1/p 2
_ ((2 2; pl) ] — 22B(2-2/p).
2 +

By equality (10) we can write

22841
0y s, = = | ) AT Sii(fn,x2)
22B j:1
1 -
= o |45 (D4 (1) = Do (1)) (Do (x2) — Do (x2))|
22B

= 1 |wo2s (X1 ) w2 (x7)] = 22(;(1 for all (x1,x2) € G

Agzza
Using this fact, we get
/Ip
(p(zm)zzzm {(xlr X2) |U fB)| 2% 22311} S c
I flli, = (p(22B)22Ban2B(2-2/p)
(ZZB)Z/p—Z—a
P227)

At last, under condition (7), there exists a sequence of positive integers {ny, k € IN}, such that

(22nk)2/p—2—a
im ————— =
k—o0 (P(ZZVlk)

This completes the proof of Theorem 4.1. [

2989

(10)
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5. Strong summation theorem

Now, we prove a strong summation theorem for the Marcinkiewicz type (C, &) means of Walsh-Fourier
series in the Hardy space H, (0 <a <1,0 <p <2/(2 +a)).

Theorem 5.1. Let 0 <a <1and 0 <p < 2/(2 + a). There exists a positive constant c(a) depending only on o and
p, such that

o ool
y WM; <c@p||ly,

m=1
holds for all f € H,(G?).

Proof. In the sequel, we show that there exists a positive constant c(«, p) which depends only on a and p
such that the following inequality holds

2, [lon (Al
Yy <c@nllfl,  (f @) 1)

m=1

Inequality (4) gives that o3} is bounded from the space L., to the space L. By Lemma 3.3 it is enough to
prove that inequality (11) holds for every arbitrary p-atom a. Taking into account that [al|, < 1 we show
that there exists a positive constant c(«) such that

lo%, @I
Z; < @p) (12)

m=

holds.

Let a be an arbitrary p-atom with support I? and p(I?) = . Without loss of generality, we may assume
that I := Iy X Iy. We know that |jal| < 22N/P. By a simple consideration 6%(a) = 0 if n < 2N. Therefore, we
setn > 2N,

To prove inequality (12), we apply the next decomposition.

2—21\7

v fos@l) & llon@|l]
ZmS—(Z-Hx)p = Z m3-Q+a)p
m=1 m=2N
- o5 @)’ : Iow”
szz: j];] m3m(2+a)p ZI I m3 (2+a)p
" Iom<a>|” !%(a)l”

=L +L+I3+1.
First, we apply inequality (4) and we write that

- o @
Z jl; ity 13" @+a)p du

m=2N

1
c(a,p) X oy lalle 27N < (e ).

mZN

I

IA

IA
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Second, we discuss expression I. Decomposition (5) and Lemma 3.1 yield that
n_ N-1 N-1

llallo Y
c(a,p) Z. Z Z " (2+a)p f (2N+a(N b)Z) du

m=2N b=0 s=b+1

I

IA

n N-1 N-1

22N
(p-1)n—-N
C(a P) Z Z Z md— (2+a)p INp+a(N-b)p v

m=2N b=0 s=b+1

N-1
1
N L abprb(p-1)
c(a,p)2 Z m3—Q+a)pPNp+aNp ZZ 2
m=2N b=0

N 1 N-1
_ c(a,p)2 Z 1 Z oblap+p=1)
~ DNp+aNp ! mB3-2+a)p — :

m=2

IA

IA

Thereare 3 cases. 0 <p <1/(1+a),p=1/1+a)and 1/(1 +a) <p <2/2+a).
Letusset0 <p <1/(1+ a). Then

o, p2¥ 1 e, 2N

I < ONp+aNp 2(2-Q2+a)p)N — N - C(O(, P)

Now, wesetp =1/(1 + o).

cla,p2N N N2@+apN
L < ONp(l+a) 2Q2-(2+a)p)N — <clap )2— c(a, p) N(I- p) < c(a,p)-

Letussetl/(1+a)<p<2/2+a).

C(CK p)zN 2N(ap+p-1) c(a P)
2Np+aNp 2(2 (2+a)p)N s 2(2 Q+a)p)N — (O{ p)

I <
The estimate of expression I3 is similar. That is, we have that
I3 < c(a, p).

At last, we discuss the expression I4. By the decomposition (5) we write

P
N 1 a |Um(a)|
" 3-Q2+a) ey
m=2" a= 0 (I \Los1)X(Ip\Ips1) 1T p
+ n N-1N f lo% (@) el
41 42.
m=oN a=0 b=g ¥ Ta\las1)X(I\Ip+1) m3-(2+a)p

We discuss I4,. By decomposition (5) and Lemma 3.2 we get that

-1

n NIN (lalloTca?Y
Lip < c(a,p) f Sy
rr;N;)‘ I\L)X @\ ly) 17 CFP
n N-1N |a”007(aab)
+ cla,p) f oA (13)
,,;‘N e 0\ L)X\ ) TP
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and

b+aa P
n_ N-1N-1 (& Y, Dyl + e,,))

221\1 a
Iy < cla,p)2*" Z Z jI‘ - B-2+a)p dy(x, y)

m=2N a=0 b=a s=a+1 X(Ib\IbJrl)

N-1N-1
1 2(b+aa+s)p
< 2N —s—b
C((X p 2 Z md- (2+a)pm0zp ZObZ Zl 22Np
a q s=a+

N-1
2a((2+a)p-2)
2N
< cla,p)2 Z m3=2r 22Np

m= 2N a=0
cla,p)2N 1
22Ny oN@-2p) c(a,p)-

Now, we discuss the expression Iﬁ ,- Inequalities (13) and (9) imply

n 1 N-1N-1 b 1 N-1 putreqa\P
2 2N
Iy, < ca, p)2 Z - 2rap Z Z Z f ( 22Nm“) du
=2N =0 b= = i= b 1o, =
m=2 a a r=a ie{b+xl //// N 1}'7 + 6 (x)><12+1(x17+1,q)
oON 1 N-1N-1 b 1 N-1
c(a,p)2 Z 1 Z Z Z p@+r+ga)py-N-q
=T 2Np -
m=2N a=0 b=a r=a x;=0, q=b+1
ie{b+1,...,.N-1}
ON 1 N-1N-1
< C(%P)z 1 2ap2bp2b(ap 1)2N b2 N
- 22Np m3=2p
m=2N a=0 b=a
N N-1
< c(a, p)2 1 pa((2+a)p-2) < c(a, p)
22Np 2N(2-2p) <
a=

We estimate the expression I;; analogically and write that
L1 < c(a,p).

Inequality (11) and the properties (6) of the conjugate transform of a martingale yield that

— P

a
o ool IO
Z -y Z fc e a0

m=1 m=1

v |loap®)|f
p

LZ B-2+a)p dp(t)

(e, p)f” (f)(t) pdf“(t) ~ ”f“};lp

IN

For more details see [20]. This completes the proof of Theorem 5.1. [

From the proof of Theorem 5.1 (mainly taking into account the discussion of I;, while p = 1/(a + 1)),
we conclude that the sequence (1%~ ?*¥ : m € IP) should be sharp. It is formalized in the next Conjecture.
Unfortunately, we were not able to prove it.
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Conjecture 5.2. Let 0 <a <1land0<p <2/(2+ a). Let ¢ : IP — [1, o) be a non-decreasing function satisfying
the condition

) 2k(3—(2+a)p)

Then there exists a martingale f € H,(G*) such that

o [|os(f )Hz;eak—L,,

2 om

m=1

For Marcinkiewicz means (setting @ = 1) the analogue of Conjecture 5.2 is proved in [20].
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