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Tauberian theorems for the Cesaro summability method of regularly
generated double integrals

Goksen Findik?, ibrahim Canak®*

Department of Mathematics, Ege University, [zmir, 35040, Tiirkiye

Abstract. For a continuous function g over R? := [1, 00) X [1, o), we denote its integral over [1,x] X [1, y]
by h(x,y) = flx fly g(u,v)dudv and its (C, 1, 1) mean, the average of h(x, y) over [1,x] x [1, y], by t(h(x,y)) =
(xy)’1 flx fly h(u, v)dudv. Analogously, the other means (C,1,0) and (C,0,1) can be defined. In this paper,
we introduce the concept of regularly generated double integrals in senses (1, 1), (1,0) and (0, 1) and obtain

Tauberian conditions in terms of the regularly generated double integrals in senses (1,1), (1,0) and (0,1)
under which convergence of h(x, y) follows from that of t(h(x, y)).

1. Introduction

Tauberian conditions based on regularly generated integrals for functions of one variable for Cesaro
summability methods have been recently introduced by Canak and Totur [3, 4, 6]. A Tauberian-like theorem
asserting that slow oscillation of improper integral follows from Cesaro summability of a generator of the
improper integral is proved by Totur and Canak [13]. We refer the papers [1, 2, 5, 7, 8, 11, 12, 14] for
Tauberian theorems given in terms of the regularly generated sequences of single and double sequences.

Since there aren’t studies for regularly generated integrals of functions of two variables, we contribute
to this area by extending results given for functions of one variable to functions of two variables. In this
paper, the notion of regularly generated integrals for improper double integrals is introduced and a number
of Tauberian theorems for Cesaro summability method of improper double integrals by using regularly
generated integrals are proved.

The paper is organized as follows. Section 2 is dedicated to recall some basic notions and auxiliary
lemmas. Regularly generated integrals in different senses are introduced and well-known Kronecker
identities are presented in section 3. Section 4 covers some Tauberian theorems for Cesaro summability
method of double integrals by using the notion of regularly generated integrals.

2. Preliminaries

Assume that g is a continuous function on R? := [1,00) X [1,0) and h(x,y) = flx fly g(u,v)dudv for
1<x,y<oo.
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The mean (C, 1, 1) of h(x, y) is defined by

th(x,y)) = tu(h(x,y)):= ffh(u v)dudv

j; j; 1 -3 (1 - g)g(u,v)dudv

for x,y > 1. The integral

f f g(u, v)dudv
1 J1

is said to be (C, 1, 1) summable to s if

lim t(h(x,y)) =s.
X,y—00
The mean (C, 1,0) of h(x, y) is defined by

tio(h(x, y)) == f (u, y)du —f f 1 - = g(u v)dudv

for x,y > 1. The integral (2) is said to be (C, 1,0) summable to s if

Xl}}m to(h(x, y)) = s.

Similarly, the mean (C, 0, 1) of h(x, y) is defined by

ton(h(x, y)) = —f h(x,v)dv = f f (1 - —)g(u v)dudv

for x, y > 1. The integral (2) is said to be (C, 0, 1) summable to s if

lim tp1(h(x, y)) =s.
X,y—00

Note that we use convergence in Pringsheim’s sense [10] throughout this paper.

2970

(1)

A function h(x, y) is bounded if there exists a real number C > 0 such that 'h(x, y)| <Cforallx,y > 0. In

this case, we write h(x, y) = O(1).

We denote the set of all double integrals which are P-convergent to 0, bounded, one-sided bounded,

both P-convergent to 0 and bounded by %, B, B~ and NB, respectively.
The backward difference in sense (1, 1) of h(x, y) is defined by
*h(x, y)
dxdy =9y)

Avih(x,y) ==

forx,y > 1.
The (C, 1, 1) means of xyAq1h(x, y) is defined by

Xy Xy
Vii(Anh(x, y)) ::xl—y j; j; xyAn(h(u,v))dudv:;—y f1 f1 uvg(u, v)dudv.

The backward difference in sense (1, 0) of h(x, y) is defined by

oh(x, Y
Agoh(x, y) = gxy) :ﬁ g(x, v)dv

forx,y > 1.
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The (C, 1,0) means of xAjph(x, y) is defined by
1™ 1
Vio(A1oh(x, y)) = p ubo(h(u, y))du = p ug(u, v)dudo. @)
1 1 J1

The backward difference in sense (0, 1) of h(x, y) is defined by

oh(x, x
Aorh(x, y) := (ayy) =\fl‘ g(u, y)du

forx,y > 1.
The (C, 0, 1) means of yAgih(x, y) is defined by

y x oy
Voi(Aorh(x, y)) = 1 f 0Ao1(h(x, v))dv = 1 f f vg(u, v)dudo. 8)
Yo Yy

The Kronecker identities for double integrals are given as follows. For x,y > 1, we have

h(x, y) — tio(h(x, y)) — toa (h(x, y)) + t11(h(x, y)) = Vir(Anh(x, ), )
h(x, y) — tio(h(x, y)) = Vio(Aroh(x, v)), (10)
h(x, y) — tor(h(x, y)) = Vor(Aorh(x, v)). (11)

A function h(x, y) on IR2 is said to be slowly oscillating in sense (1, 0) for u > 1 (see [9]) if

lim lim sup max |h(u, y) — h(x, y)| =0.
x<u<ux

p—-1* X,y—00
Analogously, a function h(x, y) on IR? is said to be slowly oscillating in sense (0, 1) for u > 1 (see [9]) if

lim lim sup max |h(x, v) — h(x, y)| =0.

u—1+ X, y—00 y<v<Av

We denote the sets of all double integrals which are slowly oscillating in senses (1,0) and (0, 1) by S19 and
So1, respectively.
A function h(x, y) on R? is said to be strong slowly oscillating in sense (1, 0) for u > 1 (see [9]) if

lim limsup max |h(u,v) — h(x,v)| = 0.
u—1+ X, y—oo YSUSUX
’ y<o<uy

Analogously, a function h(x, y) on R? is said to be strong slowly oscillating in sense (0, 1) for p > 1 (see [9])
if
JL“% hfy‘iip max h(u, v) — h(u, y)| = 0.
y<osuy

We denote the sets of all double integrals which are strong slowly oscillating in senses (1,0) and (0, 1) by
5510 and S5¢1, respectively.
Slow oscillation and strong slow oscillation in senses (1,0) and (0, 1) for k(x, y) can be analogously defined
forO<p<1.

In the following lemma (C, 1, 1) means of xyAj1h(x, y), (C,1,0) means of xAjph(x, y), and (C,0,1) means
of yAnh(x, y) are given in terms of (C, 1, 1) means of h(x, y), (C,1,0) means of h(x, ), and (C,0, 1) means of
h(x, y), respectively.
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Lemma 2.1. Let h(x, y) be a double integral over [1,x] X [1, y]. Then we have

xyAii(tn(h(x, y))) = Vi (Auh(x, y) (12)

xAo(ti0(h(x, y))) = Vio(Aroh(x, v)) (13)

yAo1(to1(h(x, v))) = Vo1 (Aorh(x, v)) (14)
forx,y > 1.

Proof. First, we prove (12). Taking the backward difference of t1;(h(x, v)) in sense (1, 1), we get

Pt (h(x, y))
Ixdy

0 8["]”( u)( v) )
— = 1-—{1- =g, v)dudo
8x(8y 1 J1 X y gl,v)
a ™ (Y
= aflfl(l—;)%g(u,v)dudv
T (Yu v
flflx—zﬁg(u,v)dudv. (15)

Yy
xyAn(fn(h(X,y))):xl—y fl f1 wog(u, o)dudo = Viy(Anh(x, y).

Ar1(ti1(h(x, y)))

From (15) we deduce that

Now, we prove (13). Taking the backward difference of t19(h(x, y)) in sense (1, 0), we get

Aro(tio(h(x, ) = 07010(h(x 200t 1) _ f f 1—— g(u v)dudv

f1 f1 5901, 0)dudo. (16)

Xy
e, ) = 5 [ [ ugtu ot (17)

From (16) we deduce that

Similarly, it can be easily seen that (14) holds. O
The relationships between different Cesaro means of h(x, y) are given below.

Lemma 2.2. Let h(x, y) be a double integral over [1,x] X [1, y]. Then we have

to(tor (h(x, v))) = tor(t1o(h(x, v))) = t11(h(x, v)), (18)

tio(ti1 (h(x, v))) = ti1(t1o(h(x, v))), (19)

to1(t11(h(x, v))) = ti1(toa (h(x, v))) (20)
forx,y>1.

We omit the proof of Lemma 2.2. It can be easily seen from definitions of Cesaro means in different senses.
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3. Regularly generated double integrals in different senses

Suppose that £ is a set of all continuous functions on [1,x] X [1, y] for each x, ¥ > 0 and D, €, § are any
nonempty subsets of £.
A double integral h(x, y) is said to be regularly generated in sense (1,1) if

h(x,y) = &(x, v) + v(x, y)+f f

for some &(x, ) € D, v(x,y) € € and n(x,y) € §. In this case, E(x,y), v(x, y) and n(x, y) are said to be the
generators of h(x, y).

The set of all regularly generated integrals by some & = &(x, y), v = v(x, y) and 1 = 1(x, y) is denoted by
Cll (D/ @/ L&)

A double integral h(x, y) is said to be regularly generated in sense (1, 0) if

dudv -n(x, y) (21)

e =+ [ L @)
1

for some &(x, y) € D.

In this case, £(x, y) is said to be the generator of h(x, y). The set of all regularly generated integrals by
some & = &(x, y) is denoted by Cip(D).

A double integral h(x, y) is said to be regularly generated in sense (0, 1) if

Y v(x,v)

) =i+ [ o @)
1
for some v(x, y) € €.
In this case, v(x, y) is said to be the generator of /(x, y). The set of all regularly generated integrals by
some v = v(x, y) is denoted by Cp(€).
For a double integral h(x, y) over [1, x] X [1, y], we have by Lemma 2.1

i = [ [ LAy, e
ol ) = [ LE0 Dy, 25)
i, = [ LrCD g, 26)

Indeed, using (12), we get
xyAn(tu(h(x, y)) — Vi(Aunh(x, )
xy B xy

and then we have

Y 92t11(h(u, v)) (Y V(A (h(u, v)))
f f 500 —— " “du dv—f; f; Tdudv.

From the last equation, we obtain (24).
The other identities can be obtained similarly. From Kronecker identities, we get

h(x, y) — tin(h(x, v)) = Vio(Aroh(x, ) + Vor(Aoih(x, y)) — Vii(Anh(x, v)). (27)
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From the previous identity and (24), we obtain

Xy
) = Vio(uhts, ) + Van(arhte ) - Vis@uibte )+ [ [~ ZHEE D e,
1 1

Hence Vig(A1oh(x, 1)), Vo1 (Ao h(x, y)) and Vi1(A11k(x, y)) are generators of h(x, ). In addition, from (10) and
(25), we get

h(x, ]/) = Vio(Aroh(x, y)) + fx wd%
1

Hence, Vio(A1oh(x, y)) is the generator of h(x, y). Similarly, from (11) and taking (26) into account, we get

Y Vor(Aoih(x, v)) Jo
— v,

hx, ) = Vor (Aoth(e, 1) + f1

Hence, Vo1(Aoih(x, y)) is the generator of h(x, y).

Lemma 3.1. Let h(x,y) € Land D, € C L.
@) If h(x, y) € C10(D), then Vio(A1oh(x, y)) € D.
(i) If h(x, y) € Co1(€), then Vo1 (Anh(x, y)) € €.

Proof. (i) Since h(x, y) € C19(D), then

R @)

for some &(x, y) € D. Taking backward difference in sense (1, 0) of both sides of (28) and then multiplying
both sides by x, we obtain

xAqoh(x, y) = xA10&(x, y) + x@. (29)

Taking (C, 1, 0) means of both sides of (29), we have

Vio(Aroh(x, ) = Vio(A1&(x, y)) + tio(E(x, 1)). (30)

Replacing h(x, y) by &(x, y) in Kronecker identity (10), we obtain

&(x, y) — to(E(x, v)) = Vio(Aoé(x, v)). (31)

From (30) and (31), we see that Vio(A10h(x, v)) = E(x, y). Therefore, we conclude that Vio(Aioh(x, y)) € D.
(i) The proof of (ii) can be done in a similar way. [J

In proving our main results, we use the following theorems and lemmas given by Méricz [9].

Theorem 3.2. Let h(x, y) = O(1).

(i) If (2) is (C,1,0) summable to s and and there exist constants H > 0 and uy > 0 such that xAoh(x,y) > —H is
satisfied for all (x,y) € R2 with x, y > uo, then h(x, y) is convergent to s.

(ii) If (2) is (C,0,1) summable to s and and there exist constants H > 0 and ug > 0 such that yAph(x,y) > —H is
satisfied for all (x, y) € R2 with x,y > uo, then h(x, y) is convergent to s.

Theorem 3.3. Let h(x, y) = O(1).
(i) If (2) is (C, 1, 0) summable to s and h(x, y) € Sio, then h(x, y) is convergent to s.
(ii) If (2) is (C, 0, 1) summable to s and h(x, y) € So1, then h(x, y) is convergent to s.
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Lemma 3.4. Let h(x, y) be a double integral over [1,x] X [1,y]. For sufficiently large x and y:
O Ifu>1,

h(x, y) — tin(h(x, y))

2
(%) (uan(u, ) = i1 (G, )

B (tui(x, ) - tuh(ux, 1))
(u-1)

(i, ) - (i, )
(u-1)

1 ux ey
T (ux -0y -v) f f (h(u,v) = h(x, y)) dudv.
x Jy

@{@Ifo<pu<i,

h(x/ y) - tll(h(xr }/))

2
(%) (t11(h(ux, uy)) =t (h(x, y)))

(1-py? (t11(h(x, ) — tr(h(ux, y)))

(1- u)2 (b (ilx, ) = (bl 1))

— h h dud
T k- ux)(y 1Y) Jyux W((x oY) = h(w,0)) dudo.

Lemma 3.5. Let h(x, y) be a double integral over [1,x] X [1,y]. For sufficiently large x and y:
O fp>1,

h(x, y) — tio(h(x, y))

X
o e )~ o, ) = [ ) = )

X
(i) IfO < u < 1,

1

h(x, y) — tio(h(x, y)) - ux

T (o0 ) = ol ) + fy () =, )

4. Main results

Theorem 4.1. If (2) is (C,1,1) summable to s and h(x,y) € C11(NB, NB, NB), h(x,y) € Cio(N) and h(x,y) €
Co1(M), then h(x,y) is convergent to s.

Proof. Assume that (2) is (C, 1, 1) summable to s. Since h(x, y) € C10(9%), we have

Vio(Aioh(x, y)) € N (32)
by Lemma 3.1 (i). Since h(x, y) € Cp1(9), we have

Vo1 (Aoih(x, y)) € N (33)
by Lemma 3.1 (ii). It follows by the assumption h(x, y) € C11(9tB, B, NB) that

hx, ) = £Gx,y) + v, ) + f f 102 o — i, ) (34)
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for some &(x, y) € NB, v(x, y) € NB, n(x, y) € NB. Taking the backward difference in sense (1,1) of both
sides of (34), we obtain

X,

Anh(x, y) = Ané(x, y) + Anvix, y) + T?(xyy) = Aun(x, y). (35)
Multiplying both sides of (35) by xy and then taking (C, 1, 1) means of both sides, we get

Vi(Anh(x, y) = Vi(Au(x, y) + Vi(Auv(x, y) + ou(nx, y)) — Vi (Aun(x, y)). (36)
Replacing h(x, y) by &(x, y), v(x, y) and n(x, y) in Kronecker identities (9), (10) and (11), respectively, we have

E(x, y) — tio(E(x, ¥) — tor(E(x, v) + t1(E(x, v) = Vin(Ané(x, y)), (37)

v(x, y) — tio(v(x, v)) = Vio(A1ov(x, y)), (38)
and

1N, y) =t (n(x, v)) = Vor(Aon(x, ). (39)

Since &(x, y), v(x, ) and 7(x, y) are assumed to be bounded, (C,1,1), (C,1,0) and (C,0, 1) means of &(x, y),
v(x,y) and 1(x,y) is convergent to 0. Hence using (37), we conclude that Vi1(An1é(x, y)) € N. If we
replace v(x, y) by Vo1 (Anv(x, y)) and n(x, y) by Vip(A10n(x, v)) in (38) and (39), respectively, we obtain that
Vii(Anv(x, ) € Mt and Vi1(A1n(x, y)) € N. Thus from (36), we get

Vi1(Anh(x, y)) € N. (40)

Therefore we conclude that h(x, y) is convergent to s by using (27) from (32),(33) and (40). O

Remark 4.2. If h(x,y) € B as in Theorem 4.1, then condition h(x, y) € C11(WNB, NV, NB) is omitted. Indeed, if we
replace h(x, y) by Vio(A1oh(x, y)) in (11), we get

Vio(Aroh(x, y)) — tor(Vio(Aroh(x, 1)) = Vi1(Anh(x, v)). (41)

Because of h(x, y) € B and V1o(A1oh(x, y)) € N, we conclude that ty(Vip(Awh(x, v))) € N by regqularity. Thus, we
obtain V11(A11h(x, y)) € N by (41).

Theorem 4.3. Leth(x, y) = O1). If(2)is (C, 1, 1) summable tos and Vo1 (Ao1h(x, y)) € Ci0(S10) and Vio(A1oh(x, y)) €
Co1(SS01) (or Vig(Aroh(x, 1)) € Co1(So1) and Vo1 (Aoih(x, y)) € C10(SS10)), then h(x, y) is convergent to s.

Proof. Assume that (2) is (C,1,1) summable to s. Replacing h(x, y) by Vi1(A11h(x, y)) in Lemma 3.4 (i), we
get

Vi1(Anh(x, y)) — it (Vi (A h(x, v)))

2
_ (%) (b (Vi A, py)) = (Vi (Anh(x, )
u
+
(p-1)°

+ ﬁ (tn(Vir(Anh(x, v) = tin (Vi (A h(x, py))))
b -

(t11 (Vi (Anih(x, ) — 11 (Vi (A h(ux, v))))

ux oy
- [ [ @t - va@uhe, pduo @2
x Jy
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for u > 1. From the above equality, we have

2
|V11(A11h(xr y) — tiu (Vi (Arih(x, y)))) < (%) |t11(V11(A11h(yx, uy)) — tin (Vi (Anh(x, y))))

+( |t11(V11(A11h(x V) = (Vi Auh(p, y)))|+ |t11(V11(A11h(x ) — tu(Vir(Awrh(x, P‘]/)))|
a (-
+ ma§ Vin(Anh(u, 0)) = Vi (Auh(x, )|
y<o<uy

Since the (C, 1,1), (C,1,0) and (C, 0, 1) summability methods are regular under the boundedness condition
of h(x,y), we obtain that t1(h(x, v)), tio(h(x, y)) and to(h(x, y)) are (C,1,1) summable to s by using Lemma
2.2. Taking (C, 1,1) means of Kronecker equality (9), we conclude that V11(A115(x, y)) is (C,1,1) summable
to 0. The first three terms on the right-hand side of the previous inequality are vanished and then we obtain

[Vir(Anh(x, v) = (Vi (Anh(x, )| < Jax [Vi1(Aih(u, v)) = Vi (Anh(u, )|
y<o<py
+ max |Vin(Auh(s, ) - ViAuh, y)|. - (43)

x<u<

Taking the limit superior of (43) as x, y — oo and then taking the limit of the resulting inequality as p — 17,
we have

lim 11msup|V11(A11h(x y) — tin(Vii(Arih(x, y)))( < hm hmsup max |V11(A11h(u v)) — Vi1(Arih(u, y))|

=1t Y00

yevny
+ lim hmsup max |V11(A11h(u Y) = Via(Anh(x, y))|

p—o1r ,y—00

Since Vo1(Anh(x,y)) € Cio(S10) and Vip(Aroh(x,y)) € Co1(SSo1), then we have Vii(A1ih(x,y)) € Sio and
Vi1(Anih(x, y)) € SSo1 by Lemma 3.1. We then have

lim sup (VH(AHh(x, y)) — tu(Vir (A h(x, y)))| <0.

X, y—00
So we conclude

xl}jgloo Vi1(Anh(x, y)) = 0. (44)

Now we prove that ¢y (V1o(A1oh(x, y))) converges to zero. Because of this, we use Theorem 3.3 (i). Firstly, we
indicate that to1 (V1o(A10h(x, y))) is (C, 1, 0) summable to zero and then £y (Vig(A10h(x, y))) is slowly oscillating
in sense (1, 0).

Taking (C, 0, 1) means of Kronecker identity (10), we get

tor (h(x, y)) — tor(tio(h(x, y))) = tor(Vio(Aroh(x, y))).

If we take (C, 1,0) means of the previous equality, we get

t11(h(x, y)) — tio(t11(h(x, y))) = tio(tor(V1o(A1oh(x, v))))

by Lemma 2.2. By regularity and (C,1,1) summability, we conclude that f51(V1o(A1oh(x, y))) is (C,1,0)
summable to zero.
Replacing h(x, y) by Vig(A1oh(x, v)) in Kronecker identity (11), we get

Vio(Avoh(x, ) — tor (Vio(Aioh(x, v))) Vor1(Ao1 Vio(Aroh(x, y)))
Vii(Anh(x, v)). (45)
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Since V11(A11h(x, y)) converges to zero, V11(A11h(x, y)) is bounded and slowly oscillating in sense (1, 0), (0, 1)
and (1,1). In the light of this information , we obtain V19(A10h(x, y)) is slowly oscillating in sense (1, 0), (0, 1)
and (1,1) by (45). Therefore, we conclude that ¢y (V10(A10h(x, y))) is slowly oscillating in sense (1, 0). Since
to1(VioAroh(x, y)) and Vi1(A11h(x, y)) converge to zero, we obtain

xlyiinm Vio(A1oh(x, y)) =0 (46)
by (45). Similarly, it can be obtained that

xlyiglm Voi1(Aorh(x, y)) =0 (47)
by Theorem 3.3 (ii). Considering (27), we conclude that h(x, y) converges to s by (44), (46) and (47). O

Theorem 4.4. Let h(x,y) = O(1). If (2) is (C,1,1) summable to s, xA1oh(x,y) € C10(B”), yAoih(x, y) € Co1(B~),
xA10Vio(A10h(x, v)) € C10(B”) and yAp1 Vo1 (Ao h(x, y)) € Co1(B”), then h(x, y) is convergent to s.

Proof. Assume that (2) is (C, 1, 1) summable to s. Taking the limit superior of both sides of (42) as x, y — oo,
we have

lim sup (Vi1(A1h(x, v)) — t1n (Vi (Anh(x, v)))) <

X,Yy—00

2
(%) lim sup (f11 (V11 (An(uu, 40)) — b1 (Via(Anh(x, y))))

X,y—00

+ 5 lim sup (f11 (Vi (A h(x, v))) =t (Vin(Anh(ux, y))))
(t—1)" xy-e
+ > lim sup (11 (Vi (Annh(x, ) — (Vi (Anh(x, py))))
(=17 e
I ! Y ianh Vir(Ah )dd)
et (- [ [ Vo) Vit ).

As in the proof of Theorem 4.3, we have that V11(A115(x, )) is (C, 1, 1) summable to 0. The first three terms
on the right-hand side of the previous inequality vanish and we obtain

lim sup (Vi1(A1nh(x, v)) =t (Vi (Anh(x, v)))) <

X,y—00

. 1 wx o ruy
+hmsup(—m£ fy (Vi1(Arih(u, v)) = Vin(Aunh(x, y))) dudo|.  (48)

xX,y—00

Since xA1g Vlo(Aloh(x, ]/)) € Clo(%>) and on1 Vo (A01h(x, y)) € C01 (%>), then we have xA10V11 (Anh(x, y)) e B~
and yAo V11(A1h(x, y)) € B> by Lemma 3.1, respectively. Therefore, we get

* IV (Anh(r, v))dr
" or
fy IVi1(Arih(x, 1))

Vi1 (Anh(x, y)) — Vi1 (Anh(u, )

dt

([ [
- nfm(2)om(2)

\%
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for some H > 0. From (48) and (49), we have
. 1
lim sup (V11(A1h(x, y)) = (Vi (Anh(x, v)))) < 2H (ln (;)) .
xX,y—00

From the last inequality, we have

lim sup (Vi1(Anh(x, v)) =t (Vi (Anh(x, y)))) < 0. (50)

X,y—00
For 0 < p < 1, in a similar way by using Lemma 3.4 (ii) we have

111%1_}gf (Vin(Anh(x, y)) — t1n(Vii(Aiih(x, v)))) = 0. (61)

From (50) and (51), we conclude
lim inf V11 (A11h(x, y)) = 0. (52)
X,y—00

Now we show that ¢y (V10(A10h(x, 1)) converges to zero. Because of this, we use Theorem 3.2 (i). Firstly
we indicate that f5;(Vio(A10h(x, v))) is (C,1,0) summable to zero and then ty1(Vio(A1oh(x, y))) is one-sided
bounded.

As in the proof of Theorem 4.3, we obtain that f1(V10(A10h(x, ¥))) is (C, 1,0) summable to zero.

Moreover, by hypothesis, since xAiph(x,y) € Cio(B”), yAoh(x,y) € Coi(B>), then we have
xA19Vio(Aroh(x, y)) € B> and yAp1 Vo (Aoih(x, y)) € B> by Lemma 3.1, respectively. If we replace h(x, y)
by Vio(A1oh(x, y)) in Kronecker identity (11), we get

Vio(Aroh(x, y)) — tor(Vio(Awoh(x, y))) = Vir(Anh(x, y)). (53)

Taking the backward difference in sense (1, 0) of both sides of above equality and after by multiplying both
sides of its by x, we have

xA10Vio(Aroh(x, y)) — xAvotor (Vio(Aioh(x, y))) = xA1o Vi (Anih(x, y)).

Hence, we obtain that fp;(Vio(A1oh(x, y))) converges to zero. Since xAipVio(Aoh(x,y)) € B> and
XA10V11(A111’1(X,]/)) € %>, we conclude xA10t01(V10(A10h(x,y))) € B>. Since tm(Vlo(Awh(x,y))) and
Vi1(An1h(x, y)) converge to zero, we obtain

xlyil_l}m Vio(Aroh(x, y)) = 0 (54)
by (53) . Similarly, it can be obtained that
xlyigloo Vor(Aorh(x, y)) = 0 (55)

by Theorem 3.2 (ii). Considering (27), we conclude that h(x, y) converges to s by (52), (54) and (55). O

5. Conclusion

In this paper, we define the concept of regularly generated integrals in different senses and study
Tauberian theorems for Cesaro summability method of double integrals by means of this newly defined
concept. For future research, we plan to extend the Tauberian results for Cesaro summability method of
double integrals to the weighted mean method of double integrals.
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