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Abstract. For a continuous function 1 over R2
+ := [1,∞) × [1,∞), we denote its integral over [1, x] × [1, y]

by h(x, y) =
∫ x

1

∫ y

1
1(u, v)dudv and its (C, 1, 1) mean, the average of h(x, y) over [1, x] × [1, y], by t(h(x, y)) =

(xy)−1
∫ x

1

∫ y

1
h(u, v)dudv. Analogously, the other means (C, 1, 0) and (C, 0, 1) can be defined. In this paper,

we introduce the concept of regularly generated double integrals in senses (1, 1), (1, 0) and (0, 1) and obtain
Tauberian conditions in terms of the regularly generated double integrals in senses (1, 1), (1, 0) and (0, 1)
under which convergence of h(x, y) follows from that of t(h(x, y)).

1. Introduction

Tauberian conditions based on regularly generated integrals for functions of one variable for Cesàro
summability methods have been recently introduced by Çanak and Totur [3, 4, 6]. A Tauberian-like theorem
asserting that slow oscillation of improper integral follows from Cesàro summability of a generator of the
improper integral is proved by Totur and Çanak [13]. We refer the papers [1, 2, 5, 7, 8, 11, 12, 14] for
Tauberian theorems given in terms of the regularly generated sequences of single and double sequences.

Since there aren’t studies for regularly generated integrals of functions of two variables, we contribute
to this area by extending results given for functions of one variable to functions of two variables. In this
paper, the notion of regularly generated integrals for improper double integrals is introduced and a number
of Tauberian theorems for Cesàro summability method of improper double integrals by using regularly
generated integrals are proved.

The paper is organized as follows. Section 2 is dedicated to recall some basic notions and auxiliary
lemmas. Regularly generated integrals in different senses are introduced and well-known Kronecker
identities are presented in section 3. Section 4 covers some Tauberian theorems for Cesàro summability
method of double integrals by using the notion of regularly generated integrals.

2. Preliminaries

Assume that 1 is a continuous function on R2
+ := [1,∞) × [1,∞) and h(x, y) =

∫ x

1

∫ y

1 1(u, v)dudv for
1 < x, y < ∞.
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The mean (C, 1, 1) of h(x, y) is defined by

t(h(x, y)) = t11(h(x, y)) :=
1

xy

∫ x

1

∫ y

1
h(u, v)dudv

=

∫ x

1

∫ y

1

(
1 −

u
x

) (
1 −

v
y

)
1(u, v)dudv (1)

for x, y > 1. The integral∫
∞

1

∫
∞

1
1(u, v)dudv (2)

is said to be (C, 1, 1) summable to s if

lim
x,y→∞

t(h(x, y)) = s. (3)

The mean (C, 1, 0) of h(x, y) is defined by

t10(h(x, y)) :=
1
x

∫ x

1
h(u, y)du =

∫ x

1

∫ y

1

(
1 −

u
x

)
1(u, v)dudv (4)

for x, y > 1. The integral (2) is said to be (C, 1, 0) summable to s if

lim
x,y→∞

t10(h(x, y)) = s.

Similarly, the mean (C, 0, 1) of h(x, y) is defined by

t01(h(x, y)) =
1
y

∫ y

1
h(x, v)dv =

∫ x

1

∫ y

1

(
1 −

v
y

)
1(u, v)dudv (5)

for x, y > 1. The integral (2) is said to be (C, 0, 1) summable to s if

lim
x,y→∞

t01(h(x, y)) = s.

Note that we use convergence in Pringsheim’s sense [10] throughout this paper.
A function h(x, y) is bounded if there exists a real number C > 0 such that

∣∣∣h(x, y)
∣∣∣ ≤ C for all x, y > 0. In

this case, we write h(x, y) = O(1).
We denote the set of all double integrals which are P-convergent to 0, bounded, one-sided bounded,

both P-convergent to 0 and bounded by N, B, B> and NB, respectively.
The backward difference in sense (1, 1) of h(x, y) is defined by

∆11h(x, y) :=
∂2h(x, y)
∂x∂y

= 1(x, y)

for x, y > 1.
The (C, 1, 1) means of xy∆11h(x, y) is defined by

V11(∆11h(x, y)) :=
1

xy

∫ x

1

∫ y

1
xy∆11(h(u, v))dudv =

1
xy

∫ x

1

∫ y

1
uv1(u, v)dudv. (6)

The backward difference in sense (1, 0) of h(x, y) is defined by

∆10h(x, y) :=
∂h(x, y)
∂x

=

∫ y

1
1(x, v)dv

for x, y > 1.
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The (C, 1, 0) means of x∆10h(x, y) is defined by

V10(∆10h(x, y)) :=
1
x

∫ x

1
u∆10(h(u, y))du =

1
x

∫ x

1

∫ y

1
u1(u, v)dudv. (7)

The backward difference in sense (0, 1) of h(x, y) is defined by

∆01h(x, y) :=
∂h(x, y)
∂y

=

∫ x

1
1(u, y)du

for x, y > 1.
The (C, 0, 1) means of y∆01h(x, y) is defined by

V01(∆01h(x, y)) :=
1
y

∫ y

1
v∆01(h(x, v))dv =

1
y

∫ x

1

∫ y

1
v1(u, v)dudv. (8)

The Kronecker identities for double integrals are given as follows. For x, y > 1, we have

h(x, y) − t10(h(x, y)) − t01(h(x, y)) + t11(h(x, y)) = V11(∆11h(x, y)), (9)

h(x, y) − t10(h(x, y)) = V10(∆10h(x, y)), (10)

h(x, y) − t01(h(x, y)) = V01(∆01h(x, y)). (11)

A function h(x, y) on R2
+ is said to be slowly oscillating in sense (1, 0) for µ > 1 (see [9]) if

lim
µ→1+

lim sup
x,y→∞

max
x≤u≤µx

∣∣∣h(u, y) − h(x, y)
∣∣∣ = 0.

Analogously, a function h(x, y) on R2
+ is said to be slowly oscillating in sense (0, 1) for µ > 1 (see [9]) if

lim
µ→1+

lim sup
x,y→∞

max
y≤v≤λv

∣∣∣h(x, v) − h(x, y)
∣∣∣ = 0.

We denote the sets of all double integrals which are slowly oscillating in senses (1, 0) and (0, 1) by S10 and
S01, respectively.
A function h(x, y) on R2

+ is said to be strong slowly oscillating in sense (1, 0) for µ > 1 (see [9]) if

lim
µ→1+

lim sup
x,y→∞

max
x≤u≤µx
y≤v≤µy

|h(u, v) − h(x, v)| = 0.

Analogously, a function h(x, y) on R2
+ is said to be strong slowly oscillating in sense (0, 1) for µ > 1 (see [9])

if

lim
µ→1+

lim sup
x,y→∞

max
x≤u≤µx
y≤v≤µy

|h(u, v) − h(u, y)| = 0.

We denote the sets of all double integrals which are strong slowly oscillating in senses (1, 0) and (0, 1) by
SS10 and SS01, respectively.
Slow oscillation and strong slow oscillation in senses (1, 0) and (0, 1) for h(x, y) can be analogously defined
for 0 < µ < 1.

In the following lemma (C, 1, 1) means of xy∆11h(x, y), (C, 1, 0) means of x∆10h(x, y), and (C, 0, 1) means
of y∆01h(x, y) are given in terms of (C, 1, 1) means of h(x, y), (C, 1, 0) means of h(x, y), and (C, 0, 1) means of
h(x, y), respectively.
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Lemma 2.1. Let h(x, y) be a double integral over [1, x] × [1, y]. Then we have

xy∆11(t11(h(x, y))) = V11(∆11h(x, y)) (12)

x∆10(t10(h(x, y))) = V10(∆10h(x, y)) (13)

y∆01(t01(h(x, y))) = V01(∆01h(x, y)) (14)

for x, y > 1.

Proof. First, we prove (12). Taking the backward difference of t11(h(x, y)) in sense (1, 1), we get

∆11(t11(h(x, y))) =
∂2t11(h(x, y))
∂x∂y

=
∂
∂x

(
∂
∂y

∫ x

1

∫ y

1

(
1 −

u
x

) (
1 −

v
y

)
1(u, v)dudv

)
=

∂
∂x

∫ x

1

∫ y

1

(
1 −

u
x

) v
y2 1(u, v)dudv

=

∫ x

1

∫ y

1

u
x2

v
y2 1(u, v)dudv. (15)

From (15) we deduce that

xy∆11(t11(h(x, y))) =
1

xy

∫ x

1

∫ y

1
uv1(u, v)dudv = V11(∆11h(x, y)).

Now, we prove (13). Taking the backward difference of t10(h(x, y)) in sense (1, 0), we get

∆10(t10(h(x, y))) =
∂σ10(h(x, y))

∂x
=
∂
∂x

∫ x

1

∫ y

1

(
1 −

u
x

)
1(u, v)dudv

=

∫ x

1

∫ y

1

u
x2 1(u, v)dudv. (16)

From (16) we deduce that

x∆10(t10(h(x, y))) =
1
x

∫ x

1

∫ y

1
u1(u, v)dudv. (17)

Similarly, it can be easily seen that (14) holds.

The relationships between different Cesàro means of h(x, y) are given below.

Lemma 2.2. Let h(x, y) be a double integral over [1, x] × [1, y]. Then we have

t10(t01(h(x, y))) = t01(t10(h(x, y))) = t11(h(x, y)), (18)

t10(t11(h(x, y))) = t11(t10(h(x, y))), (19)

t01(t11(h(x, y))) = t11(t01(h(x, y))) (20)

for x, y > 1.

We omit the proof of Lemma 2.2. It can be easily seen from definitions of Cesàro means in different senses.
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3. Regularly generated double integrals in different senses

Suppose that L is a set of all continuous functions on [1, x] × [1, y] for each x, y > 0 and D, E, F are any
nonempty subsets of L.

A double integral h(x, y) is said to be regularly generated in sense (1, 1) if

h(x, y) = ξ(x, y) + ν(x, y) +
∫ x

1

∫ y

1

η(u, v)
uv

dudv − η(x, y) (21)

for some ξ(x, y) ∈ D, ν(x, y) ∈ E and η(x, y) ∈ F. In this case, ξ(x, y), ν(x, y) and η(x, y) are said to be the
generators of h(x, y).

The set of all regularly generated integrals by some ξ = ξ(x, y), ν = ν(x, y) and η = η(x, y) is denoted by
C11(D,E,F).

A double integral h(x, y) is said to be regularly generated in sense (1, 0) if

h(x, y) = ξ(x, y) +
∫ x

1

ξ(u, y)
u

du (22)

for some ξ(x, y) ∈ D.
In this case, ξ(x, y) is said to be the generator of h(x, y). The set of all regularly generated integrals by

some ξ = ξ(x, y) is denoted by C10(D).
A double integral h(x, y) is said to be regularly generated in sense (0, 1) if

h(x, y) = ν(x, y) +
∫ y

1

ν(x, v)
v

dv (23)

for some ν(x, y) ∈ E.
In this case, ν(x, y) is said to be the generator of h(x, y). The set of all regularly generated integrals by

some ν = ν(x, y) is denoted by C01(E).
For a double integral h(x, y) over [1, x] × [1, y], we have by Lemma 2.1

t11(h(x, y)) =
∫ x

1

∫ y

1

V11(∆11h(u, v))
uv

dudv, (24)

t10(h(x, y)) =
∫ x

1

V10(∆10h(u, y))
u

du, (25)

t01(h(x, y)) =
∫ y

1

V01(∆01h(x, v))
v

dv. (26)

Indeed, using (12), we get

xy∆11(t11(h(x, y)))
xy

=
V11(∆11h(x, y))

xy

and then we have∫ x

1

∫ y

1

∂2t11(h(u, v))
∂u∂v

dudv =
∫ x

1

∫ y

1

V11(∆11(h(u, v)))
uv

dudv.

From the last equation, we obtain (24).
The other identities can be obtained similarly. From Kronecker identities, we get

h(x, y) − t11(h(x, y)) = V10(∆10h(x, y)) + V01(∆01h(x, y)) − V11(∆11h(x, y)). (27)
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From the previous identity and (24), we obtain

h(x, y) = V10(∆10h(x, y)) + V01(∆01h(x, y)) − V11(∆11h(x, y)) +
∫ x

1

∫ y

1

V11(∆h(u, v))
uv

dudv.

Hence V10(∆10h(x, y)), V01(∆01h(x, y)) and V11(∆11h(x, y)) are generators of h(x, y). In addition, from (10) and
(25), we get

h(x, y) = V10(∆10h(x, y)) +
∫ x

1

V10(∆10h(u, y))
u

du.

Hence, V10(∆10h(x, y)) is the generator of h(x, y). Similarly, from (11) and taking (26) into account, we get

h(x, y) = V01(∆01h(x, y)) +
∫ y

1

V01(∆01h(x, v))
v

dv.

Hence, V01(∆01h(x, y)) is the generator of h(x, y).

Lemma 3.1. Let h(x, y) ∈ L and D,E ⊂ L.
(i) If h(x, y) ∈ C10(D), then V10(∆10h(x, y)) ∈ D.
(ii) If h(x, y) ∈ C01(E), then V01(∆01h(x, y)) ∈ E.

Proof. (i) Since h(x, y) ∈ C10(D), then

h(x, y) = ξ(x, y) +
∫ x

1

ξ(u, y)
u

du (28)

for some ξ(x, y) ∈ D. Taking backward difference in sense (1, 0) of both sides of (28) and then multiplying
both sides by x, we obtain

x∆10h(x, y) = x∆10ξ(x, y) + x
ξ(x, y)

x
. (29)

Taking (C, 1, 0) means of both sides of (29), we have

V10(∆10h(x, y)) = V10(∆10ξ(x, y)) + t10(ξ(x, y)). (30)

Replacing h(x, y) by ξ(x, y) in Kronecker identity (10), we obtain

ξ(x, y) − t10(ξ(x, y)) = V10(∆10ξ(x, y)). (31)

From (30) and (31), we see that V10(∆10h(x, y)) = ξ(x, y). Therefore, we conclude that V10(∆10h(x, y)) ∈ D.
(ii) The proof of (ii) can be done in a similar way.

In proving our main results, we use the following theorems and lemmas given by Móricz [9].

Theorem 3.2. Let h(x, y) = O(1).
(i) If (2) is (C, 1, 0) summable to s and and there exist constants H > 0 and u0 ≥ 0 such that x∆10h(x, y) ≥ −H is
satisfied for all (x, y) ∈ R2

+ with x, y > u0, then h(x, y) is convergent to s.
(ii) If (2) is (C, 0, 1) summable to s and and there exist constants H > 0 and u0 ≥ 0 such that y∆01h(x, y) ≥ −H is
satisfied for all (x, y) ∈ R2

+ with x, y > u0, then h(x, y) is convergent to s.

Theorem 3.3. Let h(x, y) = O(1).
(i) If (2) is (C, 1, 0) summable to s and h(x, y) ∈ S10, then h(x, y) is convergent to s.
(ii) If (2) is (C, 0, 1) summable to s and h(x, y) ∈ S01, then h(x, y) is convergent to s.
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Lemma 3.4. Let h(x, y) be a double integral over [1, x] × [1, y]. For sufficiently large x and y:
(i) If µ > 1,

h(x, y) − t11(h(x, y)) =

(
µ

µ − 1

)2 (
t11(h(µx, µy)) − t11(h(x, y))

)
+

µ(
µ − 1

)2

(
t11(h(x, y)) − t11(h(µx, y))

)
+

µ(
µ − 1

)2

(
t11(h(x, y)) − t11(h(x, µy))

)
−

1
(µx − x)(µy − y)

∫ µx

x

∫ µy

y

(
h(u, v) − h(x, y)

)
dudv.

(ii) If 0 < µ < 1,

h(x, y) − t11(h(x, y)) =

(
µ

1 − µ

)2 (
t11(h(µx, µy)) − t11(h(x, y))

)
+

µ(
1 − µ

)2

(
t11(h(x, y)) − t11(h(µx, y))

)
+

µ(
1 − µ

)2

(
t11(h(x, y)) − t11(h(x, µy))

)
+

1
(x − µx)(y − µy)

∫ x

µx

∫ y

µy

(
h(x, y) − h(u, v)

)
dudv.

Lemma 3.5. Let h(x, y) be a double integral over [1, x] × [1, y]. For sufficiently large x and y:
(i) If µ > 1,

h(x, y) − t10(h(x, y)) =
µ

µ − 1
(
t10(h(µx, y)) − t10(h(x, y))

)
−

1
µx − x

∫ µx

x

(
h(u, y) − h(x, y)

)
du.

(ii) If 0 < µ < 1,

h(x, y) − t10(h(x, y)) =
µ

1 − µ
(
t10(h(x, y)) − t10(h(µx, y))

)
+

1
x − µx

∫ x

µx

(
h(x, y) − h(u, y)

)
du.

4. Main results

Theorem 4.1. If (2) is (C, 1, 1) summable to s and h(x, y) ∈ C11(NB,NB,NB), h(x, y) ∈ C10(N) and h(x, y) ∈
C01(N), then h(x, y) is convergent to s.

Proof. Assume that (2) is (C, 1, 1) summable to s. Since h(x, y) ∈ C10(N), we have

V10(∆10h(x, y)) ∈ N (32)

by Lemma 3.1 (i). Since h(x, y) ∈ C01(N), we have

V01(∆01h(x, y)) ∈ N (33)

by Lemma 3.1 (ii). It follows by the assumption h(x, y) ∈ C11(NB,NB,NB) that

h(x, y) = ξ(x, y) + ν(x, y) +
∫ x

1

∫ y

1

η(u, v)
uv

dudv − η(x, y) (34)



G. Fındık, İ. Çanak / Filomat 37:9 (2023), 2969–2980 2976

for some ξ(x, y) ∈ NB, ν(x, y) ∈ NB, η(x, y) ∈ NB. Taking the backward difference in sense (1, 1) of both
sides of (34), we obtain

∆11h(x, y) = ∆11ξ(x, y) + ∆11ν(x, y) +
η(x, y)

xy
− ∆11η(x, y). (35)

Multiplying both sides of (35) by xy and then taking (C, 1, 1) means of both sides, we get

V11(∆11h(x, y)) = V11(∆11ξ(x, y)) + V11(∆11ν(x, y)) + σ11(η(x, y)) − V11(∆11η(x, y)). (36)

Replacing h(x, y) by ξ(x, y), ν(x, y) and η(x, y) in Kronecker identities (9), (10) and (11), respectively, we have

ξ(x, y) − t10(ξ(x, y)) − t01(ξ(x, y)) + t11(ξ(x, y)) = V11(∆11ξ(x, y)), (37)

ν(x, y) − t10(ν(x, y)) = V10(∆10ν(x, y)), (38)

and

η(x, y) − t01(η(x, y)) = V01(∆01η(x, y)). (39)

Since ξ(x, y), ν(x, y) and η(x, y) are assumed to be bounded, (C, 1, 1), (C, 1, 0) and (C, 0, 1) means of ξ(x, y),
ν(x, y) and η(x, y) is convergent to 0. Hence using (37), we conclude that V11(∆11ξ(x, y)) ∈ N. If we
replace ν(x, y) by V01(∆01ν(x, y)) and η(x, y) by V10(∆10η(x, y)) in (38) and (39), respectively, we obtain that
V11(∆11ν(x, y)) ∈ N and V11(∆11η(x, y)) ∈ N. Thus from (36), we get

V11(∆11h(x, y)) ∈ N. (40)

Therefore we conclude that h(x, y) is convergent to s by using (27) from (32),(33) and (40).

Remark 4.2. If h(x, y) ∈ B as in Theorem 4.1, then condition h(x, y) ∈ C11(NB,NB,NB) is omitted. Indeed, if we
replace h(x, y) by V10(∆10h(x, y)) in (11), we get

V10(∆10h(x, y)) − t01(V10(∆10h(x, y))) = V11(∆11h(x, y)). (41)

Because of h(x, y) ∈ B and V10(∆10h(x, y)) ∈ N, we conclude that t01(V10(∆10h(x, y))) ∈ N by regularity. Thus, we
obtain V11(∆11h(x, y)) ∈ N by (41).

Theorem 4.3. Let h(x, y) = O(1). If (2) is (C, 1, 1) summable to s and V01(∆01h(x, y)) ∈ C10(S10) and V10(∆10h(x, y)) ∈
C01(SS01) (or V10(∆10h(x, y)) ∈ C01(S01) and V01(∆01h(x, y)) ∈ C10(SS10)), then h(x, y) is convergent to s.

Proof. Assume that (2) is (C, 1, 1) summable to s. Replacing h(x, y) by V11(∆11h(x, y)) in Lemma 3.4 (i), we
get

V11(∆11h(x, y)) − t11(V11(∆11h(x, y)))

=

(
µ

µ − 1

)2 (
t11(V11(∆11h(µu, µy))) − t11(V11(∆11h(x, y))

)
)

+
µ(

µ − 1
)2

(
t11(V11(∆11h(x, y))) − t11(V11(∆11h(µx, y)))

)
+

µ(
µ − 1

)2

(
t11(V11(∆11h(x, y))) − t11(V11(∆11h(x, µy)))

)
−

1
(µx − x)(µy − y)

∫ µx

x

∫ µy

y

(
V11(∆11h(u, v)) − V11(∆11h(x, y))

)
dudv (42)
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for µ > 1. From the above equality, we have

∣∣∣V11(∆11h(x, y)) − t11(V11(∆11h(x, y)))
∣∣∣ ≤ (

µ

µ − 1

)2 ∣∣∣t11(V11(∆11h(µx, µy))) − t11(V11(∆11h(x, y)))
∣∣∣

+
µ(

µ − 1
)2

∣∣∣t11(V11(∆11h(x, y))) − t11(V11(∆11h(µx, y)))
∣∣∣+ µ(
µ − 1

)2

∣∣∣t11(V11(∆11h(x, y))) − t11(V11(∆11h(x, µy)))
∣∣∣

+ max
x≤u≤µx
y≤v≤µy

∣∣∣V11(∆11h(u, v)) − V11(∆11h(x, y))
∣∣∣ .

Since the (C, 1, 1), (C, 1, 0) and (C, 0, 1) summability methods are regular under the boundedness condition
of h(x, y), we obtain that t11(h(x, y)), t10(h(x, y)) and t01(h(x, y)) are (C, 1, 1) summable to s by using Lemma
2.2. Taking (C, 1, 1) means of Kronecker equality (9), we conclude that V11(∆11h(x, y)) is (C, 1, 1) summable
to 0. The first three terms on the right-hand side of the previous inequality are vanished and then we obtain∣∣∣V11(∆11h(x, y)) − t11(V11(∆11h(x, y)))

∣∣∣ ≤ max
x≤u≤µx
y≤v≤µy

∣∣∣V11(∆11h(u, v)) − V11(∆11h(u, y))
∣∣∣

+ max
x≤u≤µx

∣∣∣V11(∆11h(u, y)) − V11(∆11h(x, y))
∣∣∣ . (43)

Taking the limit superior of (43) as x, y→∞ and then taking the limit of the resulting inequality as µ→ 1+,
we have

lim
µ→1+

lim sup
x,y→∞

∣∣∣V11(∆11h(x, y)) − t11(V11(∆11h(x, y)))
∣∣∣ ≤ lim

µ→1+
lim sup

x,y→∞
max

x≤u≤µx
y≤v≤µy

∣∣∣V11(∆11h(u, v)) − V11(∆11h(u, y))
∣∣∣

+ lim
µ→1+

lim sup
x,y→∞

max
x≤u≤µx

∣∣∣V11(∆11h(u, y)) − V11(∆11h(x, y))
∣∣∣ .

Since V01(∆01h(x, y)) ∈ C10(S10) and V10(∆10h(x, y)) ∈ C01(SS01), then we have V11(∆11h(x, y)) ∈ S10 and
V11(∆11h(x, y)) ∈ SS01 by Lemma 3.1. We then have

lim sup
x,y→∞

∣∣∣V11(∆11h(x, y)) − t11(V11(∆11h(x, y)))
∣∣∣ ≤ 0.

So we conclude

lim
x,y→∞

V11(∆11h(x, y)) = 0. (44)

Now we prove that t01(V10(∆10h(x, y))) converges to zero. Because of this, we use Theorem 3.3 (i). Firstly, we
indicate that t01(V10(∆10h(x, y))) is (C, 1, 0) summable to zero and then t01(V10(∆10h(x, y))) is slowly oscillating
in sense (1, 0).

Taking (C, 0, 1) means of Kronecker identity (10), we get

t01(h(x, y)) − t01(t10(h(x, y))) = t01(V10(∆10h(x, y))).

If we take (C, 1, 0) means of the previous equality, we get

t11(h(x, y)) − t10(t11(h(x, y))) = t10(t01(V10(∆10h(x, y))))

by Lemma 2.2. By regularity and (C, 1, 1) summability, we conclude that t01(V10(∆10h(x, y))) is (C, 1, 0)
summable to zero.

Replacing h(x, y) by V10(∆10h(x, y)) in Kronecker identity (11), we get

V10(∆10h(x, y)) − t01(V10(∆10h(x, y))) = V01(∆01V10(∆10h(x, y)))
= V11(∆11h(x, y)). (45)
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Since V11(∆11h(x, y)) converges to zero, V11(∆11h(x, y)) is bounded and slowly oscillating in sense (1, 0), (0, 1)
and (1, 1). In the light of this information , we obtain V10(∆10h(x, y)) is slowly oscillating in sense (1, 0), (0, 1)
and (1, 1) by (45). Therefore, we conclude that t01(V10(∆10h(x, y))) is slowly oscillating in sense (1, 0). Since
t01(V10∆10h(x, y)) and V11(∆11h(x, y)) converge to zero, we obtain

lim
x,y→∞

V10(∆10h(x, y)) = 0 (46)

by (45). Similarly, it can be obtained that

lim
x,y→∞

V01(∆01h(x, y)) = 0 (47)

by Theorem 3.3 (ii). Considering (27), we conclude that h(x, y) converges to s by (44), (46) and (47).

Theorem 4.4. Let h(x, y) = O(1). If (2) is (C, 1, 1) summable to s, x∆10h(x, y) ∈ C10(B>), y∆01h(x, y) ∈ C01(B>),
x∆10V10(∆10h(x, y)) ∈ C10(B>) and y∆01V01(∆01h(x, y)) ∈ C01(B>), then h(x, y) is convergent to s.

Proof. Assume that (2) is (C, 1, 1) summable to s. Taking the limit superior of both sides of (42) as x, y→∞,
we have

lim sup
x,y→∞

(
V11(∆11h(x, y)) − t11(V11(∆11h(x, y))

)
) ≤(

µ

µ − 1

)2

lim sup
x,y→∞

(
t11(V11(∆11h(µu, µv))) − t11(V11(∆11h(x, y)))

)
+

µ(
µ − 1

)2 lim sup
x,y→∞

(
t11(V11(∆11h(x, y))) − t11(V11(∆11h(µx, y)))

)
+

µ(
µ − 1

)2 lim sup
x,y→∞

(
t11(V11(∆11h(x, y))) − t11(V11(∆11h(x, µy)))

)
+ lim sup

x,y→∞

(
−

1
(µx − x)(µy − y)

∫ µx

x

∫ µy

y

(
V11(∆11h(u, v)) − V11(∆11h(x, y))

)
dudv

)
.

As in the proof of Theorem 4.3, we have that V11(∆11h(x, y)) is (C, 1, 1) summable to 0. The first three terms
on the right-hand side of the previous inequality vanish and we obtain

lim sup
x,y→∞

(
V11(∆11h(x, y)) − t11(V11(∆11h(x, y))

)
) ≤

+ lim sup
x,y→∞

(
−

1
(µx − x)(µy − y)

∫ µx

x

∫ µy

y

(
V11(∆11h(u, v)) − V11(∆11h(x, y))

)
dudv

)
. (48)

Since x∆10V10(∆10h(x, y)) ∈ C10(B>) and y∆01V01(∆01h(x, y)) ∈ C01(B>), then we have x∆10V11(∆11h(x, y)) ∈ B>

and y∆01V11(∆11h(x, y)) ∈ B> by Lemma 3.1, respectively. Therefore, we get

V11(∆11h(x, y)) − V11(∆11h(u, v)) =

∫ x

u

∂V11(∆11h(r, v))
∂r

dr

+

∫ y

v

∂V11(∆11h(x, t))
∂t

dt

≥ −H
(∫ x

u

dr
r
+

∫ y

v

dt
t

)
= −H

(
ln

(x
u

)
+ ln

( y
v

))
(49)
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for some H > 0. From (48) and (49), we have

lim sup
x,y→∞

(
V11(∆11h(x, y)) − t11(V11(∆11h(x, y))

)
) ≤ 2H

(
ln

(
1
µ

))
.

From the last inequality, we have

lim sup
x,y→∞

(
V11(∆11h(x, y)) − t11(V11(∆11h(x, y))

)
) ≤ 0. (50)

For 0 < µ < 1, in a similar way by using Lemma 3.4 (ii) we have

lim inf
x,y→∞

(
V11(∆11h(x, y)) − t11(V11(∆11h(x, y))

)
) ≥ 0. (51)

From (50) and (51), we conclude

lim inf
x,y→∞

V11(∆11h(x, y)) = 0. (52)

Now we show that t01(V10(∆10h(x, y))) converges to zero. Because of this, we use Theorem 3.2 (i). Firstly
we indicate that t01(V10(∆10h(x, y))) is (C, 1, 0) summable to zero and then t01(V10(∆10h(x, y))) is one-sided
bounded.

As in the proof of Theorem 4.3, we obtain that t01(V10(∆10h(x, y))) is (C, 1, 0) summable to zero.
Moreover, by hypothesis, since x∆10h(x, y) ∈ C10(B>), y∆01h(x, y) ∈ C01(B>), then we have

x∆10V10(∆10h(x, y)) ∈ B> and y∆01V01(∆01h(x, y)) ∈ B> by Lemma 3.1, respectively. If we replace h(x, y)
by V10(∆10h(x, y)) in Kronecker identity (11), we get

V10(∆10h(x, y)) − t01(V10(∆10h(x, y))) = V11(∆11h(x, y)). (53)

Taking the backward difference in sense (1, 0) of both sides of above equality and after by multiplying both
sides of its by x, we have

x∆10V10(∆10h(x, y)) − x∆10t01(V10(∆10h(x, y))) = x∆10V11(∆11h(x, y)).

Hence, we obtain that t01(V10(∆10h(x, y))) converges to zero. Since x∆10V10(∆10h(x, y)) ∈ B> and
x∆10V11(∆11h(x, y)) ∈ B>, we conclude x∆10t01(V10(∆10h(x, y))) ∈ B>. Since t01(V10(∆10h(x, y))) and
V11(∆11h(x, y)) converge to zero, we obtain

lim
x,y→∞

V10(∆10h(x, y)) = 0 (54)

by (53) . Similarly, it can be obtained that

lim
x,y→∞

V01(∆01h(x, y)) = 0 (55)

by Theorem 3.2 (ii). Considering (27), we conclude that h(x, y) converges to s by (52), (54) and (55).

5. Conclusion

In this paper, we define the concept of regularly generated integrals in different senses and study
Tauberian theorems for Cesàro summability method of double integrals by means of this newly defined
concept. For future research, we plan to extend the Tauberian results for Cesàro summability method of
double integrals to the weighted mean method of double integrals.
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Modelling 55 (3-4) (2012), 1558–1561.
[7] M. Dik, Tauberian theorems for sequences with moderately oscillatory control moduli, Math. Morav. 5 (2001), 57–94.
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