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Abstract. In this paper, we pursue two purposes. Our first goal is to study a new system of extended
multi-valued nonlinear variational inclusions in Banach spaces and to establish its equivalence with a
system of fixed point problems with the help of the concept of (H, η)-proximal mapping. The obtained
alternative equivalent formulation is used and a new iterative algorithm for finding its approximate solution
is proposed. Under some appropriate assumptions imposed on the mappings and parameters involved
in the system of extended multi-valued nonlinear variational inclusions, the existence of solution for
the system mentioned above is proved and the convergence analysis of the sequences generated by our
suggested iterative algorithm is discussed. The second objective of this paper is to investigate and analyze
the notion of Cn-η-monotone mapping, which is an extension of the concept of Cn-monotone mapping,
and to point out some remarks relating to Cn-η-monotone mapping and the results concerning it appeared
in the literature. The results presented in this paper are new, and improve and generalize many known
corresponding results.

1. Introduction

The theory of variational inequalities which its history can be traced back to 1959 with the work of
Signorini [24], in which the author posed the first problem involving a variational inequality the so-called
Signorini contact problem, plays an important role in many different areas of mathematics such as optimiza-
tion theory, economic equilibrium, partial differential equations, mechanics, management, engineering, etc.
In fact, variational inequalities and their generalizations have been recognized as suitable mathematical
models for dealing with many problems arising in the fields mentioned above. Later, because of its wide
applications in different branches of sciences, the theory of variational inequality has been extended and
generalized in many different directions. There is no doubt that among the generalizations, variational in-
clusion is one of the most interesting and well-known ones and this is the reason why in the last two decades

2020 Mathematics Subject Classification. 47H05; 47J22; 47J25; 49J40; 90C33.
Keywords. System of extended multi-valued nonlinear variational inclusions, (H, η)-proximal mapping, General (H, η)-monotone

operator, Cn-η-monotone mapping.
Received: 08 April 2022; Accepted: 03 September 2022
Communicated by Adrian Petrusel
* Corresponding author: Yonghong Yao
Email addresses: javad.balooee@gmail.com (Javad Balooee), mihai.postolache@upb.ro (Mihai Postolache),

yyhtgu@hotmail.com (Yonghong Yao)



J. Balooee et al. / Filomat 37:9 (2023), 2935–2960 2936

many researchers have shown interest in studying various classes of variational inclusion problems. For
additional references among with more details, the reader is referred to [1–13, 15–20, 22, 25–28, 32] and the
references therein.

It is worthwhile to emphasize that the existence of solutions and approximation of solutions by the
iterative algorithms are two important problems in the theory of variational inequalities and their gener-
alizations. For this reason, in recent decades, several numerical methods have been devised for solving
variational inequalities and related optimization problems in Euclidean and Hilbert spaces, such as the pro-
jection methods and its variant forms, linear approximation, descent method, Newton’s method and the
method based on auxiliary principle technique. In particular, the method based on the resolvent operator
technique is a generalization of the projection method and has been widely used for solving variational
inclusions. Over the last few decades, the study of problems and equations with monotone and accretive
operators have been one of the most active research areas of optimization theory and nonlinear functional
analysis. The study of the notion of invexity as an important and significant generalization of convexity
was first made by Hanson [14] in 1981. By replacing the linear term y − x appearing in the formulation
of variational inequalities by a vector-valued term η(y, x), where η is a vector-valued bifunction, Parida
et al. [23] and Yang and Chen [31] introduced, independently, the notion of variational-like inequality or
pre-variational inequality. Here it is to be noted that due to the nature of variational-like inequalities, that is
the involvement of the vector-valued term η(y, x) in the formulations of variational-like inequalities, among
numerical techniques available in the literature, only few of them can be used to compute approximate so-
lutions of variational-like inequality problems. The auxiliary principle technique and the proximal method
are the most studied methods for solving variational-like inequalities. The introduction of the notions of
η-subdifferential and η-proximal point mappings of a proper functional was first made by Ding and Luo
[8] and Lee et al. [18], independently. In 2002, Ding and Xia [9] succeeded to introduce the notion of J-
proximal mapping for a lower semicontinuous subdifferentiable proper (may not be convex) functional on
reflexive Banach spaces, and proved its existence and Lipschitz continuity under some suitable conditions.
Attempts in this direction have been continued and further resolvent operators have been introduced. For
example, in 2005, Ahmad et al. [1] and Kazmi and Bhat [16] succeeded, independently, to introduce the
notion of Jη-proximal (also referred to as P-η-proximal) mapping for a nonconvex lower semicontinuous η-
subdifferentiable proper functional on reflexive Banach spaces as an extension of the concept of J-proximal
mapping appeared in [9]. The existence and Lipschitz continuity of such proximal mappings have been
proved under some appropriate conditions in [1, 16]. They also proposed some iterative algorithms for
solving some classes of generalized multivalued nonlinear variational-like inequalities in the framework
of Banach spaces.

Inspired by their wide applications in modern optimization and variational analysis, during the last two
decades, much attention has given to develop and generalize the notion of maximal monotone operator.
One of the first efforts in this direction was carried out by Fang and Huang [10] in 2003, who introduced
the concept of H-monotone operator and defined the resolvent operator associated with it. Subsequently,
Xia and Huang [28] introduced the concept of general H-monotone mapping as a generalization of the
notions of J-proximal mapping [9] and H-monotone operator [10]. They defined the proximal mapping
associated with general H-monotone operator, which is different from the resolvent operator associated
with the H-accretive operator considered and studied by Fang and Huang [11]. They also introduced a new
class of variational inclusions with general H-monotone operator and constructed an iterative algorithm
for solving this class of variational inclusions by using the proximal mapping. The efforts in this direction
have been continued and in 2010, Luo and Huang [20] introduced the concept of B-monotone operator
as a generalization of general H-monotone mapping and by using the notion of the proximal mapping,
they constructed an iterative algorithm for solving a class of variational inclusions involving B-monotone
operators in Banach spaces. Two years later, Nazemi [22] introduced and studied the notion of Cn-monotone
mappings as a generalization of general H-monotone and B-monotone operators. She considered a class
of variational inclusions involving Cn-monotone mappings in Banach spaces and suggested an iterative
algorithm for solving this class of variational inclusions by using the technique of proximal mapping.
In the meanwhile, she discussed the convergence of the sequences generated by the proposed iterative
algorithm under some suitable conditions. One year later, Guan and Hu [13] introduced and studied



J. Balooee et al. / Filomat 37:9 (2023), 2935–2960 2937

the notion Cn-η-monotone mapping as an extension of Cn-monotone mapping. They considered a class
of variational inclusions involving Cn-η-monotone mapping which is a generalized form of the class of
variational inclusions involving Cn-monotone mapping considered in [22]. They proposed a new proximal
mapping and proved its Lipschitz continuity and suggested an iterative algorithm by using the new
proximal mapping. They also studied the convergence analysis of the sequences generated by the suggested
iterative algorithm under some appropriate conditions.

The rest of the paper is organized as follows. Section 2 recalls the basic definitions and preliminaries
concerning general (H, η)-monotone operator and its associated proximal mappings in a q-uniformly smooth
Banach space setting that are broadly used throughout the whole paper. This section is ended with a new
conclusion, in which the Lipschitz continuity of the proximal-point mapping associated with a general (H, η)-
monotone operator is proved and a new estimate of its Lipschitz constant is computed. In Sect. 3, a new
system of extended multi-valued nonlinear variational inclusions (for short, SEMNVI) is considered and its
equivalence with a system of fixed point problems is demonstrated. By using the obtained equivalence, an
iterative algorithm for finding an approximate solution of the SEMNVI is constructed. As an application of
the proposed algorithm, at the end of Sect. 3, under some suitable assumptions imposed on the parameters
and operators, the strong convergence of the sequences generated by our suggested iterative algorithm to
the solution of the SEMNVI is proved. Section 4 is devoted to the investigation and analysis of the notion of
Cn-η-monotone mapping introduced and studied in [13]. We point out that under the conditions imposed
on Cn-η-monotone mapping in [13], every Cn-η-monotone mapping is actually a general (H, η)-monotone
operator and is not a new one. Moreover, we review and investigate the results appeared in [13] and by
pointing out some comments regarding them, we show that one can deduce all the conclusions existing in
[13] with the aid of the results given in the previous sections.

2. Preliminaries and Basic Results

Let E be a real Banach space with the topological dual space E∗. Suppose that CB(E) denote the family
of all the nonempty closed and bounded subsets of E. Furthermore, let Ĥ(., .) be the Hausdorff metric on
CB(E) defined by

Ĥ(A,B) = max{sup
x∈A

inf
y∈B
∥x − y∥, sup

y∈B
inf
x∈A
∥x − y∥}, ∀A,B ∈ CB(E).

For a real constant q > 1, the generalized duality mapping Jq : E⇒ E∗ is defined by

Jq(x) = { f ∗ ∈ E∗ : ⟨x, f ∗⟩ = ∥x∥q, ∥ f ∗∥ = ∥x∥q−1
}, ∀x ∈ E.

In particular, J2 = J is the usual normalized duality mapping. It is known that, in general, Jq(x) = ∥x∥q−2 J2(x),
for all x , 0 and Jq is single-valued if E∗ is strictly convex. We recall that a Banach space E is said to be
strictly convex if ∥x+y∥

2 < 1 for all x, y ∈ U = {z ∈ E : ∥z∥ = 1} with x , y. If E is a Hilbert space, then J2
becomes the identity mapping on E.

The modulus of smoothness of E is the function ρE : [0,+∞)→ [0,+∞) defined by

ρE(t) = sup{
1
2

(∥x + y∥ + ∥x − y∥) − 1 : ∥x∥ ≤ 1, ∥y∥ ≤ t}.

A Banach space E is called uniformly smooth if lim
t→0

ρE(t)
t = 0.

For a real constant q > 1, a Banach space E is called q-uniformly smooth if there exists a constant C > 0
such that ρE(t) ≤ Ctq for all t ∈ [0,+∞). It is well known that (see e.g. [29]) Lq (or lq) is q-uniformly smooth
for 1 < q ≤ 2 and is 2-uniformly smooth if q ≥ 2. Note that Jq is single-valued if E is uniformly smooth.

In the study of characteristic inequalities in q-uniformly smooth Banach spaces, Xu [29] proved the
following result.



J. Balooee et al. / Filomat 37:9 (2023), 2935–2960 2938

Lemma 2.1. Let E be a real uniformly smooth Banach space. For a real constant q > 1, E is q-uniformly smooth if
and only if there exists a constant cq > 0 such that for all x, y ∈ E,

∥x + y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩ + cq∥y∥q.

We also recall the following concepts and some known results which shall be used in the sequel.

Definition 2.2. Let E be a real Banach space with the dual space E∗ and let η : E×E→ E be a vector-valued mapping.
A single-valued mapping T : E→ E∗ is said to be

(i) monotone if

⟨T(x) − T(y), x − y⟩ ≥ 0, ∀x, y ∈ E;

(ii) η-monotone if

⟨T(x) − T(y), η(x, y)⟩ ≥ 0, ∀x, y ∈ E;

(iii) k-strongly monotone if there exists a constant k > 0 such that

⟨T(x) − T(y), x − y⟩ ≥ k∥x − y∥2, ∀x, y ∈ E;

(iv) γ-strongly η-monotone if there exists a constant γ > 0 such that

⟨T(x) − T(y), η(x, y)⟩ ≥ γ∥x − y∥2, ∀x, y ∈ E;

(v) ρ-Lipschitz continuous if there exists a constant ρ > 0 such that

∥T(x) − T(y)∥ ≤ ρ∥x − y∥, ∀x, y ∈ E.

Definition 2.3. Let E be a real Banach space with the dual space E∗ and let η : E×E→ E be a vector-valued mapping.
A multi-valued mapping M̂ : E⇒ E is said to be

(i) monotone if

⟨u − v, x − y⟩ ≥ 0, ∀x, y ∈ E,u ∈ M̂(x), v ∈ M̂(y);

(ii) η-monotone if

⟨u − v, η(x, y)⟩ ≥ 0, ∀x, y ∈ E,u ∈ M̂(x), v ∈ M̂(y);

(iii) strongly monotone with constant r (or r-strongly monotone) if there exists a constant r > 0 such that

⟨u − v, η(x, y)⟩ ≥ r∥x − y∥2, ∀x, y ∈ E,u ∈ M̂(x), v ∈ M̂(y);

(iv) strongly η-monotone with constant θ (or θ-strongly η-monotone) if there exists a constant θ > 0 such that

⟨u − v, η(x, y)⟩ ≥ θ∥x − y∥2, ∀x, y ∈ E,u ∈ M̂(x), v ∈ M̂(y).

Definition 2.4. [15] A multi-valued operator M̂ : H ⇒ H is said to be

(i) maximal monotone if M̂ is monotone and (I + λM̂)(H) = H holds for all λ > 0, where I stands for the identity
mapping onH ;

(ii) maximal η-monotone if M̂ is η-monotone and (I + λM̂)(H) = H holds for every λ > 0.

Here it is to be noted that M̂ is a maximal η-monotone operator if and only if M̂ is η-monotone and
there is no other η-monotone operator whose graph contains strictly Graph(M̂), where Graph(M̂) = {(x,u) ∈
H ×H : u ∈ M̂(x)}.

Xia and Huang [28] introduced a class of generalized monotone operators the so-called general H-
monotone operators as follows.
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Definition 2.5. [28, Theorem 3.1] Let E be a Banach space with the dual space E∗ and let H : E → E be a single-
valued mapping, and M̂ : E⇒ E∗ be a multi-valued mapping. M̂ is said to be general H-monotone if M̂ is monotone
and (H + λM̂)(E) = E∗ holds for every λ > 0.

Lou et al. [19] and Alimohammady and Roohi [3] introduced and studied the class of general (H, η)-
monotone operators (also referred to as (H, η)-monotone operators in literature, see for example, [19,
Definition 1.2(7)]) as a generalization of the class of general H-monotone operators as follows.

Definition 2.6. A multi-valued operator M̂ : E ⇒ E∗ is said to be general (H, η)-monotone operator if M̂ is
η-monotone and (H + λM̂)(E) = E∗ holds for every λ > 0.

Remark 2.7. When E = H is a Hilbert space, the general (H, η)-monotone operator reduces to the (H, η)-
monotone operator introduced in [12]. If η(x, y) = x − y for all x, y ∈ E, then Definition 2.6 reduces
to Definition 2.5, that is, the general (H, η)-monotone operator coincides with the general H-monotone
operator. For the case where E = H and η(x, y) = x − y, for all x, y ∈ E, then Definition 2.6 reduces to
Definition 2.1 in [10], that is, the definition H-monotone operator. If E = H and H = 1, then Definition
2.6 reduces to the definition 1-η-monotone operator introduced in [32]. If E = H and H = I, the identity
mapping, then Definition 2.6 reduces to Definition 2.4(ii), that is, the definition maximal η-monotone
operator considered in [15].

The following two examples illustrate that for the vector-valued mappings η : E×E→ E and H : E→ E,
a general (H, η)-monotone operator may be neither general H-monotone nor maximal η-monotone.

Example 2.8. Let E = R and let the operators M̂ : E⇒ E and η : E × E→ E be defined by

M̂(x) =


x + β, if x < γ,
{−β − γ, β − γ}, if x = γ,
−x − β, if x > γ,

and η(x, y) = αxqyq(yn
− xn), for all x, y ∈ E, respectively, where α, β > 0 and γ ∈ R are arbitrary but fixed, and q

and n are arbitrary but fixed even and odd natural numbers, respectively. For all x, y > γ, x , y, we have

⟨M̂(x) − M̂(y), x − y⟩ = −(x − y)2 < 0,

that is, M̂ is not monotone. Since yn
− xn = (y − x)

n∑
j=1

yn− jx j−1, for all x, y ∈ E, x , y, we have
n∑

j=1
yn− jx j−1 =

yn
−xn

y−x .

If x = y = 0, then
n∑

j=1
yn− jx j−1 = 0. If x, y > 0 or x, y < 0, obviously,

n∑
j=1

yn− jx j−1 > 0. For the case where x > 0

and y < 0, in view of the fact that n is an odd natural number, we have y − x < 0 and yn
− xn < 0. If x < 0 and

y > 0, since n is an odd natural number, it follows that y− x > 0 and yn
− xn > 0. Hence, in both cases, we conclude

that
n∑

j=1
yn− jx j−1 > 0. In the case when x = 0 and y , 0, or x , 0 and y = 0, clearly

n∑
j=1

yn− jx j−1 > 0. Therefore,

n∑
j=1

yn− jx j−1
≥ 0, for all x, y ∈ E. If x > γ and y < γ, then M̂(x) = x − β, M̂(y) = y + β and we have

⟨M̂(x) − M̂(y), η(x, y)⟩ = (x − β − y − β)αxqyq(yn
− xn)

= [−(y − x) − 2β]αxqyq(y − x)
n∑

j=1

yn− jx j−1

= −α(y − x)2xqyq
n∑

j=1

yn− jx j−1

− 2αβxqyq(y − x)
n∑

j=1

yn− jx j−1.
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Taking into account that β > 0, y < x, q is an even natural number and
n∑

j=1
yn− jx j−1

≥ 0, the above equality implies

that ⟨M̂(x) − M̂(y), η(x, y)⟩ ≥ 0. For the case where x < γ and y > γ, then M̂(x) = x + β, M̂(y) = y − β and we have

⟨M̂(x) − M̂(y), η(x, y)⟩ = −α(y − x)2xqyq
n∑

j=1

yn− jx j−1 + 2αβxqyq(y − x)
n∑

j=1

yn− jx j−1.

Considering the facts that β > 0, y > x, q is an even natural number, and
n∑

j=1
yn− jx j−1

≥ 0, from the preceding equality

it follows that ⟨M̂(x) − M̂(y), η(x, y)⟩ ≥ 0. Similarly, one can deduce that

⟨u − v, η(x, y)⟩ ≥ 0, ∀x, y ∈ E,u ∈ M̂(x), v ∈ M̂(y),

that is, M̂ is an η-monotone operator. Since

(I + λM̂)(x) =


(1 − λ)x + λβ, if x < γ,
{(1 − λ)γ − λβ, (1 − λ)γ + λβ}, if x = γ,
(1 − λ)x − λβ, if x > γ,

for all x, y ∈ E, it is easy to see that (I + λM̂)(E) , E, for all λ ≥ 1, that is, M̂ is not a maximal η-monotone operator.
Now, let us define the operator H : E→ E as follows:

H(x) =
{
−(x − γ)2, if x < γ,
(x − γ)2, if x ≥ γ.

In virtue of the fact that M̂ is not monotone, it follows that M̂ is not a general H-monotone operator. It can be easily
observed that (H + λM̂)(E) = E, for every λ > 0. This fact implies that M̂ is a general (H, η)-monotone operator.

Example 2.9. Let E = R and let the operators M̂ : E⇒ E and η : E × E→ E be defined by

M̂(x) =


αx + β, if x < 0,
{−β, β}, if x = 0,
αx − β, if x > 0,

and η(x, y) = γxqyq(yn
− xn), for all x, y ∈ E, respectively, where α < 0 and β, γ > 0 are arbitrary but fixed real

numbers, and q and n are arbitrary but fixed even and odd natural numbers, respectively. Relying on the
fact that α < 0, for all x, y > 0, x , y, we have

⟨M̂(x) − M̂(y), x − y⟩ = α(x − y)2 < 0,

that is, M̂ is not monotone. Let x > γ and y < γ. Then M̂(x) = αx − β and M̂(y) = αy + β. Since α < 0 < β,

y < x, q is an even natural number and
n∑

j=1
yn− jx j−1

≥ 0, we have

⟨M̂(x) − M̂(y), η(x, y)⟩ = −αγ(y − x)2xqyq
n∑

j=1

yn− jx j−1
− 2βγxqyq(y − x)

n∑
j=1

yn− jx j−1
≥ 0.

If x < γ and y > γ, then M̂(x) = αx + β, M̂(y) = αy + β and we have

⟨M̂(x) − M̂(y), η(x, y)⟩ = −αγ(y − x)2xqyq
n∑

j=1

yn− jx j−1 + 2βγxqyq(y − x)
n∑

j=1

yn− jx j−1
≥ 0.
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In a similar fashion to the preceding analysis, one can show that

⟨u − v, η(x, y)⟩ ≥ 0, ∀x, y ∈ E,u ∈ M̂(x), v ∈ M̂(y),

that is, M̂ is an η-monotone operator. Thanks to the fact that

(I + λM̂)(x) =


(1 + λα)x + λβ, if x < 0,
{−λβ, λβ}, if x = 0,
(1 + λα)x − λβ, if x > 0,

for all x, y ∈ E, it is easy to check that (I+λM̂)(E) , E, for all λ ≥ − 1
α , that is, M̂ is not a maximal η-monotone

operator. We now define the operator H : E→ E as follows:

H(x) =
{
−x2, if x < 0,
x2, if x ≥ 0.

Since M̂ is not monotone, we conclude that M̂ is not a general H-monotone operator. It is easy to see that
(H + λM̂)(E) = E, for every λ > 0. This fact ensures that M̂ is a general (H, η)-monotone operator.

The following example shows that for given vector-valued mappings H : E → E and η : E × E → E, a
maximal η-monotone operator need not be general (H, η)-monotone operator.

Example 2.10. Let E = R and let the operators M̂ : E ⇒ E and η : E × E → E be defined by M̂(x) = xk and
η(x, y) = αxβyβ(xn

− yn), where α is a positive real number, k and n are two arbitrary but fixed odd natural
numbers, and β is an arbitrary but fixed even natural number. Since k is an odd natural number, for all
x, y ∈ E, we have

⟨M̂(x) − M̂(y), x − y⟩ = (xk
− yk)(x − y) = (x − y)2

k∑
j=1

xk− jy j−1
≥ 0,

that is, M̂ is monotone. In the meanwhile, for all x, y ∈ E, we have

⟨M̂(x) − M̂(y), η(x, y)⟩ = α(xk
− yk)xβyβ(xn

− yn)

= αxβyβ(x − y)2(
k∑

j=1

xk− jy j−1)(
n∑

j=1

xn− jy j−1).

Taking into account that k and n are two odd natural numbers, it follows that
k∑

j=1
xk− jy j−1

≥ 0 and
n∑

j=1
xn− jy j−1

≥

0, for all x, y ∈ E. This fact and the facts that q is an even natural number and α > 0 guarantee that
⟨M̂(x)− M̂(y), η(x, y)⟩ ≥ 0, for all x, y ∈ E, that is, M̂ is an η-monotone operator. On the other hand, for every
λ > 0 and x ∈ E, we have (I+λM̂)(x) = x+λxk. Owing to the fact that k is an odd natural number, it follows
that (I + λM̂)(E) = E, for every λ > 0. This fact implies that M̂ is a maximal η-monotone operator. Now, let
us define the operator H : E→ E by H(x) = x2k, for all x ∈ E. Then, by taking λ = 1, for all x ∈ E, we have

(H + λM̂)(x) = H(x) + M̂(x) = x2k + xk = xk(xk + 1).

Since k is an odd natural number, it follows that (H + M̂)(E) , E, that is, (H + λM̂)(E) = E does not hold for
all λ > 0. Hence, M̂ is not a general H-monotone and general (H, η)-monotone operator.

Theorem 2.11. Let E be a reflexive Banach space with the dual space E∗ and η : E × E → E be a vector-valued
operator. Suppose that H : E→ E∗ is an η-monotone operator and M̂ : E⇒ E∗ is a θ-strongly η-monotone operator.
Then, the mapping (H + λM̂)−1 : Range(H + λM̂)→ E is single-valued for every real constant λ > 0.
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Proof. Suppose, by contradiction, that there exists some z ∈ Range(H + λM̂) such that x, y ∈ (H + λM̂)−1(z)
and x , y. Then, we have z ∈ (H + λM̂)(x) and z ∈ (H + λM̂)(y), and so there exists u ∈ M̂(x) and v ∈ M̂(y)
such that

H(x) + λu = H(y) + λv. (1)

Since H is η-monotone and M̂ is θ-strongly η-monotone, by (1), yields

λθ∥x − y∥2 ≤ ⟨H(x) −H(y), η(x, y)⟩ + λ⟨u − v, η(x, y)⟩ = 0,

which implies that x = y. Obviously, this is in contradiction to our assumption.

We obtain the following corollary as a direct consequent of the previous theorem immediately.

Corollary 2.12. Let E be a reflexive Banach space with the dual space E∗ and η : E × E → E be a vector-valued
operator. Let H : E→ E∗ be an η-monotone operator and M̂ : E⇒ E∗ be a general (H, η)-strongly monotone operator
with constant θ. Then, the mapping (H + λM̂)−1 : E∗ → E is single-valued for every constant λ > 0.

By utilizing Corollary 2.12, we can define the proximal mapping RH,η

M̂,λ
associated with H, η, M̂ and

constant λ > 0 as follows.

Definition 2.13. Let E be a reflexive Banach space with the dual space E∗ and let η : E × E→ E be a vector-valued
operator. Suppose that H : E→ E∗ is an η-monotone operator and M̂ : E⇒ E∗ is a general strongly (H, η)-monotone
mapping with constant γ. For every real constant λ > 0, the proximal mapping RH,η

M̂,λ
: E∗ → E associated with

H, η, M̂ and constant λ > 0 is defined by RH,η

M̂,λ
(x∗) = (H + λM̂)−1(x∗) for all x∗ ∈ E∗.

Definition 2.14. A vector-valued mapping η : E × E → E is said to be τ-Lipschitz continuous if there exists a
constant τ > 0 such that ∥η(x, y)∥ ≤ τ∥x − y∥, for all x, y ∈ E.

Theorem 2.15. Let E be a reflexive Banach space with the dual space E∗ and η : E×E→ E be a κ-Lipschitz continuous
operator. Suppose that H : E→ E∗ is an η-monotone operator and M̂ : E⇒ E∗ is a general (H, η)-strongly monotone
with constant θ. Then, the proximal mapping RH,η

M̂,λ
: E∗ → E is κ

λθ -Lipschitz continuous, i.e.,

∥RH,η

M̂,λ
(x∗) − RH,η

M̂,λ
(y∗)∥ ≤

κ
λθ
∥x∗ − y∗∥, ∀x∗, y∗ ∈ E∗.

Proof. In view of the fact that M̂ is a general (H, η)-monotone operator, for any given x∗, y∗ ∈ E∗ with
∥RH,η

M̂,λ
(x∗) − RH,η

M̂,λ
(y∗)∥ , 0, we have

RH,η

M̂,λ
(x∗) = (H + λM̂)−1(x∗) and RH,η

M̂,λ
(y∗) = (H + λM̂)−1(y∗),

from which we deduce that

λ−1(x∗ −H(RH,η

M̂,λ
(x∗))) ∈ M̂(RH,η

M̂,λ
(x∗)) and λ−1(y∗ −H(RH,η

M̂,λ
(y∗))) ∈ M̂(RH,η

M̂,λ
(y∗)).

Since M̂ is θ-strongly η-monotone, it follows that

λ−1
⟨x∗ −H(RH,η

M̂,λ
(x∗)) − (y∗ −H(RH,η

M̂,λ
(y∗))), η(RH,η

M̂,λ
(x∗),RH,η

M̂,λ
(y∗))⟩ ≥ θ∥RH,η

M̂,λ
(x∗) − RH,η

M̂,λ
(y∗)∥2.

Taking into account that λ−1 > 0, from the above inequality, we obtain

⟨x∗ − y∗, η(RH,η

M̂,λ
(x∗),RH,η

M̂,λ
(y∗))⟩ ≥ ⟨H(RH,η

M̂,λ
(x∗)) −H(RH,η

M̂,λ
(y∗)), η(RH,η

M̂,λ
(x∗),RH,η

M̂,λ
(y∗))⟩ + λθ∥RH,η

M̂,λ
(x∗) − RH,η

M̂,λ
(y∗)∥2.
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The preceding inequality and the facts that η is κ-Lipschitz continuous and H is η-monotone imply that

κ∥x∗ − y∗∥∥RH,η

M̂,λ
(x∗) − RH,η

M̂,λ
(y∗)∥ ≥ ∥x∗ − y∗∥∥η(RH,η

M̂,λ
(x∗),RH,η

M̂,λ
(y∗))∥

≥ ⟨x∗ − y∗, η(RH,η

M̂,λ
(x∗),RH,η

M̂,λ
(y∗))⟩

≥ ⟨H(RH,η

M̂,λ
(x∗)) −H(RH,η

M̂,λ
(y∗)), η(RH,η

M̂,λ
(x∗),

RH,η

M̂,λ
(y∗))⟩ + λθ∥RH,η

M̂,λ
(x∗) − RH

M̂,λ
(y∗)∥2

≥ λθ∥RH,η

M̂,λ
(x∗) − RH,η

M̂,λ
(y∗)∥2.

In view of the fact that ∥RH,η

M̂,λ
(x∗) − RH,η

M̂,λ
(y∗)∥ , 0, dividing both sides of the last inequality by ∥RH,η

M̂,λ
(x∗) −

RH,η

M̂,λ
(y∗)∥ , 0, we yield

∥RH,η

M̂,λ
(x∗) − RH,η

M̂,λ
(y∗)∥ ≤

κ
λθ
∥x∗ − y∗∥.

This completes the proof.

Remark 2.16. By a careful reading, we found that there is a small mistake in Theorem 3.9 of [28]. In fact,
the space E must be assumed as a reflexive Banach space with the dual space E∗, as we have added the
mentioned assumption to Theorem 2.15. At the same time, it is worthwhile to stress that Theorem 2.15
improves Theorem 3.9 in [28]. Indeed, in Theorem 3.9 of [28], the strict η-monotonicity condition of the
operator H has been reduced to the η-monotonicity condition in Theorem 2.15.

Corollary 2.17. [28, Theorem 3.2] Suppose that E is a reflexive Banach space with the dual space E∗. Let H : E→ E∗

be a mapping, and M : E⇒ E∗ be a general H-monotone mapping. Then the following conclusions hold.

(i) If H is a strongly monotone mapping with constant γ, then the proximal mapping RH
M,λ : E∗ → E is Lipschitz

continuous with constant 1
γ ;

(ii) If H is a strictly monotone mapping and M is a strongly monotone mapping with constant β, then the proximal
mapping RH

M,λ : E∗ → E is Lipschitz continuous with constant 1
λβ

Remark 2.18. It is significant to mention that Theorem 2.15 generalizes Theorem 3.2 in [28]. In fact, if
η(x, y) = x− y, for all x, y ∈ E, then the conclusion of Theorem 2.15 reduces to the conclusion (b) of Theorem
3.2 in [28]. By comparing Theorem 3.2(b) in [28] and Theorem 2.15, and due to the fact that the strict
η-monotonicity condition of the operator H in [28, Theorem 3.2(b)] has been reduced to the η-monotonicity
condition in Theorem 2.15, we note that Theorem 2.15 is an improvement version of Theorem 3.2(b) in [28].
Note, in particular, that Theorem 2.15 extends and improves Theorem 2.2 in [10], Lemma 2.2 in [12] and
Theorem 2.2 in [32].

3. Formulations, Existence Results of Solution and Convergence Analysis

Let for each i ∈ {1, 2, . . . ,n} and j ∈ {1, 2}, Ei, j be a real Banach space equipped with the dual space E∗i, j and
norm ∥.∥i, j, ⟨., .⟩i, j be the dual pair between Ei, j and E∗i, j. Suppose that for i = 1, 2, . . . ,n, Ai : Ei,1 → E∗i,1, pi :

Ei,1 → Ei,1, 1i : En−(i−1),1 → En−(i−1),1, Pi :
n∏

k=1
En−(k−1),1 → E∗i,1 and Fi :

n∏
k=1

Ek,2 → E∗i,1 are single-valued operators.

Assume further that for i = 1, 2 . . . ,n, Ti : Ei,1 ⇒ CB(Ei,2), Si : En−(i−1),1 → CB(En−(i−1),1) and Mi : Ei,1 ⇒ E∗i,1
are multi-valued operators. For each i ∈ {1, 2, . . . ,n} and any given ai ∈ E∗i,1, we consider the following
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system of extended multi-valued nonlinear variational inclusions (SEMNVI): Find (x1, x2, . . . , xn) ∈
n∏

i=1
Ei,1,

(s1, s2, . . . , sn) ∈
n∏

i=1
Si(xn−(i−1)) and (t1, t2, . . . , tn) ∈

n∏
i=1

Ti(xi) such that for each i ∈ {1, 2, . . . ,n},

ai ∈ Ai(xi − pi(xi)) + Pi(11(s1), 12(s2), . . . , 1n(sn)) +Mi(xi) − Fi(t1, t2, . . . , tn). (2)

If for i = 1, 2, . . . ,n, Ei,1 = E, E∗i,1 = E∗, Ei,2 = Ei, Si = Pi ≡ 0, pi = p, Ai = A, Mi = M̂, Fi = F and ai = a, then
the SEMNVI (2) collapses to the following multi-valued nonlinear variational inclusion problem (NMVIP):

Find x ∈ E and (t1, t2, . . . , tn) ∈
n∏

i=1
Ti(x) such that

a ∈ A(x − p(x)) + M̂(x) − F(t1, t2, . . . , tn). (3)

We remark that for suitable and appropriate choices of the operators Ai,Fi,Ti,Si,Pi,Mi, 1i, pi and the
underlying spaces Ei, j for i = 1, 2, . . . ,n and j = 1, 2, the SEMNVI (2) reduces to various classes of variational
inclusions and variational inequalities, see for example, [12, 17, 22, 27, 30] and the references therein.

With the goal of finding a characterization of a solution of the SEMNVI (2), we present the following
result in which the equivalence between the SEMNVI (2) and a fixed point problem is stated.

Theorem 3.1. Let for each i ∈ {1, 2, . . . ,n}, Ei,1 be a reflexive Banach space with the dual space E∗i,1 and Ei,2 be
a real Banach space with the dual space E∗i,2. Let for i = 1, 2, . . . ,n, Ai,Si,Ti,Fi,Pi, 1i, pi and ai be the same as
in the SEMNVI (2). Suppose further that for i = 1, 2, . . . ,n, ηi : Ei,1 × Ei,1 → Ei,1 is a vector-valued operator,
Hi : Ei,1 → E∗i,1 is an ηi-monotone operator, and Mi : Ei,1 ⇒ E∗i,1 is a general (Hi, ηi)-strongly monotone operator.

Then, (x1, x2, . . . , xn) ∈
n∏

i=1
Ei,1, (s1, s2, . . . , sn) ∈

n∏
i=1

Si(xn−(i−1)) and (t1, t2, . . . , tn) ∈
n∏

i=1
Ti(xi) are the solution of the

SEMNVI (2), if and only if for i = 1, 2, . . . ,n,

xi = RHi,ηi

Mi,λi
[Hi(xi) − λi(Ai(xi − pi(xi)) + Pi(11(s1), 12(s2), . . . , 1n(sn)) − ai − Fi(t1, t2, . . . , tn))] (4)

where λi > 0 (i = 1, 2, . . . ,n) are constants.

Proof. By using Definition 2.13, it follows that (x1, x2, . . . , xn, s1, s2, . . . , sn, t1, . . . , tn) is a solution of the SEM-
NVI (2) if and only if for each i ∈ {1, 2, . . . ,n},

ai ∈ Ai(xi − pi(xi)) + Pi(11(s1), 12(s2), . . . , 1n(sn)) +Mi(xi) − Fi(t1, t2, . . . , tn)
⇔ λi[ai + Fi(t1, t2, . . . , tn) − Ai(xi − pi(xi)) − Pi(11(s1), 12(s2), . . . , 1n(sn))] ∈ λiMi(xi)
⇔ Hi(xi) − λi[Ai(xi − pi(xi)) + Pi(11(s1), 12(s2), . . . , 1n(sn)) − ai − Fi(t1, t2, . . . , tn)] ∈ Hi(xi) + λiMi(xi)
= (Hi + λiMi)(xi)

⇔ xi = RHi,ηi

Mi,λi
[Hi(xi) − λi(Ai(xi − pi(xi)) + Pi(11(s1), 12(s2), . . . , 1n(sn)) − ai − Fi(t1, t2, . . . , tn))]

where λi > 0 (i = 1, 2, . . . ,n) are constants. This gives the desired result.

Corollary 3.2. Let E be a reflexive Banach space with the dual space E∗, and for each i ∈ {1, 2, . . . ,n}, Ei be a real
Banach space with the dual space E∗i . Let A,F,Ti (i = 1, 2, . . . ,n), p and a be the same as in the NMVIP (3). Suppose
further that η : E × E → E is a vector-valued operator, H : E → E∗ is an η-monotone operator, and M̂ : E ⇒ E∗ is

a general (H, η)-strongly monotone operator. Then, (x, t1, t2, . . . , tn) ∈ E ×
n∏

i=1
Ti(x) ⊆ E ×

n∏
i=1

Ei is a solution of the

NMVIP (3), if and only if

x = RH,η

M̂,λ
[H(x) − λ(A(x − p(x)) − a − F(t1, t2, . . . , tn))], (5)

where λ > 0 is a constant.
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Lemma 3.3. [21] Let (E, d) be a complete metric space and T : E→ CB(E) be a multi-valued mapping. Then for any
ϵ > 0 and for any given x, y ∈ E, u ∈ T(x), there exists v ∈ T(y) such that

d(u, v) ≤ (1 + ϵ)Ĥ(T(x),T(y)),

where Ĥ(., .) is the Hausdorff metric on CB(E).

We now apply the fixed point formulation (4) and Nadler’s technique [21] to construct the following
iterative algorithm for solving the SEMNVI (2).

Algorithm 3.4. Let for each i ∈ {1, 2, . . . ,n}, Ei,1 be a real reflexive Banach space with the dual space E∗i,1 and Ei,2 be
a real Banach space with the dual space E∗i,2. Suppose that Ai,Si,Ti,Fi,Pi, 1i, pi and ai (i = 1, 2, . . . ,n) are the same
as in the SEMNVI (2). Assume further that for i = 1, 2, . . . ,n, ηi : Ei,1 × Ei,1 → Ei,1 is a vector-valued operator,
Hi : Ei,1 → E∗i,1 is an ηi-monotone operator, and Mi : Ei,1 ⇒ E∗i,1 is a general (Hi, ηi)-strongly monotone operator.

For any given (x1,0, x2,0, . . . , xn,0) ∈
n∏

i=1
Ei,1, (s1,0, s2,0, . . . , sn,0) ∈

n∏
i=1

Si(xn−(i−1),0) and (t1,0, t2,0, . . . , tn,0) ∈
n∏

i=1
Ti(xi,0),

compute the iterative sequences {(x1,m, x2,m, . . . , xn,m)}∞m=0, {(s1,m, s2,m, . . . , sn,m)}∞m=0 and {(t1,m, t2,m, . . . , tn,m)}∞m=0 in
n∏

i=1
Ei,1,

n∏
i=1

En−(i−1),1 and
n∏

i=1
Ei,2, respectively, by the iterative schemes

xi,m+1 = (1 − α)xi,m + αRHi,ηi

Mi,λi
[Hi(xi,m) − λi(Ai(xi,m − pi(xi,m)) + Pi(11(s1,m), 12(s2,m), . . . , 1n(sn,m)) − ai

−Fi(t1,m, t2,m, . . . , tn,m))] + αei,m + ri,m,

si,m ∈ Si(xn−(i−1),m) : ∥si,m+1 − si,m∥n−(i−1),1 ≤ (1 + (1 +m)−1)Ĥn−(i−1),1(Si(xn−(i−1),m+1),Si(xn−(i−1),m)),
ti,m ∈ Ti(xi,m) : ∥ti,m+1 − ti,m∥i,2 ≤ (1 + (1 +m)−1)Ĥi,2(Ti(xi,m+1),Ti(xi,m)),

(6)

where i = 1, 2, . . . ,n; m = 0, 1, 2, . . . ;λm,i > 0 are constants; α ∈ (0, 1] is a relaxation parameter, and {(e1,m, e2,m, . . . , en,m)}∞m=0

and {(r1,m, r2,m, . . . , rn,m)}∞m=0 are two sequences in
n∏

i=1
Ei,1 to take into account a possible inexact computation of the

resolvent mapping point satisfying the following conditions:
lim

m→∞
∥ei,m∥i,1 = lim

m→∞
∥ri,m∥i,1 = 0, i = 1, 2, . . . ,n;

∞∑
m=0
∥ei,m − ei,m−1∥i,1 < ∞, i = 1, 2, . . . ,n;

∞∑
m=0
∥ri,m − ri,m−1∥i,1 < ∞, i = 1, 2, . . . ,n.

(7)

By using the fixed point formulation (6) and Nadler’s technique [21], we are able to suggest the following
iterative algorithm for solving the NMVIP (3).

Algorithm 3.5. Assume that E is a real reflexive Banach space with the dual space E∗, and for each i ∈ {1, 2, . . . ,n},
Ei is a real Banach space with the dual space E∗i . Let A,F,Ti (i = 1, 2, . . . ,n), p and a be the same as in the NMVIP
(3). Suppose further that η : E × E → E is a vector-valued operator, H : E → E∗ is an η-monotone operator, and

M̂ : E⇒ E∗ is a general (H, η)-strongly monotone operator. For any given x0 ∈ E and (t1,0, t2,0, . . . , tn,0) ∈
n∏

i=1
Ti(x0),

define the iterative sequences {xm}
∞

n=0 in E and {(t1,m, t2,m, . . . , tn,m)}∞m=0 ⊆
n∏

i=1
Ti(xm) by the iterative scmemes xm+1 = RH,η

M̂,λ
[H(xm) − λ(A(xm) − p(xm)) − a − F(t1,m, t2,m, . . . , tn,m))],

ti,m ∈ Ti(xm) : ∥ti,m+1 − ti,m∥i ≤ (1 + (1 +m)−1)Ĥi(Ti(xm+1),Ti(xm)),

where i = 1, 2, . . . ,n; m = 0, 1, 2, . . . , and λ > 0 is a constant.

Before turning to the main result of this paper, we need to recall the definitions mentioned below which
shall be used in the sequel.
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Definition 3.6. A set-valued mapping T : E ⇒ CB(E) is said to be Ĥ-Lipschitz continuous with constant ϱ (or
ϱ-Ĥ-Lipschitz continuous) if there exists a constant ϱ > 0 such that

Ĥ(T(x),T(y)) ≤ ϱ∥x − y∥, ∀x, y ∈ E,

where Ĥ(., .) is the Hausdorff metric on CB(E).

Definition 3.7. Let E be a real q-uniformly smooth Banach space. A mapping 1 : E→ E is said to be (γ, µ)-relaxed
cocoercive if there exist two constants γ, µ > 0 such that

⟨1(x) − 1(y), Jq(x − y)⟩ ≥ −γ∥1(x) − 1(y)∥q + µ∥x − y∥q, ∀x, y ∈ E.

Definition 3.8. Let E be a real Banach space with the dual space E∗; for i = 1, , 2, . . . ,n, Ei be real Banach spaces and

Ti : E⇒ CB(Ei) be multi-valued mappings. A mapping F :
n∏

i=1
Ei → E∗ is said to be λFi -Lipschitz continuous in the

ith argument with respect to Ti (i = 1, 2, . . . ,n) if there exists a constant λFi > 0 such that

∥F(x1, x2, . . . , xi−1,ui,1, xi+1, . . . , xn) − F(x1, x2, . . . , xi−1,ui,2, xi+1, . . . , xn)∥
≤ λFi∥ui,1 − ui,2∥,∀y1, y2 ∈ E, x1 ∈ E1, . . . , xi−1 ∈ Ei−1, xi+1 ∈ Ei+1, . . . , xn ∈ En,ui,1 ∈ Ti(y1),ui,2 ∈ Ti(y2).

Theorem 3.9. Let for each i ∈ {1, 2, . . . ,n}, Ei,1 be a qi,1-uniformly smooth Banach space with qi,1 > 1 and the
dual space E∗i,1, and Ei,2 be a real Banach space with the dual space E∗i,2. Assume that for each i ∈ {1, 2, . . . ,n},
Ai : Ei,1 → E∗i,1 is a τi-Lipschitz continuous mapping, pi : Ei,1 → Ei,1 is a (γi, µi)-relaxed cocoercive and λpi -Lipschitz

continuous mapping and Pi :
n∏

k=1
En−(k−1),1 → E∗i,1 is a λPi, j -Lipschitz continuous mapping in the jth argument

( j = 1, 2, . . . ,n). Let for each i ∈ {1, 2, . . . ,n}, the mapping 1i : En−(i−1),1 → En−(i−1),1 be λ1i -Lipschitz continuous,
Si : En−(i−1),1 ⇒ CB(En−(i−1),1) and Ti : Ei,1 ⇒ CB(Ei,2) be λSi -Ĥn−(i−1),1-Lipschitz continuous and λTi -Ĥi,2-Lipschitz

continuous mappings, respectively, and Fi :
n∏

k=1
Ek,2 → E∗i,1 be a λFi, j -Lipschitz continuous mapping in the jth

argument ( j = 1, 2, . . . ,n). Suppose further that for each i ∈ {1, 2, . . . ,n}, ηi : Ei,1 × Ei,1 → Ei,1 is a ki-Lipschitz
continuous mapping, Hi : Ei,1 → Ei,1 is a δi-Lipschitz continuous mapping and Mi : Ei,1 ⇒ E∗i,1 is a θi-strongly
monotone mapping. If there exists constants λi > 0 (i = 1, 2, . . . ,n) such that for each i ∈ {1, 2, . . . ,n},

ki(δi + λiτi
qi,1

√
1 − qi,1µi + (qi,1γi + cqi,1 )λqi,1

pi
)

λiθi
+

n∑
j=1

k jP j,n−(i−1)λθ jλSn−(i−1)

θ j
+

n∑
j=1

k jλF j,iλTi

θ j
< 1, (8)

and for the case when qi,1 (i ∈ {1, 2, . . . ,n}) is an even natural number, in addition to (8), we have qi,1µi <
1 + (qi,1γi + cqi,1λ

qi,1
pi

, where cqi,1 (i = 1, 2, . . . ,n) are constants guaranteed by Lemma 2.1, then the iterative sequences
{(x1,m, x2,m, . . . , xn,m)}∞m=0, {(s1,m, s2,m, . . . , sn,m)}∞m=0 and {(t1,m, t2,m, . . . , tn,m)}∞m=0 generated by Algorithm 3.4 converge
strongly to (x1, x2, . . . , xn), (s1, s2, . . . , sn) and (t1, t2, . . . , tn), respectively, and (x1, x2, . . . , xn, s1, s2, . . . , sn, t1, t2, . . . , tn)
is a solution of the SEMNVI (2).
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Proof. It follows from (6), Theorem 3.1 and the assumptions that for each i ∈ {1, 2, . . . ,n} and m ∈N,

∥xi,m+1 − xi,m∥i,1 = ∥(1 − α)xi,m + αRHi,ηi

Mi,λi
[Hi(xi,m) − λi(Ai(xi,m − pi(xi,m))

+ Pi(11(s1,m), 12(s2,m), . . . , 1n(sn,m)) − ai − Fi(t1,m, t2,m, . . . , tn,m))]

+ αei,m + ri,m − ((1 − α)xi,m−1 + αRHi,ηi

Mi,λi
[Hi(xi,m−1)

− λi(Ai(xi,m−1 − pi(xi,m−1)) + Pi(11(s1,m−1), 12(s2,m−1), . . . , 1n(sn,m−1))
− ai − Fi(t1,m−1, t2,m−1, . . . , tn,m−1))] + αei,m−1 + ri,m−1)∥i,1

≤ (1 − α)∥xi,m − xi,m−1∥i,1 + α∥R
Hi,ηi

Mi,λi
[Hi(xi,m) − λi(Ai(xi,m − pi(xi,m))

+ Pi(11(s1,m), 12(s2,m), . . . , 1n(sn,m)) − ai − Fi(t1,m, t2,m, . . . , tn,m))]

− RHi,ηi

Mi,λi
[Hi(xi,m−1) − λi(Ai(xi,m−1 − pi(xi,m−1))

+ Pi(11(s1,m−1), 12(s2,m−1), . . . , 1n(sn,m−1))
− ai − Fi(t1,m−1, t2,m−1, . . . , tn,m−1))]∥i,1
+ α∥ei,m − ei,m−1∥i,1 + ∥ri,m − ri,m−1∥i,1

≤ (1 − α)∥xi,m − xi,m−1∥i,1 + α
( ki

λiθi
∥Hi(xi,m) − λi(Ai(xi,m − pi(xi,m))

+ Pi(11(s1,m), 12(s2,m), . . . , 1n(sn,m)) − ai − Fi(t1,m, t2,m, . . . , tn,m)
− (Hi(xi,m−1) − λi(Ai(xi,m−1 − pi(xi,m−1))
+ Pi(11(s1,m−1), 12(s2,m−1), . . . , 1n(sn,m−1))
− ai − Fi(t1,m−1, t2,m−1, . . . , tn,m−1)))∥i,1)
+ α∥ei,m − ei,m−1∥i,1 + ∥ri,m − ri,m−1∥i,1

≤ (1 − α)∥xi,m − xi,m−1∥i,1 + α
( ki

λiθi
(∥Hi(xi,m) −Hi(xi,m−1)∥i,1

+ λi∥Ai(xi,m − pi(xi,m)) − Ai(xi,m−1 − pi(xi,m−1))∥i,1
+ λi∥Pi(11(s1,m), 12(s2,m), . . . , 1n(sn,m))
− Pi(11(s1,m−1), 12(s2,m−1), . . . , 1n(sn,m−1))∥i,1

+ λi∥Fi(t1,m, t2,m, . . . , tn,m) − Fi(t1,m−1, t2,m−1, . . . , tn,m−1)∥i,1
)

+ α∥ei,m − ei,m−1∥i,1 + ∥ri,m − ri,m−1∥i,1.

(9)

Since for each i ∈ {1, 2, . . . ,n} and m ∈N, the mappings Hi and Ai are δi-Lipschitz continuous and τi-Lipschitz
continuous, respectively, we yield

∥Hi(xi,m) −Hi(xi,m−1)∥i,1 ≤ δi∥xi,m − xi,m−1∥i,1 (10)

and

∥Ai(xi,m − pi(xi,m)) − Ai(xi,m−1 − pi(xi,m−1))∥i,1 ≤ τi∥xi,m − xi,m−1 − (pi(xi,m) − pi(xi,m−1))∥i,1. (11)

Owing to the facts that for each i ∈ {1, 2, . . . ,n}, pi is a (γi, µi)-relaxed cocoercive and λpi -Lipschitz continuous
mapping, Ei,1 is a real qi,1-uniformly smooth Banach space with qi,1 > 1, invoking Lemma 2.1, for each
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i ∈ {1, 2, . . . ,n} there exists cqi,1 > 0 such that for each m ∈N, we have

∥xi,m − xi,m−1 − (pi(xi,m) − pi(xi,m−1))∥qi,1

i,1 ≤ ∥xi,m − xi,m−1∥
qi,1

i,1 + cqi,1∥pi(xi,m) − pi(xi,m−1)∥qi,1

i,1

− qi,1⟨pi(xi,m) − pi(xi,m−1), Jqi,1 (xi,m − xi,m−1)⟩i,1
≤ ∥xi,m − xi,m−1∥

qi,1

i,1 + cqi,1∥pi(xi,m) − pi(xi,m−1)∥qi,1

i,1

− qi,1

(
γi∥pi(xi,m) − pi(xi,m−1)∥qi,1

i,1 + µi∥xi,m − xi,m−1∥
qi,1

i,1

)
= (1 − qi,1µi)∥xi,m − xi,m−1∥

qi,1

i,1 + (qi,1γi + cqi,1 )∥pi(xi,m) − pi(xi,m−1)∥qi,1

i,1

≤

(
1 − qi,1µi + (qi,1γi + cqi,1 )λqi,1

pi

)
∥xi,m − xi,m−1∥

qi,1

i,1 ,

which implies that

∥xi,m − xi,m−1 − (pi(xi,m) − pi(xi,m−1))∥i,1 ≤
qi,1

√
1 − qi,1µi + (qi,1γi + cqi,1 )λqi,1

pi
∥xi,m − xi,m−1∥i,1. (12)

Since for each i ∈ {1, 2, . . . ,n}, the mapping Pi is λi, j-Lipschitz continuous in the jth argument ( j = 1, 2, . . . ,n),
the mapping 1i isλ1i -Lipschitz continuous and the mapping Si isλSi -Ĥn−(i−1),1-Lipschitz continuous, by using
(6), for each i ∈ {1, 2, . . . ,n} and m ∈N, we get

∥Pi(11(s1,m), 12(s2,m), 13(s3,m), . . . , 1n(sn,m)) − Pi(11(s1,m−1), 12(s2,m−1), 13(s3,m), . . . , 1n(sn,m−1))∥i,1
≤ ∥Pi(11(s1,m), 12(s2,m), 13(s3,m), . . . , 1n(sn,m)) − Pi(11(s1,m−1), 12(s2,m), 13(s3,m), . . . , 1n(sn,m))∥i,1
+ ∥Pi(11(s1,m−1), 12(s2,m), 13(s3,m), . . . , 1n(sn,m)) − Pi(11(s1,m−1), 12(s2,m−1), 13(s3,m), . . . , 1n(sn,m))∥i,1 + . . .
+ ∥Pi(11(s1,m−1), 12(s2,m−1), . . . , 1n−1(sn−1,m−1), 1n(sn,m))

− Pi(11(s1,m−1), 12(s2,m−1), . . . , 1n−1(sn−1,m), 1n(sn,m−1))∥i,1

=

n∑
i=1

∥Pi(11(s1,m−1), 12(s2,m−1), . . . , 1 j−1(s j−1,m−1), 1 j(s j,m), 1 j+1(s j+1,m), . . . , 1n(sn,m))

− Pi(11(s1,m−1), 12(s2,m−1), . . . , 1 j−1(s j−1,m−1), 1 j(s j,m−1), 1 j+1(s j+1,m), . . . , 1n(sn,m))∥i,1

≤

n∑
j=1

λPi, j∥1 j(s j,m) − 1 j(s j,m−1)∥n−( j−1),1

≤

n∑
j=1

λPi, jλ1 j∥s j,m − s j,m−1∥n−( j−1),1

≤

n∑
j=1

λPi, jλ1 j (1 +m−1)Ĥn−( j−1),1(S j(xn−( j−1),m),S j(xn−( j−1),m−1))

≤

n∑
j=1

λPi, jλ1 jλS j (1 +m−1)∥xn−( j−1),m − xn−( j−1),m−1∥n−( j−1),1.

(13)

Taking into account that for each i ∈ {1, 2, . . . ,n}, the mapping Fi is λFi, j -Lipschitz continuous in the jth
argument ( j = 1, 2, . . . ,n), the mapping Ti is λTi -Ĥi,2-Lipschitz continuous, by using (6), for each i ∈
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{1, 2, . . . ,n} and m ∈N, we obtain

∥Fi(t1,m, t2,m, t3,m, . . . , tn,m) − Fi(t1,m−1, t2,m−1, t3,m−1, . . . , tn,m−1)∥i,1
≤ ∥Fi(t1,m, t2,m, . . . , tn,m) − Fi(t1,m−1, t2,m, . . . , tn,m)∥i,1
+ ∥Fi(t1,m−1, t2,m, t3,m, . . . , tn,m) − Fi(t1,m−1, t2,m−1, t3,m, . . . , tn,m)∥ + . . .
+ ∥Fi(t1,m−1, t2,m−1, . . . , tn,m−1, tn,m)
− Fi(t1,m−1, t2,m−1, . . . , tn,m−1, tn,m−1)∥i,1

=

n∑
j=1

∥Fi(t1,m−1, t2,m−1, . . . , t j−1,m−1, t j,m, t j+1,m, . . . , tn,m)

− Fi(t1,m−1, t2,m−1, . . . , t j−1,m−1, t j,m−1, t j+1,m, . . . , tn,m)∥i,1

≤

n∑
j=1

λFi, j∥t j,m − t j,m−1∥ j,2

≤

n∑
j=1

λFi, j (1 +m−1)Ĥ j,2(T j(x j,m),T j(x j,m−1))

≤

n∑
j=1

λFi, jλT j (1 +m−1)∥x j,m − x j,m−1∥ j,1.

(14)

Combining (9)–(14), for each i ∈ {1, 2, . . . ,n} and m ∈N, yields

∥xi,m+1 − xi,m∥i,1 ≤ (1 − α)∥xi,m − xi,m−1∥i,1

+ α
(ki(δi + λiτi

qi,1

√
1 − qi,1µi + (qi,1γi + cqi,1 )λqi,1

pi

)
λiθi

∥xi,m − xi,m−1∥i,1

+
ki

θi

n∑
j=1

λPi, jλ1iλS j (1 +m−1)∥xn−( j−1),m − xn−( j−1),m−1∥n−( j−1),1

+
ki

θi

n∑
j=1

λFi, jλT j (1 +m−1)∥x j,m − x j,m−1∥ j,1

)
+ α∥ei,m − ei,m−1∥i,1 + ∥ri,m − ri,m−1∥i,1

= (1 − α)∥xi,m − xi,m−1∥i,1 + α
(
ωi,m∥xi,m − xi,m−1∥i,1

+
ki

θi

n∑
j=1

λPi, jλ1iλS j (1 +m−1)∥xn−( j−1),m − xn−( j−1),m−1∥n−( j−1),1

+
ki

θi

n∑
j=1

λFi, jλT j (1 +m−1)∥x j,m − x j,m−1∥ j,1

)
+ α∥ei,m − ei,m−1∥i,1 + ∥ri,m − ri,m−1∥i,1,

(15)

where for each i ∈ {1, 2, . . . ,n},

ωi =
ki

(
δi + λiτi

qi,1

√
1 − qi,1µi + (qi,1γi + cqi,1 )λqi,1

pi

)
λiθi

.

Setting ϑ j,m =
n∑

i=1

kiλPi, jλ1iλSj (1+m−1)

θi
and Q j,m =

n∑
i=1

kiλFi, jλTj (1+m−1)

θi
for each i ∈ {1, 2, . . . ,n}, and Λ(m) = max{ω j,m +
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ϑn−( j−1),m +Q j,m : j = 1, 2, . . . ,n}, it follows from (15) that

n∑
i=1

∥xi,m+1 − xi,m∥i,1 ≤ (1 − α)
n∑

i=1

∥xi,m − xi,m−1∥i,1 + αΛ(n)
n∑

i=1

∥xi,m − xi,m−1∥i,1

+ α
n∑

i=1

∥ei,m − ei,m−1∥i,1 +

n∑
i=1

∥ri,m − ri,m−1∥i,1.

(16)

In virtue of the facts that for each j ∈ {1, 2, . . . ,n}, ϑ j,m → ϑ j and Q j,m → Q j, as m → ∞, we deduce that
Λ(m)→ Λ, as m→∞, whereΛ = max{ω j +ϑn−( j−1) +Q j : j = 1, 2, . . . ,n}. Now, letting φ(m) = 1−α+αΛ(m),
for each m ≥ 0, we know that φ(m) → φ, as m → ∞, where φ = 1 − α + αΛ. Clearly, (8) implies that Λ < 1
and so φ ∈ (0, 1). Hence, there exists φ̂ ∈ (0, 1) (take φ̂ = φ+1

2 ∈ (φ, 1)) and n0 ∈ N such that φ(n) ≤ φ̂, for all
n ≥ n0. Then, for all n > n0, by (16), it follows that

n∑
i=1

∥xi,m+1 − xi,m∥i,1 ≤ φ̂
n∑

i=1

∥xi,m − xi,m−1∥i,1 + α
n∑

i=1

∥ei,m − ei,m−1∥i,1 +

n∑
i=1

∥ri,m − ri,m−1∥i,1

≤ φ̂[φ̂
n∑

i=1

∥xi,m−1 − xi,m−2∥i,1 + α
n∑

i=1

∥ei,m−1 − ei,m−2∥i,1 +

n∑
i=1

∥ri,m−1 − ri,m−2∥i,1]

+ α
n∑

i=1

∥ei,m − ei,m−1∥i,1 +

n∑
i=1

∥ri,m − ri,m−1∥i,1

= φ̂2
n∑

i=1

∥xi,m−1 − xi,m−2∥i,1 + α
(
φ̂

n∑
i=1

∥ei,m−1 − ei,m−2∥i,1 +

n∑
i=1

∥ei,m − ei,m−1∥i,1

)
+ φ̂

n∑
i=1

∥ri,m−1 − ri,m−2∥i,1 +

n∑
i=1

∥ri,m − ri,m−1∥i,1

≤ · · · ≤ φ̂m−n0

n∑
i=1

∥xi,n0+1 − xi,n0∥i,1 + α
m−n0∑

j=1

n∑
i=1

φ̂ j−1
∥ei,m−( j−1) − ei,m− j∥i,1

+

m−n0∑
j=1

n∑
i=1

φ̂ j−1
∥ri,m−( j−1) − ri,m− j∥i,1.

(17)

The preceding relation (17) implies that for any k ≥ l > n0,

n∑
i=1

∥xi,k − xi,l∥i,1 ≤

n∑
i=1

k−1∑
m=l

∥xi,m+1 − xi,m∥i,1 =

k−1∑
m=l

n∑
i=1

∥xi,m+1 − xi,m∥i,1

≤

k−1∑
m=l

n∑
i=1

φ̂m−n0∥xi,n0+1 − xi,n0∥i,1 + α
k−1∑
m=l

m−n0∑
j=1

n∑
i=1

φ̂ j−1
∥ei,m−( j−1) − ei,m− j∥i,1

+

k−1∑
m=l

m−n0∑
j=1

n∑
i=1

φ̂ j−1
∥ri,m−( j−1) − ri,m− j∥i,1.

(18)

In the light of the fact φ̂ < 1, (7) and (18) guarantee that

n∑
i=1

∥xi,k − xi,l∥i,1 → 0, as l→∞. (19)
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Now, let us define a norm ∥.∥∗ on
n∏

i=1
Ei,1 by

∥(x1, x2, . . . , xn)∥∗ =
n∑

i=1

∥xi∥i,1, ∀(x1, x2, . . . , xn) ∈
n∏

i=1

Ei,1.

It is easy to see that (
n∏

i=1
Ei,1, ∥.∥∗) is a Banach space. Then (19) ensures that

∥(x1,k, x2,k, . . . , xn,k) − (x1,l, x2,l, . . . , xn,l)∥∗ → 0, as l→∞,

that is, the sequence {(x1,l, x2,l, . . . , xn,l)}∞l=0 is a Cauchy sequence in
n∏

i=1
Ei,1. The completeness of

n∏
i=1

Ei,1 implies

the existence of (x1, x2, . . . , xl) ∈
n∏

i=1
Ei,1 such that

(x1,m, x2,m, . . . , xn,m)→ (x1, x2, . . . , xn), as m→∞.

Considering the fact that for each i ∈ {1, 2, . . . ,n}, the mapping Si is λSi -Ĥi,1-Lipschitz continuous, by using
(6), for each i ∈ {1, 2, . . . ,n} and m ≥ 0, we get

∥si,m+1 − si,m∥n−(i−1),1 ≤ (1 + (1 +m)−1)Ĥn−(i−1),1(Si(xn−(i−1),m+1),Si(xn−(i−1),m))

≤ (1 + (1 +m)−1)λSi∥xn−(i−1),m+1 − xn−(i−1),m∥n−(i−1).
(20)

Since for each i ∈ {1, 2, . . . ,n}, ∥xi,m+1 − xi,m∥i,1 → 0, as m → ∞, from (20), we conclude that ∥si,m+1 −

si,m∥n−(i−1),1 → 0, as n→∞. Hence,

lim
m→∞

n∑
i=1

∥si,m+1 − si,m∥n−(i−1),1 = ∥(s1,m+1, s2,m+1, . . . , sn,m+1) − (s1,m, s2,m, . . . , sn,m)∥∗ = 0,

that is, the sequence {(s1,m, s2,m, . . . , sn,m)}∞n=0 is also a Cauchy sequence in
n∏

i=1
Si(xn−(i−1)) ⊆

n∏
i=1

Ei,1. Conse-

quently, there exists (s1, s2, . . . , sn) ∈
n∏

i=1
Ei,1 such that

(s1,m, s2,m, . . . , sn,m)→ (s1, s2, . . . , sn), as m→∞.

In the meanwhile, due to the fact that for each i ∈ {1, 2, . . . ,n}, the mapping Si is λSi -Ĥn−(i−1),1-Lipschitz
continuous, we infer that

d(si,Si(xn−(i−1))) = inf{∥si − t∥n−(i−1),1 : t ∈ Si(xn−(i−1))}
≤ ∥si − si,m∥n−(i−1),1 + d(si,m,Si(xn−(i−1)))

≤ ∥si − si,m∥n−(i−1),1 + Ĥn−(i−1),1(Si(xn−(i−1),m),Si(xn−(i−1)))
≤ ∥si − si,m∥n−(i−1),1 + λSi∥xn−(i−1),m − xn−(i−1)∥n−(i−1).

The right-hand side of the above inequality approaches zero, as m → ∞. Accordingly, for i = 1, 2, . . . ,n
we derive that si ∈ Si(xn−(i−1)) . In a similar way, on can show that the sequence {(t1,m, t2,m, . . . , tn,m)}∞m=0 is a

Cauchy sequence in
n∏

i=1
Ti(xi,m) ⊆

n∏
i=1

Ei,2,

(t1,m, t2,m, . . . , tn,m)→ (t1, t2, . . . , tn), as m→∞,

for some (t1, t2, . . . , tm) ∈
n∏

i=1
Ei,2 and ti ∈ Ti(xi) for i = 1, 2, . . . ,n. Since the mappings RHi,ηi

Mi,λi
, Hi, ηi, Ai, Pi, Si,

Ti, Fi, 1i and pi (i = 1, 2, . . . ,n) are continuous, it follows from (5) and (7) that for each i ∈ {1, 2, . . . ,n},

xi = RHi,ηi

Mi,λi
[Hi(xi) − λi(Ai(xi − pi(xi)) + Pi(11(s1), 12(s2), . . . , 1n(sn)) − ai − Fi(t1, t2, . . . , tn))].
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Now, this fact and Theorem 3.1 guarantee that (x1, x2, . . . , xn, s1, s2, . . . , xn, t1, t2, . . . , tn) ∈
n∏

i=1
Ei,1×

n∏
i=1

Si(xn−(i−1))×
n∏

i=1
Ti(xi) is a solution of the SEMNVI (2). This completes the proof.

The following corollary is an immediately consequence of the above theorem.

Corollary 3.10. Let E be a real q-uniformly smooth Banach space with the dual space E∗, and let for i = 1, 2, . . . ,n,
Ei be real Banach spaces. Let the vector-valued mapping η : E × E → E be k-Lipschitz continuous, H : E → E∗ an
η-monotone and δ-Lipschitz continuous mapping, p : E→ E a (γ, µ)-relaxed cocoercive and λp-Lipschitz continuous
mapping, and M̂ : E ⇒ E∗ a general (H, η)-strongly monotone mapping with constant θ. Let A : E → E∗ be a
τ-Lipslchitz continuous mapping and for each i ∈ {1, 2, . . . ,n}, Ti : E ⇒ CB(Ei) be a λti -Ĥi-Lipschitz continuous

mapping. Suppose further that F :
n∏

i=1
Ei → E∗ is λFi -Lipschitz continuous in the ith argument (i = 1, 2, . . . ,n) and

there exists a constant λ > 0 such that

k
λθ

(δ + λτ q
√

1 − qµ + (qγ + cq)λq
p + λ

n∑
i=1

λFiλti ) < 1, (21)

and for the case when q is an even natural number, in addition to (21), the condition qµ < 1 + (qγ + cq)λq
p holds,

where cq is a constant guaranteed by Lemma 2.1. Then, the iterative sequences {xm}
∞

m=0 and {(t1,m, t2,m, . . . , tn,m)}∞m=0

generated by Algorithm 3.5 converges strongly to x ∈ E and (t1, t2, . . . , tn) ∈
n∏

i=1
Ti(x) ⊆

n∏
i=1

Ei, respectively, and

(x, t1, t2, . . . , tn) is a solution of the NMVIP (3).

4. Remarks on Cn-η-monotone mappings

In this section, the Cn-η-monotone mapping introduced in [13] is investigated and analyzed and some
important facts concerning it are pointed out. At the same time, we show that one can derive the results in
[13] by using the conclusions of the previous sections.

Definition 4.1. [13, Definition 6] Let n ≥ 3 and M :
n∏

i=1
Ei ⇒ E∗ be a multi-valued mapping, fi : E → Ei,

i = 1, 2, . . . ,n, and η : E × E→ E single-valued mappings.

(i) For each 1 ≤ i ≤ n, M(. . . , fi, . . . ) is said to be αi-strongly η-monotone with respect to fi (in the ith argument)
if there exists a constant αi > 0 such that

⟨wi − w′i , η(x, y)⟩ ≥ αi∥x − y∥2,∀x, y,u1 ∈ E1,u2 ∈ E2, . . . ,ui−1 ∈ Ei−1,ui+1 ∈ Ei+1, . . . ,un ∈ En,

wi ∈M(u1, . . . ,ui−1, fi(x),ui+1, . . . ,un),w′i ∈M(u1, . . . ,ui−1, fi(y),ui+1, . . . ,un).

(ii) For each 1 ≤ i ≤ n, M(. . . , fi, . . . ) is said to be βi-relaxed η-monotone with respect to fi (in the ith argument) if
there exists a constant βi > 0 such that

⟨wi − w′i , η(x, y)⟩ ≥ −βi∥x − y∥2,∀x, y ∈ E,u1 ∈ E1,u2 ∈ E2, . . . ,ui−1 ∈ Ei−1,ui+1 ∈ Ei+1, . . . ,un ∈ En,

wi ∈M(u1, . . . ,ui−1, fi(x),ui+1, . . . ,un),w′i ∈M(u1, . . . ,ui−1, fi(y),ui+1, . . . ,un).

(iii) By assumption that n be an even natural number, M is said to be α1β2α3β4 . . . αn−1βn-symmetric η-monotone
with respect to f1, f2, . . . , fn if, for each i ∈ {1, 3, . . . ,n − 1}, M(. . . , fi, . . . ) is αi-strongly η-monotone with
respect to fi (in the ith argument) and for each j ∈ {2, 4, . . . ,n}, M(. . . , f j, . . . ) is β j-relaxed η-monotone with
respect to f j (in the jth argument) with α1 + α3 + · · · + αn−1 > β2 + β4 + · · · + βn.

(iv) By assumption that n be an odd natural number, M is said to be α1β2α3β4 . . . βn−1αn-symmetric η-monotone
with respect to f1, f2, . . . , fn if, for each i ∈ {1, 3, . . . ,n}, M(. . . , fi, . . . ) is αi-strongly η-monotone with respect
to fi (in the ith argument) and for each j ∈ {2, 4, . . . ,n−1}, M(. . . , f j, . . . ) is β j-relaxed η-monotone with respect
to f j (in the jth argument) with α1 + α3 + · · · + αn > β2 + β4 + · · · + βn−1.
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Proposition 4.2. Let E be a real Banach space with the dual space E∗, and let for i = 1, 2, . . . ,n, Ei be real Banach
spaces. Suppose that n ≥ 3 and fi : E→ Ei (i = 1, 2, . . . ,n) and η : E × E→ E are vector-valued mappings and M :
n∏

i=1
Ei ⇒ E∗ a multi-valued mapping. Furthermore, let M̂ : E ⇒ E∗ be defined by M̂(x) = M( f1(x), f2(x), . . . , fn(x)),

for all x ∈ E. Then, the following conclusions hold:

(i) If n is an even natural number and M is an α1β2α3β4 . . . αn−1βn-symmetric η-monotone mapping with respect

to f1, f2, . . . , fn, then M̂ is a
n
2∑

i=1
(α2i−1 − β2i)-strongly η-monotone mapping.

(ii) If n is an odd natural number and M is an α1β2α3β4 . . . βn−1αn-symmetric η-monotone mapping with respect

to f1, f2, . . . , fn, then M̂ is a
( n+1

2∑
i=1
α2i−1 −

n−1
2∑

i=1
β2i

)
-strongly η-monotone mapping.

Proof. We first let n be an even natural number. Owing to the fact that M is an α1β2α3β4 . . . αn−1βn-symmetric
η-monotone mapping with respect to f1, f2, . . . , fn, for all x, y ∈ E, u ∈ M̂(x) = M( f1(x), f2(x), . . . , fn(x)) and
v ∈ M̂(y) =M( f1(y), f2(y), . . . , fn(y)), we yield

⟨u − v, η(x, y)⟩ = ⟨u +
n−1∑
i=1

(−wi + wi) − v, η(x, y)⟩

= ⟨u − w1, η(x, y)⟩ +
n−2∑
i=1

⟨wi − wi+1, η(x, y)⟩ + ⟨wn−1 − v, η(x, y)⟩

= ⟨u − w1, η(x, y)⟩ +

n−2
2∑

i=1

⟨w2i−1 − w2i, η(x, y)⟩ +

n−2
2∑

i=1

⟨w2i − w2i+1, η(x, y)⟩ + ⟨wn−1 − v, η(x, y)⟩

≥ α1∥x − y∥2 −

n−2
2∑

i=1

β2i∥x − y∥2 +

n−2
2∑

i=1

α2i+1∥x − y∥2 − βn∥x − y∥2

=

n
2∑

i=1

α2i−1∥x − y∥2 −

n
2∑

i=1

β2i∥x − y∥2 =

n
2∑

i=1

(α2i−1 − β2i)∥x − y∥2,

(22)

where for each 1 ≤ i ≤ n − 1, wi ∈ M( f1(y), f2(y), . . . , fi(y), fi+1(x), . . . , fn(x)). Taking into account that

α1+α3+ · · ·+αn−1 =

n
2∑

i=1
α2i−1 > β2+β4+ · · ·+βn =

n
2∑

i=1
β2i, it follows from (22) that M̂ is a

n
2∑

i=1
(α2i−1−β2i)-strongly

η-monotone mapping.
We now prove conclusion (ii). Assume that n is an odd natural number. Since M is an α1β2α3β4 . . . βn−1αn-

symmetricη-monotone mapping with respect to f1, f2, . . . , fn, for all x, y ∈ E, u ∈ M̂(x) =M( f1(x), f2(x), . . . , fn(x))
and v ∈ M̂(y) =M( f1(y), f2(y), . . . , fn(y)), we obtain

⟨u − v, η(x, y)⟩ = ⟨u +
n−1∑
i=1

(−wi + wi) − v, η(x, y)⟩

= ⟨u − w1, η(x, y)⟩ +
n−2∑
i=1

⟨wi − wi+1, η(x, y)⟩ + ⟨wn−1 − v, η(x, y)⟩

= ⟨u − w1, η(x, y)⟩ +

n−1
2∑

i=1

⟨w2i−1 − w2i, η(x, y)⟩ +

n−3
2∑

i=1

⟨w2i − w2i+1, η(x, y)⟩ + ⟨wn−1 − v, η(x, y)⟩
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≥ α1∥x − y∥2 −

n−1
2∑

i=1

β2i∥x − y∥2 +

n−3
2∑

i=1

α2i+1∥x − y∥2 + αn∥x − y∥2

=

n+1
2∑

i=1

α2i−1∥x − y∥2 −

n−1
2∑

i=1

β2i∥x − y∥2
( n+1

2∑
i=1

α2i−1 −

n−1
2∑

i=1

β2i)∥x − y∥2,

(23)

where for each 1 ≤ i ≤ n − 1, wi ∈ M( f1(y), f2(y), . . . , fi(y), fi+1(x), . . . , fn(x)). Thanks to the facts that

α1 + α3 + · · · + αn =

n+1
2∑

i=1
α2i−1 > β2 + β4 + · · · + βn−1 =

n−1
2∑

i=1
β2i, making use of (23) we conclude that M̂ is a( n+1

2∑
i=1
α2i−1 −

n−1
2∑

i=1
β2i

)
-strongly η-monotone mapping. This completes the proof.

Remark 4.3. In virtue of Proposition 4.2 and the arguments mentioned above, we found that the notions of
α1β2α3β4 . . . αn−1βn-symmetric η-monotonicity and α1β2α3β4 . . . βn−1αn-symmetric η-monotonicity of the mapping
M : En ⇒ E∗ with respect to the mappings f1, f2, . . . , fn : E→ E, given in parts (iii) and (iv) of Definition 4.1 are
actually the same notion of θ-strong monotonicity of the mapping M̂ =M( f1, f2, . . . , fn) presented in Defini-

tion 2.3(iv), where θ =
n
2∑

i=1
(α2i−1−β2i) for the case when n is an even natural number, and θ =

n+1
2∑

i=1
α2i−1−

n−1
2∑

i=1
β2i

when n is an odd natural number.

Guan and Hu [13] introduced and studied a class of generalized monotone mappings the so-called
Cn-η-monotone mappings as follows.

Definition 4.4. [13, Definition 10] Let E be a real Banach space with the dual space E∗. Let n ≥ 3; fi : E → Ei

(i = 1, 2, . . . ,n) and Cn : E→ E∗ be single-valued mappings and let M :
n∏

i=1
Ei ⇒ E∗ a multi-valued mapping.

(i) In case n is an even natural number, M is said to be a Cn-η-monotone mapping if M is α1β2α3β4 . . . αn−1βn-
symmetric η-monotone with respect to f1, f2, . . . , fn and (Cn + λM( f1, f2, . . . , fn))(E) = E∗ holds, for every
λ > 0.

(ii) In case n is an odd natural number, M is said to be a Cn-η-monotone mapping if M is α1β2α3β4 . . . βn−1αn-
symmetric η-monotone with respect to f1, f2, . . . , fn and (Cn + λM( f1, f2, . . . , fn))(E) = E∗ holds, for every
λ > 0.

With the purpose of showing the existence of the class of Cn-η-monotone mappings, the authors [13]
gave [13, Example 12 ]. But, we show that contrary to the claim in [13], the Cn-η-monotone mapping
presented in [13, Example 12] is actually a general (H, η)-strongly monotone mapping and is not a new one.

Example 4.5. Let E = l2 denote the space of all square-summable sequences, i.e., the space of all sequences

{xm}
∞

m=1 for which
∞∑

m=1
|xm|

2 converges, and ∥.∥2 be a norm defined on l2 by ∥x∥2 = (
∞∑

m=1
|xm|

2)
1
2 , for all

x = {xm}
∞

m=1 ∈ l2. It is well known that l2 together with the inner product

⟨x, y⟩ =
∞∑

i=1

xi ȳi, ∀x = {xi}
∞

i=1, y = {yi}
∞

i=1 ∈ l2,

is a Hilbert space and so E∗ = l2. In the meanwhile, {em}
∞

m=1, where for each m ∈N, em = (0, 0, . . . , 1, 0, 0, . . . ),
1 at the nth coordinate and all other coordinates are zero, is a Schauder basis of E = l2.

Let n be an even natural number and let for each i ∈ {1, 2, . . . ,n}, Ei = (E, ∥.∥i), where ∥.∥i (i = 1, 2, . . . ,n)
are the equivalent norms on l2 space. Suppose that for i = 1, 2, . . . ,n, the mappings fi : E → Ei are defined
by

fi(x) =
{
αix + ei, if i = 1, 3, . . . ,n − 1,
−βix + ei, if i = 2, 4, . . . ,n,



J. Balooee et al. / Filomat 37:9 (2023), 2935–2960 2955

for all x = (x1, x2, . . . , xn, . . . ) ∈ l2, where α2i−1, β2i > 0 (i = 1, 2, . . . , n
2 ) are constants such that

n
2∑

i=1
(α2i−1 − β2i) =

γ > 0.

Let M :
n∏

i=1
Ei ⇒ E∗ be defined by M(u1,u2, . . . ,un) =

n∑
i=1

(ui − ei), for all (u1,u2, . . . ,un) ∈
n∏

i=1
Ei, and define

the mappings Cn : E → E∗ and η : E × E → E by Cn(x) = x + en+1 and η(x, y) = x − y, for all x, y ∈ E. Since
for each i ∈ {1, 2, . . . , n

2 }, we have f2i−1(x) = α2i−1x + e2i−1 and f2i(x) = −β2ix + e2i, for all x, y ∈ E, u j ∈ E j,
j = 1, 2, . . . , 2(i − 1), 2i, . . . ,n and i = 1, 2, . . . , n

2 , we obtain

⟨M(u1,u2, . . . ,u2i−2, f2i−1(x),u2i, . . . ,un) −M(u1,u2, . . . ,u2i−2, f2i−1(y),u2i, . . . ,un), η(x, y)⟩

= ⟨ f2i−1(x) − f2i−1(y), x − y⟩ = ⟨α2i−1x − α2i−1y, x − y⟩ = α2i−1∥x − y∥22,

and

⟨M(u1,u2, . . . ,u2i−1, f2i(x),u2i+1, . . . ,un) −M(u1,u2, . . . ,u2i−1, f2i(y),u2i+1, . . . ,un), η(x, y)⟩

= ⟨ f2i(x) − f2i(y), x − y⟩ = ⟨−β2ix + β2iy, x − y⟩ = −β2i∥x − y∥22,

that is, for each i ∈ {1, 2, . . . , n
2 }, M(. . . , f2i−1, . . . ) and M(. . . , f2i, . . . ) areα2i−1-strongly η-monotone with respect

to f2i−1 in the (2i − 1)th argument, and β2i-relaxed η-monotone with respect to f2i in the (2i)th argument.
Taking into account that for each i ∈ {1, 2, . . . ,n − 1}, M(. . . , fi, . . . ) is αi-strongly η-monotone with respect
to fi in the ith argument and for each j ∈ {2, 4, . . . ,n}, M(. . . , f j, . . . ) is β j-relaxed η-monotone with respect

to f j (in the jth argument) and
n
2∑

i=1
(α2i−1 − β2i) = γ > 0, it follows that M is an α1β2α3β4 . . . αn−1βn-symmetric

η-monotone mapping with respect to the mappings f1, f2, . . . , fn.
At the same time, for all x = {xm}

∞

m=1 ∈ l2, we yield

M( f1(x), f2(x), . . . , fn(x)) =
n∑

i=1

( fi(x) − ei) =
n∑

i=1

fi(x) −
n∑

i=1

ei

=

n
2∑

i=1

( f2i−1(x) + f2i(x)) −
n∑

i=1

ei

=

n
2∑

i=1

(α2i−1 − β2i)x − ê = γx − ê,

where ê =
n∑

i=1
ei = (1, 1, . . . , 1, 0, 0, . . . ), is an element of E = l2 having the first n entries 1 and the rest 0.

Owing to the fact that for each x ∈ l2, there is x+λê−en+1
1+λγ ∈ l2 such that we have (Cn + λM)( x+λê−en+1

1+λγ ) = x, where

γ =

n
2∑

i=1
(α2i−1 − β2i), we deduce that (Cn + λM)(E) = E∗ for every λ > 0. Thanks to the above-mentioned

arguments, the author [13] concluded that M is a Cn-η-monotone mapping.
Let us now define the mapping M̂ : E ⇒ E∗ as M̂(x) = M( f1(x), f2(x), . . . , fn(x)), for all x ∈ E = l2.

Then, for all x = {xm}
∞

m=1 ∈ l2, we have M̂(x) =
n∑

i=1
( fi(x) − ei) =

n∑
i=1

fi(x) −
n∑

i=1
ei = γx − ê. Moreover, for all

x = {xm}
∞

m=1, y = {ym}
∞

m=1 ∈ l2, we get

⟨M̂(x) − M̂(y), η(x, y)⟩ = ⟨γx − ê − (γy − ê), η(x, y)⟩ = γ∥x − y∥22,

that is, M̂ is aγ-strongly η-monotone mapping. By taking H = Cn, it can be easily observed that (H+λM̂)(E) =
E∗ holds, for every real constant λ > 0. Hence, according to Definition 2.6, M̂ is a general (H, η)-monotone
mapping.
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Here it is to be noted that in the light of the arguments mentioned above, in contrary to the claim in
[13], the Cn-η-monotone mapping given in [13, Example 12] is actually a general (H, η)-strongly monotone
mapping with constant γ, and is not a new one. In general, if E is a real Banach space with the dual space
E∗, Ei (i = 1, 2, . . . ,n) are real Banach spaces, fi : E → Ei, η : E × E → E and Cn : E → E∗ (n ≥ 3) are

single-valued mappings and M :
n∏

i=1
Ei ⇒ E∗ is a Cn-η-monotone mapping, then in view of Definition 4.4,

for the case when n is an even natural number, M is an α1β2α3β4 . . . αn−1βn-symmetric η-monotone mapping
with respect to f1, f2, . . . , fn, and in the case where n is an odd natural number, M is an α1β2α3β4 . . . βn−1αn-
symmetric η-monotone mapping with respect to f1, f2, . . . , fn. In the meanwhile, in both the cases, we
have (Cn + λM( f1, f2, . . . , fn))(E) = E∗ for every real constant λ > 0. Then, by defining M̂ : E ⇒ E∗ as
M̂(x) :=M( f1(x), f2(x), . . . , fn(x)) for all x ∈ E, and by taking H = Cn, invoking Proposition 4.2, M̂ is a strongly
η-monotone mapping. Consequently, in accordance with Definition 2.6, M̂ is a general (H, η)-monotone
mapping and so Definition 4.4 reduces to the definition of a general (H, η)-monotone mapping which has
been introduced in [3, 19]. In other words, the class of Cn-η-monotone mappings presented in Definition
4.4 is exactly the same class of general (H, η)-strongly monotone mappings and is not a new one.

Theorem 4.6. [13, Theorem 14] Let E be a real reflexive Banach space with the dual space E∗. Let n ≥ 3 and
fi : E→ Ei (i = 1, 2, . . . ,n) and η : E × E→ E be single-valued mappings, Cn : E→ E∗ be an η-monotone mapping

and M :
n∏

i=1
Ei ⇒ E∗ be a Cn-η-monotone mapping. Then the mapping (Cn + λM( f1, f2, . . . , fn))−1 is single-valued

for every λ > 0.

Proof. Let M̂ : E ⇒ E∗ be defined by M̂(x) := M( f1(x), f2(x), . . . , fn(x)) for all x ∈ E. Proposition 4.2 implies
that M̂ is a strongly η-monotone mapping. By taking H = Cn, it follows that M̂ is a general (H, η)-strongly

monotone mapping with constant θ, where θ =
n
2∑

i=1
(α2i−1−β2i) for the case when n is an even natural number,

and θ =
n+1

2∑
i=1
α2i−1 −

n−1
2∑

i=1
β2i, in the case where n is an odd natural number. Then, all the conditions of Corollary

2.12 hold and so Corollary 2.12 guarantees that (H + λM̂)−1 = (Cn + λM( f1, f2, . . . , fn))−1 is single-valued for
every λ > 0. The proof is finished.

Based on Theorem 4.6, Guan and Hu [13] defined the proximal mapping RCn,λ,η
M( f1, f2,..., fn) associated with

Cn, λ and the Cn-η-monotone mapping M( f1, f2, . . . , fn) as follows.

Definition 4.7. [13, Definition 15] Let E be a real reflexive Banach space with the dual space E∗. Let n ≥ 3 and

fi : E→ Ei (i = 1, 2, . . . ,n) be single-valued mappings, Cn : E→ E∗ be an η-monotone mapping and M :
n∏

i=1
Ei ⇒ E∗

be a Cn-η-monotone mapping. A proximal mapping RCn,λ,η
M( f1, f2,..., fn) : E∗ → E is defined by

RCn,λ,η
M( f1, f2,..., fn)(x

∗) = (Cn + λM( f1, f2, . . . , fn))−1(x∗), ∀x∗ ∈ E∗.

By defining M̂ : E ⇒ E∗ as M̂(x) := M( f1(x), f2(x), . . . , fn(x)) for all x ∈ E, and by taking H = Cn, from
Proposition 4.2 we deduce that M̂ is a general (H, η)-strongly monotone mapping. In accordance with
Definition 2.13, for any real constant λ > 0, the mapping RH,η

M̂,λ
, that is, the proximal mapping associated

with H, λ and M̂ is defined for any x∗ ∈ E∗ as follows:

RH,η

M̂,λ
(x∗) = RCn,λ,η

M( f1, f2,..., fn)(x
∗) = (H + λM̂)−1(x∗) = (Cn + λM( f1, f2, . . . , fn))−1(x∗).

In fact, the notion of the proximal mapping RCn,λ,η
M( f1, f2,..., fn) associated with an η-monotone mapping Cn, an

arbitrary real constant λ > 0, and a Cn-η-monotone mapping M( f1, f2, . . . , fn) is actually the same notion of
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the proximal mapping RCn,η

M̂,λ
associated with Cn, λ and the general (H = Cn, η)-strongly monotone mapping

M̂ =M( f1, f2, . . . , fn), and is not a new one.
By assumption that n > 3 is an even natural number, and under some appropriate assumptions, Guan

and Hu [13] proved the Lipschitz continuity of the proximal mapping RCn,λ,η
M( f1, f2,..., fn) as follows.

Theorem 4.8. [13, Theorem 16] Let E be a real reflexive Banach space with the dual space E∗, and let η : E×E→ E
be a k-Lipschitz continuous mapping. Let n ≥ 3 and fi : E → Ei (i = 1, 2, . . . ,n) be single-valued mappings,

Cn : E → E∗ be an η-monotone mapping, and M :
n∏

i=1
Ei ⇒ E∗ be a Cn-η-monotone mapping. Then, the proximal

mapping RCn,λ,η
M( f1, f2,..., fn) : E∗ → E is k

λKn
-Lipschitz continuous, where Kn = α1 + α3 + · · · + αn−1 − (β2 + β4 + · · · + βn).

Proof. Let M̂ : E ⇒ E∗ be defined by M̂(x) := M( f1(x), f2(x), . . . , fn(x)) for all x ∈ E. Since n is an even
natural number, M is a Cn-η-monotone mapping, in the light of Definition 4.4(i), we deduce that M is an
α1β2α3β4 . . . αn−1βn-symmetric monotone mapping with respect to f1, f2, . . . , fn. By using Proposition 4.2(i),

it follows that M̂ is a
n
2∑

i=1
(α2i−1 − β2i)-strongly η-monotone mapping. At the same time, by taking H = Cn,

we note that M̂ is a general (H, η)-strongly monotone with constant θ =
n
2∑

i=1
(α2i−1 − β2i). Now, Theorem

2.15 implies that RH,η

M̂,λ
= RCn,λ,η

M( f1, f2,..., fn) : E∗ → E is k

λ

n
2∑

i=1
(α2i−1−β2i)

= k
λKn

-Lipschitz continuous. This completes the

proof.

Remark 4.9. It should be pointed out that in a similar way to that in the proof of Theorem 4.8, for the case
when n is an odd natural number, the proximal mapping RCn,λ,η

M( f1, f2,..., fn) is k

λ(
n+1

2∑
i=1
α2i−1−

n−1
2∑

i=1
β2i)

-Lipschitz continuous.

At the same time, by a careful reading the proofs of Theorems 14 and 15 in [13], we note that there is a small
mistake in the contexts of Theorem 14, Definition 15 and Theorem 16. In fact, the Banach space E must be
assumed reflexive, as we have added the assumption reflexivity of E to Theorem 4.6, Definition 4.7 and
Theorem 4.8.

Let n ≥ 3 and A : E→ E∗, p : E→ E, fi : E→ Ei (i = 1, 2, . . . ,n), F :
n∏

i=1
Ei → E∗ be single-valued mappings

and let Ti : E ⇒ CB(Ei) (i = 1, 2, . . . ,n) and M :
n∏

i=1
Ei ⇒ E∗ be multi-valued mappings. Recently, for any

given a ∈ E∗, Guan and Hu [13] considered and studied the variational inclusion problem of finding x ∈ E,
t1 ∈ T1(x), t2 ∈ T2(x), . . . , tn ∈ Tn(x) such that

a ∈ A(x − p(x)) +M( f1(x), f2(x), . . . , fn(x)) − F(t1, t2, . . . , tn). (24)

In order to find a solution of the problem (24), they gave a characterization of the solution of the problem
(24) by utilizing the proximal mapping RCn,λ,η

M( f1, f2,..., fn) as follows.

Theorem 4.10. [13, Theorem 17] Let n ≥ 3 and A : E→ E∗, p : E→ E, fi : E→ Ei (i = 1, 2, . . . ,n), F :
n∏

i=1
Ei → E∗

be single-valued mappings and let Ti : E ⇒ CB(Ei) (i = 1, 2, . . . ,n) be multi-valued mappings. Let Cn : E → E∗

be an η-monotone mapping and M :
n∏

i=1
Ei ⇒ E∗ be a Cn-η-monotone mapping with respect to f1, f2, . . . , fn. Then,

(x, t1, t2, . . . , tn) is a solution of the problem (24) if and only if

x = RCn,λ,η
M( f1, f2,..., fn)[Cn(x) − λA(x − p(x)) + λa + λF(t1, t2, . . . , tn)],

where t1 ∈ T1(x), t2 ∈ T2(x), . . . , tn ∈ Tn(x) and λ > 0 is a real constant.
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Proof. Define M̂ : E ⇒ E∗ by M̂(x) := M( f1(x), f2(x), . . . , fx(x)) for all x ∈ E. From the assumptions and
Proposition 4.2 it follows that M̂ is a strongly η-monotone mapping. By taking H = Cn, the assumption
implies that M̂ is a general strongly (H, η)-strongly monotone mapping. Now, the conclusion follows from
Corollary 3.2 immediately.

In view of the above-mentioned argument, it is worthwhile to stress that contrary to the claim in [13],
the characterization of the solution for the problem (24), presented in Theorem 4.10, is exactly the same
characterization of the solution for the problem (3) given in Corollary 3.2 and is not a new one.

In order to find an approximate solution of the problem (24), Guan and Hu [13] proposed the following
iterative algorithm based on Theorem 4.10.

Algorithm 4.11. [13, Iterative Algorithm 1] Let E be a real reflexive Banach space with the dual space E∗. For any
given x0 ∈ E, we choose t1,0 ∈ T1(x0), t2,0 ∈ T2(x0), . . . , tn,0 ∈ Tn(x0) and compute {xm}

∞

m=0, {t1,m}
∞

m=0, {t2,m}
∞

m=0, . . . ,
{tn,m}

∞

m=0 by iterative schemes

xn+1 = RCn,λ,η
M( f1, f2,..., fn)[Cn(xm) − λA(xm − p(xm)) + λa + λF(t1,m, t2,m, . . . , tn,m)];

t1,m ∈ T1(xm); ∥t1,m+1 − t1,m∥ ≤ (1 +
1

m + 1
)Ĥ(T1(xm+1),T1(xm));

t2,m ∈ T2(xm); ∥t2,m+1 − t2,m∥ ≤ (1 +
1

m + 1
)Ĥ(T2(xm+1),T2(xm));

...

tn,m ∈ Tn(xm); ∥tn,m+1 − tn,m∥ ≤ (1 +
1

m + 1
)Ĥ(Tn(xm+1),Tn(xm)),

for all m = 0, 1, 2, . . . .

It is significant to mention that by defining the multi-valued mapping M̂ : E ⇒ E∗ as M̂(x) =
M( f1(x), f2(x), . . . , fn(x)), for all x ∈ E, and by taking H = Cn, it follows that M̂ is a general (H, η)-strongly
monotone mapping and we note that Algorithm 4.11 is actually the same Algorithm 3.5 and is not a new
one.

Under the assumption that n > 3 is an even natural number and some appropriate assumptions, they
proved the strong convergence of the sequences generated by iterative Algorithm 3.4 to a solution of the
problem (24) as follows.

Theorem 4.12. [13, Theorem 18] Let E be a real q-uniformly smooth Banach space and E∗ the dual space of E. Let
η : E × E → E be k-Lipschitz continuous. Let n ≥ 3 and fi : E → Ei (i = 1, 2, . . . ,n) be single-valued mappings,
Cn : E → E∗ an η-monotone and δ-Lipschitz continuous mapping, p : E → E a (γ, µ)-relaxed cocoercive and

λp-Lipschitz continuous mapping, and M :
n∏

i=1
Ei ⇒ E∗ a Cn-η-monotone mapping. Let A : E→ E∗ be a τ-Lipschitz

continuous mapping and for each i ∈ {1, 2, . . . ,n}, let Ti : E⇒ CB(Ei) be Ĥi-Lipschitz continuous with constant λti .

Suppose that F :
n∏

i=1
Ei → E∗ is λFi -Lipschitz continuous in the ith argument with respect to Ti (i = 1, 2, . . . ,n) and

there exists a constant λ > 0 such that the following condition is satisfied:

k
λKn

(δ + λτ(1 + qγλq
p − qµ + cqλ

q
p)

1
q + λ

n∑
i=1

λFiλti ) < 1, (25)

where Kn = α1 + α3 + · · · + αn−1 − (β2 + β4 + · · · + βn) and cq is a constant guaranteed by Lemma 2.1, and for
the case where q is an even natural number, in addition to (25), the condition qµ < 1 + (qγ + cq)λq

p holds. Then,
the iterative sequences {xm}

∞

m=0, {t1,m}
∞

m=0, {t2,m}
∞

m=0, . . . , {tn,m}
∞

m=0 generated by Algorithm 4.11 converge strongly to
x, t1, t2, . . . , tn, respectively, and (x, t1, t2, . . . , tn) is a solution of the problem (24).



J. Balooee et al. / Filomat 37:9 (2023), 2935–2960 2959

Proof. Let us define M̂ : E⇒ E∗ as M̂(x) :=M( f1(x), f2(x), . . . , fn(x)) for all x ∈ E. Relying on the fact that M is a
Cn-η-monotone mapping, and n > 3 is an even natural number, we conclude that M is an α1β2α3β4 . . . αn−1βn-
symmetric η-monotone mapping with respect to f1, f2, . . . , fn. In accordance with Proposition 4.2(i), M̂ is

a
n
2∑

i=1
(α2i−1 − β2i)-strongly η-monotone mapping. Furthermore, by taking H = Cn, it follows that M̂ is a

general (H, η)-strongly monotone mapping with constant
n
2∑

i=1
(α2i−1 − β2i) and Algorithm 4.11 coincides with

Algorithm 3.5. Taking θ =
n
2∑

i=1
(α2i−1 − β2i), (25) reduces to (21) in Corollary 3.10. Now, all the conditions

of Corollary 3.10 hold and so Corollary 3.10 guarantees that the iterative sequences {xm}
∞

m=0 and {ti,m}
∞

m=0
(i = 1, 2, . . . ,n) generated by Algorithm 4.11 converge strongly to x and ti (i = 1, 2, . . . ,n), respectively, and
(x, t1, t2, . . . , tn) is a solution of the problem (24). This completes the proof.

Remark 4.13. It is worthwhile to emphasize that

(i) owing to the facts that n > 3 is an even natural number and M is a Cn-η-monotone mapping, Definition 4.1(iii)
implies that the constants αi (i = 1, 2, . . . ,n − 1) and βi (i = 2, 4, . . . ,n) must be satisfied the condition

n
2∑

i=1
(α2i−1 − β2i) > 0, that is,

n
2∑

i=1
α2i−1 >

n
2∑

i=1
β2i;

(ii) by a careful reading Theorem 18 in [13], we found that there are two small mistakes in its context.

Firstly, since the constants k, λ, δ, τ, γ, λp, µ, cq, q and λti (i = 1, 2, . . . ,n) are all positive and
n
2∑

i=1
α2i−1 >

n
2∑

i=1
β2i, it follows that

k
λKn

(
δ + λτ(1 + qγλq

p − qµ + cqλ
q
p)

1
q + λ

n∑
i=1

λFiλti

)
> 0.

Hence, (39) in [13], that is, the condition

0 <
k
λKn

(
δ + λτ(1 + qγλq

p − qµ + cqλ
q
p)

1
q + λ

n∑
i=1

λFiλti

)
< 1

must be replaced by (25) in Theorem 4.12. Secondly, in the case where q is an even natural number, then
the constants µ, γ, λp and cq, in addition to (25), must be also satisfied the condition qµ < 1+ (qγ+cq)λq

p,
as we have added the mentioned condition to the assumptions of Theorem 4.12.
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