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Abstract. In this work, we introduce a new 2-norm generated by bounded linear functionals on a normed
space X with dimension dim(X) ≥ 2, and investigate its relationship with the Gähler’s 2-norm [Lineare
2-normierte Räume, Math. Nachr.]. We also derive a norm on X to explore its relation with the usual norm
on X.

1. Introduction and preliminaries

We know how to measure the lengths in a normed space (X, ∥.∥), since the notion of norm is to be
regarded as a generalization of the length. But it’s not always easy to measure the area on this space. If we
have an inner product on a vector space X with the dimension dim(X) ≥ 2, then we can measure the areas
of parallelograms spanned by the vectors x and y by the determinant∣∣∣∣∣ ⟨x, x⟩ 〈

x, y
〉〈

y, x
〉 〈

y, y
〉 ∣∣∣∣∣ 1

2

(1)

which is known as Gramian of linearly independent vectors {x, y} in (X, ⟨., .⟩). Otherwise, at least we need a
semi-inner product or orthogonality to measure the area of a parallelogram. Thus we must recognize that
the notion of norm has a limitation. To pass this limitation, we need a new notion. One of the treatments
is to consider the 2-norm introduced by Gähler [1]. If X is a normed space, then, according to Gähler, the
following formula defines a 2-norm on X [1]

∥∥∥x, y
∥∥∥G
=

1
2

sup
fi∈X′, ∥ fi∥≤1

i=1,2

∣∣∣∣∣ f1(x) f2(x)
f1(y) f2(y)

∣∣∣∣∣ . (2)

Here X′ denotes the dual of X, which consists of bounded linear functionals on X. By this way, we can
compute the area of the parallelogram spanned by two vectors. The equation (1) is known as standard
2-norm and denoted by

∥∥∥x, y
∥∥∥
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Email addresses: sukran.konca@bakircay.edu.tr (Şükran Konca), moch.idris@ulm.ac.id (Mochammad Idris)



S. Konca, M. Idris / Filomat 37:9 (2023), 2823–2830 2824

Now, consider the 2-normed space (X, ∥., .∥). We know how to measure the areas, how can we measure
the lengths? At first, this question was asked by Gähler [1]. He defined ∥x∥∗ = ∥x, a∥ + ∥x, b∥ where
{a, b} is linearly independent set and dim(X) ≥ 2. By this way, for X = R2 the derived norm ∥.∥∗ is
equivalent to the usual norm ∥.∥R2 . Later, Gunawan [2] derived a norm for the same purpose in a 2-normed
space (X, ∥., .∥) of dimension dim(X) ≥ 2 choosing an arbitrary linearly independent set and actually,
for 2-normed space lp, the space of p-summable sequences (1 ≤ p < ∞), then obtain that this derived
norm ∥.∥∗p is equivalent to the usual norm ∥.∥p on lp. Indeed, as a result of how to measure the distance;

convergence in
(
lp, ∥.∥p

)
⇔ convergence in

(
lp, ∥., .∥p

)
. For C[a, b], the space of all continuous real valued

functions on [a,b], we still don’t know whether we may take arbitrary linearly independent set like lp and
Lp (The space of p-integrable functions, 1 ≤ p < ∞). Let us give the definition of 2-normed space:

Let X be a real vector space of dimension dim(X) ≥ 2 and ∥., .∥ be a real function on X × X satisfying
the following four conditions. The function ∥., .∥ is called a 2-norm on X and the pair (X, ∥., .∥) is called a
2-normed space [1].

(1) ∥x, y∥ ≥ 0 for every x, y ∈ X; ∥x, y∥ = 0 if and only if x and y are linearly dependent;
(2) ∥x, y∥ = ∥y, x∥ for every x, y ∈ X;
(3) ∥αx, y∥ = |α|∥x, y∥ for every x, y ∈ X and for every α ∈ R;
(4) ∥x + z, y∥ ≤ ∥x, y∥ + ∥z, y∥ for every x, y, z ∈ X.

Euclidean 2-norm on R2 is given by

∥x1, x2∥E = abs
(∣∣∣∣∣ x11 x12

x21 x22

∣∣∣∣∣) , xi = (xi1, xi2) ∈ R2 (i = 1, 2) ,

where the subscript E is for Euclidean. The standard 2-norm is exactly same as the Euclidean 2-norm if
X = R2, [3]. For X = R2, from the equation (1) we obtain a better inequality

∥∥∥x, y
∥∥∥

S ≤ ∥x∥S
∥∥∥y

∥∥∥
S which is a

special case of Hadamard’s inequality (see in [3]) where ∥x∥S :=
√
⟨x, x⟩.

Let X be a normed space and f : X→ R be a bounded linear functional. Then

| f (x)| ≤ ∥ f ∥∥x∥. (3)

By (3), now observe that for every x ∈ X − {θ} and f ∈ X′

f (x)
∥x∥
≤
| f (x)|
∥x∥

≤ ∥ f ∥. (4)

Consequently, f (x) ≤ ∥ f ∥∥x∥ or f (x)
∥ f ∥ ≤ ∥x∥ for every f ∈ X′, f , 0 and x ∈ X. So, we conclude that

sup f,0, f∈X′
f (x)

∥ f∥
= sup

∥ f∥≤1 f (x) ≤ ∥x∥ . From the equations (2) and (3) we have
∥∥∥x, y

∥∥∥G
≤ ∥x∥

∥∥∥y
∥∥∥ < ∞.

Let f1, f2 be bounded linear functionals. Since f1(x), f1(y), f2(x), f2(y) ∈ R, we obtain f2(x) f1(y) = γ f2(x) =
f2(γx) = f2( f1(y)x) ∈ R with γ = f1(y) ∈ R and γx = f1(y)x ∈ X. We also have f1(x) f2(y) = δ f2(y) = f2(δy) =
f2( f1(x)y) ∈ Rwith δ = f1(x) ∈ R and δy = f1(x)y ∈ X. Then from the Gähler’s 2-norm, for every x, y ∈ X we
have ∥∥∥x, y

∥∥∥G
=

1
2

sup
∥ f1∥≤1, ∥ f2∥≤1

f1, f2∈X′

f2( f1(x)y − f1(y)x).

Recall that a sequence (x(n)) in a 2-normed space (X, ∥·, ·∥) is called a convergent sequence, if there is an
x ∈ X such that ∥x(n) − x, z∥ −→ 0, as n −→ ∞ for every z ∈ X. Also, (x(n)) is said to be Cauchy sequence
with respect to the ∥·, ·∥ if ∥x(m) − x(n), y∥ −→ 0, as m,n −→ ∞ for every z ∈ X [4]. A linear 2-normed space
in which every Cauchy sequence is convergent is called a 2-Banach space [7]. Throughout the paper, we
use standard notation and terminology as in [5].
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2. Main results

Let x, y ∈ X. Here we define a mapping ∥., .∥ : X × X→ R∥∥∥x, y
∥∥∥KI

:= sup
∥ f∥≤1
f∈X′

∥∥∥x f (y) − y f (x)
∥∥∥

X. (5)

Here X′ denotes the dual space of X, which consists of bounded linear functionals on X.

Proposition 2.1. The mapping ∥., .∥KI in (5) defines a 2-norm on X and the pair (X, ∥., .∥KI) is a 2-normed space.

Proof. We need to check that ∥., .∥KI satisfies the four properties of a 2-norm. First note that the (2), (3) and
(4) are obvious. To verify the (1), let us choose arbitrary x, y, z ∈ X.

Since ∥.∥X ≥ 0, then ∥·, ·∥KI ≥ 0 holds.
(⇒) If ∥x, y∥KI = sup

∥ f∥≤1
f∈X′

∥∥∥x f (y) − y f (x)
∥∥∥

X = 0, then x f (y)− y f (x) = 0. Consequently, x = f (x)
f (y) y, that is; x

and y are linearly dependent.
(⇐) If x and y are linearly dependent vectors, then x = αy for α ∈ R. So

∥x, y∥KI = sup
∥ f∥≤1
f∈X′

∥∥∥x f (y) − y f (x)
∥∥∥

X

= sup
∥ f∥≤1
f∈X′

∥∥∥αy f (y) − y f (αy)
∥∥∥

X

=|α| sup
∥ f∥≤1
f∈X′

∥∥∥y f (y) − y f (y)
∥∥∥

X = 0.

Choosing an arbitrary linearly independent set {a, b} in 2-normed space (X, ∥., .∥KI of dimension dim(X) ≥
2, we may define another norm ∥.∥KI on X with respect to the set {a, b} by

∥x∥KI :=∥x, a∥KI + ∥x, b∥KI. (6)

Lemma 2.2. The mapping ∥.∥KI given by (6) is a norm on X with respect to an arbitrary linearly independent set
{a, b} and the pair (X, ∥.∥KI) is a normed space.

Proof. Note that the ’if part’ of (1), (2) and (3) are obvious. To verify the ’only if part’ of (1), let x ∈ X. If
∥x∥KI = ∥x, a∥KI + ∥x, b∥KI = 0, then we have ∥x, a∥KI = 0 and ∥x, b∥KI = 0 which mean that both x and a are
linearly dependent and x and b are linearly dependent. So there exist scalars α, β such that x = αa = βb. But
from the definition it is known that a and b are linearly independent vectors, hence x = θ.

Lemma 2.3. Let ∥.∥KI be the derived norm defined by (6) on (X, ∥·, ·∥KI) and a, b ∈ X be linearly independent vectors,
then for every x ∈ X we have

∥x∥KI
≤ 2(∥a∥X + ∥b∥X)∥x∥X.

Proof. By assumptions in this lemma, take an arbitrary x ∈ X. Using triangle inequality

∥x, a∥KI = sup
∥ f∥≤1
f∈X′

∥∥∥x f (a) − a f (x)
∥∥∥

X ≤ sup
∥ f∥≤1
f∈X′

(∥x∥X | f (a)| + ∥a∥X | f (x)|).

By (4), we obtain ∥x, a∥KI
≤ 2 ∥a∥X ∥x∥X. Replace a with b, so ∥x, b∥KI

≤ 2 ∥b∥X ∥x∥X. Combine two inequalities
above, then ∥x∥KI ≤ 2(∥a∥X + ∥b∥X)∥x∥X, for every x ∈ X.
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Lemma 2.4. Suppose that a, b ∈ X are linearly independent vectors such that ∥a∥X = ∥b∥X in normed space (X, ∥ ·∥X).
If f0 ∈ X′ such that f0(a) , 0, f0(b) , 0 and 0 < ∥ f0∥X′ ≤ 1, then we have C∥x∥X ≤ ∥x∥KI, for every x ∈ X with
C = | f0(a)|+| f0(b)|

1+ 3∥a∥2
|1(a)h(b)−h(a)1(b)|

and 1, h ∈ X′ such that 1(a)h(b) − 1(b)h(a) , 0, 0 < ∥1∥X′ ≤ 1 and 0 < ∥h∥X′ ≤ 1.

Proof. Let a, b ∈ X be linearly independent vectors such that ∥a∥X = ∥b∥X in normed space (X, ∥ · ∥X) with
dim(X) ≥ 2. Now, take an arbitrary x ∈ X and f0 ∈ X′ such that f0(a) , 0, f0(b) , 0 and 0 < ∥ f0∥X′ ≤ 1. Next,
observe that

∥x∥X| f0(a)| =∥x f0(a) − a f0(x) + a f0(x)∥X
≤∥x f0(a) − a f0(x)∥X + ∥a∥X| f0(x)|

≤∥x, a∥KI + ∥a∥X| f0(x)|. (7)

Let 1, h ∈ X′ such that 1(a)h(b) − 1(b)h(a) , 0 and 0 < ∥1∥X′ ≤ 1 and 0 < ∥h∥X′ ≤ 1. Then we have

(1(a)h(b)−1(b)h(a)) f0(x)
= f0(x)1(a)h(b) − f0(x)1(b)h(a)
= f0(x)1(a)h(b) − f0(x)1(b)h(a) + (1(x) f0(a)h(b) − 1(x) f0(a)h(b))
+ (h(x) f0(a)1(b) − h(x) f0(a)1(b))
=( f0(x)1(a) − 1(x) f0(a))h(b) + (h(x) f0(a) − f0(x)h(a))1(b) + (1(x)h(b) − 1(b)h(x)) f0(a).

Since f0, 1, h ∈ X′ with 0 < ∥ f0∥X′ ≤ 1, 0 < ∥1∥X′ ≤ 1 and 0 < ∥h∥X′ ≤ 1, then we have the following equation
by triangle inequality,

|1(a)h(b) − 1(b)h(a)| | f0(x)|
≤ | f0(x)1(a) − 1(x) f0(a)||h(b)| + |h(x) f0(a) − f0(x)h(a)||1(b)| + |1(x)h(b) − 1(b)h(x)|| f0(a)|
= | f0(x1(a) − a1(x))||h(b)| + | f0(ah(x) − xh(a))||1(b)| + |1(xh(b) − bh(x))|| f0(a)|
≤

∥∥∥ f0
∥∥∥

X′

∥∥∥x1(a) − a1(x)
∥∥∥

X∥h∥X′∥b∥X +
∥∥∥ f0

∥∥∥
X′∥ah(x) − xh(a)∥X

∥∥∥1∥∥∥X′∥b∥X
+
∥∥∥1∥∥∥X′∥xh(b) − bh(x)∥X

∥∥∥ f0
∥∥∥

X′∥a∥X
≤ ∥x, a∥KI

∥b∥X + ∥x, a∥
KI
∥b∥X +

∥∥∥1∥∥∥X′∥x, b∥
KI
∥a∥X

≤ 2∥x, a∥KI
∥b∥X + ∥x, b∥

KI
∥a∥X.

(8)

Now, check that

∥a∥X| f0(x)| =
∥a∥X

|1(a)h(b) − 1(b)h(a)|
|1(a)h(b) − 1(b)h(a)|| f0(x)|

≤
∥a∥X

|1(a)h(b) − 1(b)h(a)|
(2∥x, a∥KI∥b∥X + ∥x, b∥KI∥a∥X).

By (7) and (8), we obtain

∥x∥X| f0(a)| ≤ ∥x, a∥KI + ∥a∥X| f0(x)|
≤ ∥x, a∥KI +

∥a∥X
|1(a)h(b)−1(b)h(a)| (2∥x, a∥

KI
∥b∥X + ∥x, b∥

KI
∥a∥X)

=
(
1 + 2∥a∥X∥b∥X

|1(a)h(b)−h(a)1(b)|

)
∥x, a∥KI +

∥a∥2X
|1(a)h(b)−h(a)1(b)|∥x, b∥

KI.

(9)

Next replace a with b, we also have

∥x∥X| f0(b)| ≤
(
1 +

2∥a∥X∥b∥X
|1(a)h(b) − h(a)1(b)|

)
∥x, b∥KI +

∥b∥2X
|1(a)h(b) − h(a)1(b)|

∥x, a∥KI. (10)
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Since a, b ∈ X are linearly independent vectors such that ∥a∥X = ∥b∥X, we have the following by combining
(9) and (10)

∥x∥X
(∣∣∣ f0(a)

∣∣∣ + ∣∣∣ f0(b)
∣∣∣) ≤ (

1 + 3∥a∥2X
|1(a)h(b)−h(a)1(b)|

) (
∥x, a∥KI + ∥x, b∥KI

)
=

(
1 + 3∥b∥2X

|1(a)h(b)−h(a)1(b)|

) (
∥x, a∥KI + ∥x, b∥KI

)
=

(
1 + 3∥a∥2X

|1(a)h(b)−h(a)1(b)|

)
∥x∥KI

=
(
1 + 3∥b∥2X

|1(a)h(b)−h(a)1(b)|

)
∥x∥KI.

Finally, C∥x∥X ≤ ∥x∥KI for every x ∈ X with C = | f0(a)|+| f0(b)|

1+
3∥a∥2X

|1(a)h(b)−h(a)1(b)|

. This completes the proof.

As a result of combining both of Lemma 2.3 and Lemma 2.4, we obtain the equivalence of the norms
∥.∥X and ∥.∥KI under the conditions of Lemma 2.4.

Corollary 2.5. Under the conditions of Lemma 2.4, the derived norm ∥ · ∥KI is equivalent to the norm ∥.∥X on X.

Lemma 2.6 and Theorem 2.7 arise as a consequence of Corollary 2.5 under the conditions of Lemma 2.4.

Lemma 2.6. In X, a sequence (x(n)) converges to x with respect to ∥.∥X if and only if it converges to x with respect
to ∥., .∥KI. Similarly, a sequence (x(n)) is a Cauchy sequence with respect to ∥.∥X if and only if it is a Cauchy sequence
with respect to ∥., .∥KI.

Proof. (⇒) Let (x(n)) be a sequence convergent to x with respect to ∥.∥X. By Lemma 7, for every y ∈ X, we
have 0 ≤ ∥x(n) − x, y∥KI

≤ 2∥x(n) − x∥X∥y∥X −→ 0, as n −→ ∞. Thus (x(n)) converges to x with respect to
∥., .∥KI.

(⇐) Suppose that (x(n)) is a sequence converges to x with respect to ∥., .∥KI. So, for every y ∈ X, we have
∥x(n) − x, y∥KI

−→ 0, as n −→ ∞. Now, take linearly independent vectors a, b ∈ X such that ∥a∥X = ∥b∥X. By
Lemma 8, we have

0 ≤ C∥x(n) − x∥X ≤ ∥x(n) − x∥KI = ∥x(n) − x, a∥KI + ∥x(n) − x, b∥KI
−→ 0,

as n −→ ∞. Thus x(n) converges to x with respect to ∥.∥X. The second part of the theorem can be proved in
a similar way: one only needs to replace the expressions ”convergent to x” with ”Cauchy” and ”x(n) − x”
with ”x(n) − x(m)” and n −→ ∞with m,n −→ ∞.

Theorem 2.7. (X, ∥., .∥KI) is a 2-Banach space if and only if (X, ∥.∥X) is a Banach space.

Proof. Let (x(n)) be a Cauchy sequence in X with respect to ∥., .∥KI. Then by Lemma 2.6, (x(n)) is Cauchy
sequence with respect to the norm ∥.∥X. If (X, ∥.∥X) is a Banach space; X is complete with respect to the norm
∥.∥X, and then x(n) must converge to some x ∈ X in ∥.∥X. By another application of Lemma 2.6, x(n) also
converges to x in ∥., .∥KI. This shows that X is complete with respect to the 2-norm ∥., .∥KI, that is (X, ∥., .∥KI)
is a 2-Banach space.

Relation between the 2-norms ∥., .∥KI and ∥., .∥G is presented in the following theorem.

Theorem 2.8. For every x, y ∈ X,
∥∥∥x, y

∥∥∥G
≤

1
2

∥∥∥x, y
∥∥∥KI
.
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Proof. From (2), (4) and (5), for every x, y ∈ X we have the following∥∥∥x, y
∥∥∥G
= 1

2 sup
fi∈X′, ∥ fi∥X′≤1

i=1,2

∣∣∣∣∣ f1(x) f2(x)
f1(y) f2(y)

∣∣∣∣∣
= 1

2 sup
fi∈X′, ∥ fi∥X′≤1

i=1,2

(
f1(x) f2(y) − f1(y) f2(x)

)
= 1

2 sup
fi∈X′, ∥ fi∥X′≤1

i=1,2

f2
(
y f1(x)

)
− f2

(
x f1(y)

)
= 1

2 sup
fi∈X′, ∥ fi∥X′≤1

i=1,2

f2
(
y f1(x) − x f1(y)

) (
for f1 = f

)
= 1

2 sup
fi∈X′, ∥ fi∥X′≤1

i=1,2

f2
(
y f (x) − x f (y)

)
≤

1
2 sup

fi∈X′, ∥ fi∥X′≤1
i=1,2

∥∥∥ f2
∥∥∥

X′

∥∥∥y f (x) − x f (y)
∥∥∥

X

≤
1
2 sup

f∈X′, ∥ f∥X′≤1

∥∥∥y f (x) − x f (y)
∥∥∥

X

= 1
2 sup

f∈X′, ∥ f∥X′≤1

∥∥∥x f (y) − y f (x)
∥∥∥

X

= 1
2

∥∥∥x, y
∥∥∥KI
.

Hence, for every x, y ∈ X∥∥∥x, y
∥∥∥G
≤

1
2

∥∥∥x, y
∥∥∥KI
.

Theorem 2.9. In X, if there is a C > 0 such that sup
∥1∥X′≤1

1(x) = C ∥x∥X for every x ∈ X, then C∥x, y∥KI = 2∥x, y∥G for

every x, y ∈ X.

Proof. Assume that there is a C > 0 such that sup
∥1∥X′≤1 1(x) = C ∥x∥X for every x ∈ X. Recall (2), (4), (5) and

take f1 = f , f2 = 1, z = x f (y) − y f (x). So

f2(x f1(y) − y f1(x)) = 1(x f (y) − y f (x)) = 1(z).

By assumption, we obtain sup
∥1∥X′≤1 1(z) = C∥z∥X. Consequently,

2
∥∥∥x, y

∥∥∥G
= sup
∥ f1∥X′≤1, ∥ f2∥X′≤1

f1, f2∈X′

f2(x f1(y) − y f1(x))

= sup
∥ f∥X′≤1, ∥1∥X′≤1
1, f∈X′

1(x f (y) − y f (x))

= sup
∥ f∥X′≤1, ∥1∥X′≤1
1, f∈X′

1(z) = C sup
∥ f∥X′≤1
f∈X′

∥z∥X

= C sup
∥ f∥X′≤1
f∈X′

∥∥∥x f (y) − y f (x)
∥∥∥

X

= C
∥∥∥x, y

∥∥∥KI

for every x, y ∈ X. Hence, C∥x, y∥KI = 2∥x, y∥G for every x, y ∈ X.
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Theorem 2.10. In X, if there exist C1,C2 > 0 such that C1∥x∥X ≤ sup
∥1∥X′≤1 1(x) ≤ C2∥x∥X for every x ∈ X, then

the 2-norms ∥·, ·∥KI and ∥·, ·∥G are equivalent.

Proof. Let C1,C2 > 0 such that C1∥x∥X ≤ sup
∥1∥X′≤1 1(x) ≤ C2∥x∥X for every x ∈ X. As in the proof of the

above theorem, if we take f1 = f , f2 = 1 and z = x f (y) − y f (x), then

f2(x f1(y) − y f1(x)) = 1(x f (y) − y f (x)) = 1(z).

By assumption, we obtain C1∥z∥X ≤ sup
∥1∥X′≤1 1(z) ≤ C2∥z∥X. Consequently,

2
∥∥∥x, y

∥∥∥G
= sup
∥ f1∥X′≤1, ∥ f2∥X′≤1

f1, f2∈X′

f2(x f1(y) − y f1(x))

= sup
∥ f∥X′≤1, ∥1∥X′≤1
1, f∈X′

1(x f (y) − y f (x))

= sup
∥ f∥X′≤1, ∥1∥X′≤1
1, f∈X′

1(z) ≤ C2 sup
∥ f∥X′≤1
f∈X′

∥z∥X

= C2 sup
∥ f∥X′≤1
f∈X′

∥∥∥x f (y) − y f (x)
∥∥∥

X

= C2

∥∥∥x, y
∥∥∥KI

⇒ 2
∥∥∥x, y

∥∥∥G
≤ C2

∥∥∥x, y
∥∥∥KI

for every x, y ∈ X.We also have

2
∥∥∥x, y

∥∥∥G
= sup
∥ f1∥X′≤1, ∥ f2∥X′≤1

f1, f2∈X′

f2(x f1(y) − y f1(x))

= sup
∥ f∥X′≤1, ∥1∥X′≤1
1, f∈X′

1(x f (y) − y f (x))

= sup
∥ f∥X′≤1, ∥1∥X′≤1
1, f∈X′

1(z) ≥ C1 sup
∥ f∥X′≤1
f∈X′

∥z∥X

= C1 sup
∥ f∥X′≤1
f∈X′

∥∥∥x f (y) − y f (x)
∥∥∥

X

= C1

∥∥∥x, y
∥∥∥KI

⇒ 2
∥∥∥x, y

∥∥∥G
≥ C1

∥∥∥x, y
∥∥∥KI

for every x, y ∈ X.We conclude that ∥·, ·∥KI and ∥·, ·∥G are equivalent.

3. Concluding remarks

A vector space can be equipped with several 2-norms. In such a case, we may have an equivalence
relation between them. In [6], it is shown that all 2-norms on a finite dimensional vector space are equivalent.
If X is a 2-dimensional space, say X := span{e1, e2}, and ∥., .∥1, ∥., .∥2 are two 2-norms on X, then one may
verify that the two 2-norms are equivalent. In fact, one can show that ∥x, y∥2 = A∥x, y∥1 with A = ∥e1,e2∥2

∥e1,e2∥1
.

Indeed, one may verify for X = R2 that the 2-norms ∥., .∥G
R2 and ∥., .∥KI

R2 are (strongly) equivalent. Recall
the usual norm on R2, ∥x∥R2 := (|x1|

p + |x2|
2)

1
2 for every x = (x1, x2) ∈ R2. Let v,w ∈ R2, for every x ∈ R2,
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fw(x) :=
2∑

k=1
wkxk is a bounded linear functional on R2. Then

C2

∥∥∥x, y
∥∥∥KI

2 ≤

∥∥∥x, y
∥∥∥G

2 ≤ C1

∥∥∥x, y
∥∥∥KI

2

can be obtained where C1 =
sup

∥ fv∥,∥ fw∥≤1 |v1w2−v2w1 |

2 sup
∥ fw∥≤1(|w1 |

p+|w2 |
p)

1
p

and C2 =
1

2 sup
∥ fu∥≤1(|u1 |

p+|u2 |
p)

1
p

.

On infinite-dimensional vector spaces there is no quarantee that every two 2-norms are equivalent. In
this work, we define a new 2-norm ∥., .∥KI equipped with bounded linear functionals on a normed space
(X, ∥.∥X) and investigate its relationship with Gähler’s [1] 2-norm ∥., .∥G. We also derive a norm ∥.∥KI on
X from this 2-norm ∥., .∥KI and explore its relation with the norm ∥.∥X on X. We investigate under which
conditions the equivalence of these 2-norms can be satisfied. Corollary 2.5 tells us in particular that ∥.∥X is
dominated by derived norm ∥.∥KI. As we see from Lemma 2.4 equivalence of two norms is obtained with
respect to the linearly independent vectors a, b ∈ X such that ∥a∥X = ∥b∥X in normed space (X, ∥ · ∥X). We
have similar difficulties in proving the strong equivalence between the two 2-norms ∥., .∥KI and ∥., .∥G on
X. As a matter of fact, we do not know whether the two 2-norms are strongly equivalent or not unless
we examine it in detail for the special cases of X. This ongoing problem will be continued to research for
some special cases of X, for example for lp, Lp (1 ≤ p < ∞) and C[a, b]. These all remain as open problems to
explore for the readers.
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