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Abstract. The solutions of the dual bending energy functional on the dual unit sphere S2
⊂ D3 are investi-

gated. Dual spherical elastica is characterized by the dual Euler-Lagrange equation by using techniques of
calculus of variation. The real and dual parts of the dual Euler-Lagrange differential equation are solved by
different methods. Dual spherical elastica is shown to correspond to the elastic strip constituted by planar
elastica in R3.

1. Introduction

Dual numbers are a combination of numbers called real and dual parts. The set that includes all of
these numbers is a commutative ring under addition and multiplication. A dual vector is an ordered triple
of dual numbers and the set of all dual vectors is a module called dual space D3 on the commutative
ring. E. Study used dual numbers and dual vectors in his research on line geometry and kinematics. He
devoted special interest to the representation of directed lines by dual unit vectors. This interest brought
the following Study theorem to the literature: The oriented lines in Euclidean 3−spaceR3 are in one-to-one
correspondence with the points of the dual unit sphere S2 in D3. Therefore, a smooth curve on the dual
unit sphere represents a ruled surface inR3 (for details, see [4, 12]). This makes it attractive to study with a
curve on the dual unit sphere.

There are two variational problems in which the curves arising from the mechanics and physical
conditions of elastic rods are studied. The first of these problems is elastic curves formulated by D. Bernoulli
in 1740 and characterized by L. Euler in 1744. The elastic curve, also known as elastica, is the solution of
the variational problem that minimizes the bending energy of a thin, inextensible wire. Mathematically, an
elastic curve is defined as one of critical points of the total squared curvature functional within the family
of regular curve, whose starting and ending points and tangent vectors at these points are the same (see,
[6, 11]). The elasticity problem and its various generalizations which examines the physical state of a thin
elastic rod when subjected to bending has a rich history and is actively studied today. Another variational
problem arising from the mechanics and physical conditions of elastic rods is elastic strips, introduced by M.
Sadowsky in 1930 to find the formulation of a developable Möbius strip with minimum energy. An elastic
strip is a ruled surface, called a rectifying strip, such that its directrix is a critical point of the Sadowsky
functional (see, [3, 6]). Considering the differentiable curves on the dual unit sphere S2 correspond to
ruled surfaces in R3, we investigate the answer to the following question in this paper: Can a one-to-one
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relationship be established between elastic curves on S2 and elastic strips in R3? To answer this question, the
following path is followed: At first, geometric preliminaries concerning the structure ofD3 is stated and a
short information about dual elastica is given. In the main section of the paper, the dual Euler-Lagrange
equation which characterizes critical dual points of the dual bending energy functional acting on suitable
space of curves on S2 is derived. The dual Euler-Lagrange equation is solved; while the real part of the
equation is solved by Jacobi elliptic functions, the dual part of the dual Euler-Lagrange equation is solved
by integral factor method. Then, a classification for dual spherical elastica is obtained. In the last part of
the paper, the solution of the above-mentioned research question is investigated. For this, first of all, the
characterization of elastic strips in R3 is reminded. In which cases the ruled surface which a dual curve
on S2 corresponds in R3 becomes a rectifying strip is examined. In such a case, it is concluded that the
rectifying strip is a binormal surface. By proving that the directrix of the binormal surface is elastica, the
answer to the research question is found: Any dual curve including elastica on S2 corresponds to elastic
strips constituted by planar elastica in R3.

2. Preliminaries

In this section, the basic definitions on dual numbers theory and dual elastica are reminded.

2.1. Dual numbers and dual unit sphere

A dual number â is a combination of a real part a and a dual part a∗ such that it is expressed by â = a+εa∗

where ε is the dual operator with the property ε2 = 0, ε , 0. The set of all dual numbers is denoted by

D =
{
â = a + εa∗| a, a∗ ∈ R, ε2 = 0, ε , 0

}
is a commutative ring with the following addition and multiplication operations:

â + b̂ = (a + εa∗) + (b + εb∗) = (a + b) + ε (a∗ + b∗)

and

â.b̂ = (a + εa∗).(b + εb∗) = ab + ε(ab∗ + a∗b),

for â = a + εa∗, b̂ = b + εb∗. The division is also defined as follows

â

b̂
=

a
b
+ ε

a∗b − ab∗

b2 , b , 0.

Let x̂ = (x̂1, x̂2, x̂3) be a dual vector. The set of all dual vector is given by

D3 =
{
x̂| x̂ = (x̂1, x̂2, x̂3) =

(
x1 + εx∗1, x2 + εx∗2, x3 + εx∗3

)
= x + εx∗, x, x∗ ∈ R3

}
.

Scalar (or inner) and cross product of dual vector x̂ and ŷ are defined by

⟨x̂, ŷ⟩ = ⟨x, y⟩ + ε(⟨x, y∗⟩ + ⟨x∗, y⟩)

and

x̂ × ŷ = x × y + ε(x × y∗ + x∗ × y).

If x , 0, the norm ∥x̂∥ of x̂ is defined by

∥x̂∥ =
√
⟨x̂, x̂⟩ = ∥x∥ + ε

⟨x, x∗⟩
∥x∥

.



A. Yücesan, G. Özkan Tükel / Filomat 37:8 (2023), 2483–2493 2485

A dual vector x̂ with norm 1 (or (1, 0)) is called a dual unit vector. For a dual unit vector, we have ⟨x, x⟩ = 1,
⟨x, x∗⟩ = 0.

Let γ̂(t) = γ(t) + εγ∗(t) be a dual curve with parameter t ∈ I ⊂ R in D3. The real curve γ(t) is called the
(real) indicatrix of γ̂(t). If every γi (t) and γ∗i (t) are differentiable, then γ̂(t) is differentiable inD3. The dual
arc length of the dual curve γ̂ is defined as

ŝ =

s∫
0

∥∥∥∥ ·γ̂ (t)
∥∥∥∥ dt =

s∫
0

∥∥∥ ·γ (t)
∥∥∥ dt + ε

s∫
0

⟨T,
·

γ∗ (t)⟩dt = s + εs∗, (1)

where s and T is arc length and the unit tangent vector to γ, respectively and ”.” expresses the derivative
with respect to s.

Now we recall equations relative to derivatives of dual Frenet vectors along the dual curve γ̂ in D3.
Suppose that γ̂ is a reparametrization curve with the parametrization s of the indicatrix. Then,

γ̂′ =
·

γ̂
ds
dŝ
= T̂ (2)

is called the dual unit tangent vector to γ̂ (s), where γ̂′ = dγ̂
dŝ and

·

γ̂ =
dγ
ds . Moreover we have dŝ

ds = 1+ ε∆ from

(1), where ∆ = ⟨T,
·

γ∗ (t)⟩. The dual unit vectors N̂ and B̂ are called the dual principle normal and binormal
of γ̂ at the point γ̂(s), respectively. For the dual Frenet trihedron

{
T̂, N̂, B̂

}
along γ̂, we have the formulas

d
dŝ


T̂
N̂
B̂

 =
 0 κ̂ 0
−κ̂ 0 τ̂
0 −τ̂ 0




T̂
N̂
B̂

 , (3)

where κ̂ = κ + εκ∗ and τ̂ = τ + ετ∗ are nowhere pure dual curvature and dual torsion functions of γ̂
[8, 9, 13, 14].

Let x be the position vector with respect to the orthonormal frame of reference of a real point with
coordinates (x1, x2, x3) in R3. Then the set of all points x with ⟨x, x⟩ = 1 gives the real unit sphere. Similarly,
we suppose that the dual vector x̂ = (x̂1, x̂2, x̂3) is not real. The set of all dual points with ⟨x̂, x̂⟩ = 1 is called
the dual unit sphere and the set is denoted by

S2 =
{
x̂ = x + εx∗ ∈ D3

∣∣∣ ⟨x̂, x̂⟩ = 1
}
.

Assume that γ̂(t) = γ(t) + εγ∗(t) be a dual curve on S2, that is ⟨γ̂(t), γ̂(t)⟩ = 1 and the real curve γ on the real
unit sphere. The trajectory of a differentiable dual curve on S2 is equivalent to a ruled surface which is a
surface generated by the motion of a straight line (see for details [9, 13]). If a ruled surface parametrized by

R : [0, ℓ] × [−ϵ, ϵ] → R3

(t, δ) → R (t, δ) = γ (t) + δB (t) , (4)

where B is the binormal vector of directrix curve γ, then it is called binormal surface [7]. If δ = 0 in (4), the
normal vector of the surface is equivalent to the principle normal of γ. So γ′′ is perpendicular to the tangent
plane, that is, γ is a geodesic of R.

2.2. Dual Elastica
We denote a set of dual space curves by Ω satisfying the following conditions:

γ̂ : [0, ℓ] → D3, γ̂ (iℓ) = p̂i, γ̂′ (iℓ) = v̂i for i = 0, 1. The dual elastica minimizes the dual bending energy
functional

E : Ω ⊂ D3
→ D

γ̂ → E
(
γ̂
)
=

∫
γ̂

∥∥∥γ̂′′(t)∥∥∥2
dt̂



A. Yücesan, G. Özkan Tükel / Filomat 37:8 (2023), 2483–2493 2486

and it is characterized by the following dual Euler-Lagrange equation

κ̂′′ +
κ̂3

2
−

ĉ2

κ̂3 −
λ̂
2
κ̂ = 0, (5)

where ĉ = c + εc∗ and λ̂ = λ + ελ∗ are dual constants.
If κ̂ is a non-zero constant real and dual part, then (3) is a system of linear ordinary differential equations

with constant coefficients. Hence, the formula can be given directly.
If κ̂ is not a constant dual and real part, then the solution of (5) is found as

κ̂ = κ0

(
1 −

(p
h

)2
sn2

(
κ0

2h
s, p

)) 1
2

+ ε
1

4κµ

∫
µ
κ2aa∗ + κ2(κ2

− λ)λ∗ + 4κ2 ·κ
2
∆ − 4cc∗

κ
·

κ
ds

and

τ̂ =
c
κ2 + ε

κc∗ − 2cκ∗

κ3 ,

where sn is the elliptic sine function, and κ0, h and p are real parameters related to λ, c and a as follows

2λ =
κ2

0

h2

(
3h2
− p2

− 1
)
,

4c2 =
κ6

0

h4

(
1 − h2

) (
h2
− p2

)
,

a2 = (
κ2

0

2h2 (3h2
− p2

− 1))2 +
κ4

0

h4 ((1 − h2)(2h2
− p2) + h2(p2

− h2))

and

µ = e
∫ 2κ4(κ2

−λ)−(2κ
·
κ)2
−4c2

4
·
κκ3 ds.

The dual elastica has the following classification:
i) If h = p, then solution is found as follows

κ̂ = κ0cn
(
κ0

2p
s, p

)
+ ε

1
4κµ

∫
µ
κaa∗ + κ(κ2

− λ)λ∗ + 4κ
·

κ
2
∆

·

κ
ds,

where

λ =
κ2

0

2p2

(
2p2
− 1

)
,

a2 =

 κ2
0

2p2

(
2p2
− 1

)2

+
κ4

0

p2

(
1 − p2

)
and

µ = e
∫ κ2(κ2

−λ)−2( ·κ)2

2
·
κκ

ds.

At this case, the curve is called dual wavelike elastica.
ii) If h = 1, then we have

κ̂ = κ0dn
(
κ0

2p
s, p

)
+ ε

1
4κµ

∫
µ
κaa∗ + κ(κ2

− λ)λ∗ + 4κ
·

κ
2
∆

·

κ
ds,
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where

λ =
κ2

0

2

(
2 − p2

)
,

a2 =

κ2
0

2

(
2 − p2

)2

+ κ4
0

(
p2
− 1

)
and

µ = e
∫ κ2(κ2

−λ)−2( ·κ)2

2
·
κκ

ds.

At this case, the curve is called dual orbitlike elastica.
iii) If h = p = 1, then we get

κ̂ = κ0 sec h
(
κ0

2
s
)
+ ε

1
4κµ

∫
µ
κ
κ2

0
2 a∗ + κ(κ2

−
κ2

0
2 )λ∗ + 4κ

·

κ
2
∆

·

κ
ds,

where

µ = e
∫ κ2(κ2

−

κ2
0
2 )−2( ·κ)2

2
·
κκ

ds.

At this case, the curve is called dual borderlike elastica (for details, see [8]).

3. Dual Spherical Elastica

Let γ̂ be a dual curve on the dual unit sphere S2
⊂ D3. Then we have the orthonormal triple {γ̂, T̂, 1̂} as

called the dual geodesic trihedron of γ̂,where

T̂ =
dγ̂
dŝ

is the dual unit tangent vector to γ̂ and

1̂ = γ̂ × T̂.

The dual geodesic trihedron of γ̂ has the following fundamental relations γ̂
′

T̂′

1̂′

 =
 0 1 0
−1 0 κ̂1
0 −κ̂1 0


 γ̂T̂
1̂

 , (6)

where κ̂1 is the dual geodesic curvature of γ̂. The dual curvature of γ̂ has the identity

κ̂2 = 1 + κ̂2
1

[9, 13]. Therefore, we can define dual spherical elastica (or dual elastica on S2) as a critical point of the dual
bending energy functional∫

γ̂

(
κ̂2
1 + σ̂

)
dŝ (7)
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in the space Φ =
{
γ̂ : [0, ℓ]→ S2

⊂ D3, γ̂ (iℓ) = p̂i, γ̂′ (iℓ) = v̂i, i = 0, 1
}

for fixed dual constant σ̂.
We can easily see from (6) the equality∥∥∥T̂′

∥∥∥2
= 1 + κ̂2

1.

Hence, we want to minimize the dual functional∫
γ̂

(∥∥∥T̂′
∥∥∥2
+ ρ̂

)
dŝ,

where ρ̂ = σ̂ − 1 under the restrictions∥∥∥T̂
∥∥∥2
= 1, T̂ = γ̂′, < γ̂, γ̂ >= 1.

So we can apply the dual Euler-Lagrange equations to the dual functional

F̂ =
∥∥∥T̂′

∥∥∥2
+ ρ̂ + λ̂

(∥∥∥T̂
∥∥∥2
− 1

)
+ µ̂

(∥∥∥γ̂∥∥∥2
− 1

)
− 2 < Λ̂, γ̂′ − T̂ > .

If γ̂ is an extremal for F̂, then the following equations hold;

∂F̂
∂γ̂
−

d
dŝ

(
∂F̂
∂γ̂′

)
= 0,

∂F̂
∂T̂
−

d
dŝ

(
∂F̂
∂T̂′

)
= 0.

Then we obtain

µ̂γ̂ − Λ̂′ = 0 (8)

and

λ̂T̂ − T̂′′ = Λ̂. (9)

Combining (8) and (9), we get

λ̂′T̂ + λ̂T̂′ − T̂′′′ = µ̂γ̂. (10)

From (6), we have the following derivatives:

T̂′ = −γ̂ + κ̂11̂, (11)

T̂′′ = κ̂′11̂ −
(
κ̂1 + 1

)
T̂ (12)

and

T̂′′′ =
(
κ̂2
1 + 1

)
γ̂ − 3κ̂1κ̂′1T̂ +

(
κ̂′′1 − κ̂

3
1 − κ̂1

)
1̂. (13)

Substituting (11), (12) and (13) into (10), we calculate

−

(
λ̂ + µ̂ + κ̂2

1 + 1
)
γ̂ +

(
λ̂′ + 3κ̂1κ̂′1

)
T̂ +

(
λ̂κ̂1 − κ̂

′′

1 + κ̂
3
1 + κ̂1

)
1̂ = 0.

Since the dual vectors γ̂, T̂ and 1̂ are orthonormal, we have

λ̂ + µ̂ + κ̂2
1 + 1 = 0, (14)

λ̂ = −
3
2
κ̂2
1 + Ĉ (15)
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and

λ̂κ̂1 − κ̂
′′

1 + κ̂
3
1 + κ̂1 = 0. (16)

Substituting (15) into (16), we get

κ̂′′1 +
1
2
κ̂3
1 −

(
1 + Ĉ

)
κ̂1 = 0. (17)

In order to determine the dual constant Ĉ with respect to the dual constant σ̂, we consider the boundary
condition

F̂ (ℓ) −
∂F̂
∂γ̂′

(ℓ) γ̂′ (ℓ) −
∂F̂
∂T̂′

(ℓ) T̂′ (ℓ) = 0

for γ̂. Then we have

−κ̂2
1 (ℓ) − 1 + ρ̂ − 2 < Λ̂ (ℓ) , γ̂′ (ℓ) >= 0. (18)

By using (9), we calculate

< Λ̂ (ℓ) , γ̂′ (ℓ) >= λ̂ + κ̂2
1 (ℓ) + 1.

From (14), we obtain

< Λ̂ (ℓ) , γ̂′ (ℓ) >= −
1
2
κ̂2
1 (ℓ) + 1 + Ĉ. (19)

Substituting (19) into (18), we have

Ĉ + 1 =
1
2
(
ρ̂ − 1

)
=

1
2

(σ̂ − 2) .

So we can rearrange (17) as follows

κ̂′′1 +
1
2
κ̂3
1 +

(
1 −
σ̂
2

)
κ̂1 = 0. (20)

Then we can give the following theorem.
Theorem 1. A dual elastica on the dual unit sphere S2

⊂ D3 can be determined by the dual Euler-
Lagrange equation (20).

A solution of (20) is the case of constant dual geodesic curvature. Assume that κ̂1 has a non dual constant
value. Then, (20) can be integrated to(

κ̂′1
)2
= Ĉ1 −

1
4
κ̂4
1 −

(
1 −
σ̂
2

)
κ̂2
1. (21)

(21) can be written in terms of the squared of the dual geodesic curvature, û = κ̂2
1, as follows

(û′)2 + û3 + 4
(
1 −
σ̂
2

)
û2
− 4ûĈ1 = 0, (22)

where the real and dual parts of (22) are respectively given by(
·

u
)2
+ u3 + 4

(
1 −
σ
2

)
u2
− 4uC1 = 0
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and

2u
·

u∗ + 3u2u∗ + 8(1 −
σ
2

)uu∗ + 2σ∗u2
− 4C1u∗ − 4uC∗1 = 0, (23)

where û = u + εu∗, σ = σ + εσ∗ and Ĉ1 = C1 + εC∗1. In order to solve the dual Euler-Lagrange equation (22),
we solve both of the real and dual parts.

Since the real part of (22) is of the form
(
·

u
)2
= P (u) ,where P is the cubic polynomial, it can be solved by

using Jacobi elliptic functions as follows

κ2
1 = κ

2
10

dn2
(κ10

2
s, p

)
,

where κ10 is the maximal geodesic curvature and p is real parameter related to σ and C1 as follows

σ =
κ2
10

2
(2 − p2) + 2

and

C1 =
1
4
κ4
10

(
p2
− 1

)
(see, [1, 10]). Now we focus on the solution of (23) which is the dual part of (22). (23) can be revised as
follows

·

u∗ + (
3
2

u + 4(1 −
σ
2

) −
2C1

u
)u∗ = 2C∗1 − σ

∗u. (24)

One can see that (24) can be solved by integral factor method. The integral factor is found as follows

µ = e
∫

( 3
2 u+4(1− σ2 )−

2C1
u )ds = e

( 3
2κ

2
10
−

2C1
κ2
10

(1−p2)
)E(

κ2
10
2 s)+

2C1p2sn(
κ10

2 s,p)cn(
κ10

2 s,p)

κ2
10

(1−p2)
+4(1− σ2 )s+A

,

where E(
κ10
2 s) is Legender’s elliptic integral of second kind (see, [2, 10]) and A is integration constant. If we

multiply both of two side of (24) by µ,we obtain

·

(µu∗) = µ(2C∗1 − σ
∗u).

So, we get

u∗ = 2κ1κ∗1 =
1
µ

∫
µ(2C∗1 − σ

∗κ2
1)ds

since û = u + εu∗ = κ̂2
1 = κ

2
1 + ε2κ1κ∗1. Therefore, we find

κ∗1 =
1

2κ1µ

∫
µ(2C∗1 − σ

∗κ2
1)ds.

Then we can give the following classification according to parameter p :
i) If p = 0, then σ = κ2

10
+ 2 has maximal value and solutions are

κ̂1 = κ10 + ε
1

2κ10

∫
(2C∗1 − σ

∗κ2
10

)ds.
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ii) If p2 < 1 and σ < 1
2κ

2
10
+ 2, one uses the formula

κ̂1 = κ10 cn
(√
κ2
10
+ 2 −

σ
2

s,
1
p

)
+ ε

1
2κ1µ

∫
µ(2C∗1 − σ

∗κ2
1)ds.

Especially, if σ = 2, then the dual geodesic curvature is given by

κ̂1 = κ10 coslemn
(κ10

2
s
)
+ ε

1
2κ1µ

∫
µ(2C∗1 − σ

∗κ2
1)ds.

iii) If p2 = 1, then σ = 1
2κ

2
10
+ 2 and we have

κ̂1 = κ10 sech
(κ10

2
s
)
+ ε

1
2κ1µ

∫
µ(2C∗1 − σ

∗κ2
1)ds.

iv) If p2 > 1, then we have

κ̂1 = ±κ10 dn
(κ10

2
s, p

)
+ ε

1
2κ1µ

∫
µ(2C∗1 − σ

∗κ2
1)ds.

On the other hand, (21) can also be expressed by the dual curvature κ̂ and the dual torsion τ̂ using the
following relation(

κ̂′1
)2
= τ̂2κ̂4. (25)

Substituting (25) into (21),we obtain

τ̂2κ̂4 = −
1
4
κ̂4
−

1
2

(1 − σ̂) κ̂2 +
1
2

(3
2
− σ̂

)
+ Ĉ1.

4. Conclusions

According to E. Study mapping, a differentiable dual curve on S2 corresponds to a ruled surface in R3.
It is natural to inquire about the relationship between dual spherical elastica and elastic strips in R3. The
answer to this question will be investigated in the following section of the paper.

Now we recall some relations about elastic strips in R3. From [3], we known that an elastic strip is a
developable ruled surface (or rectifying strip) described by

Rγ : [0, ℓ] × [−ϵ, ϵ] → R3

(t, δ) → Rγ (t, δ) = γ (t) + δ (ω(t)T (t) + B (t)) (26)

if γ is a critical point of the modified Sadowsky functional

Sµ(γ) =

ℓ∫
0

(κ2(1 + ω2)2
− η)vdt,

where η is Lagrange multiplier, standing for the length constraint. Also T is the unit tangent vector, B is the
unit binormal of γ and ω = τκ is the modified torsion of γ such that κ is the curvature and τ is the torsion of
γ. Therefore, an elastic strip is are characterized by the Euler-Lagrange equations

r1 = r2 = 0, (27)
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where

r1 :=
d
(

dκ
ds (1+ω2)2

+2κ(1+ω2)ω dω
ds

)
ds

+ κ2

(
κ2

(
1 + ω2

)2
+ η

)
+ ωκ(κ2

(
1 + ω2

)2
ω

+
d( 2
κ

dκ
ds (1+ω2)ω)

ds +
d2(2(1+ω2)ω)

ds2 )

and

r2 := −
d

κ2(1+ω2)2
ω+

d( 2
κ

dκ
ds (1+ω2)ω)

ds +
d2(2(1+ω2)ω)

ds2


ds

+ ωκ( dκ
ds

(
1 + ω2

)2
+ 2κ

(
1 + ω2

)
ω dω

ds )

[3].
From E. Study mapping, we know that the dual curve γ̂ = γ+ εγ∗ on S2 corresponds to the ruled surface

in R3 parametrized by

R (t, δ) = γ (t) × γ∗ (t) + δγ (t) ,

where γ × γ∗ is the directrix and γ is the director curve of the ruled surface R(t, δ). In the following result,
we give the necessary condition that the ruled surface which a dual curve corresponds inR3 to be rectifying
strip defined in (26).

Conclusion 1. A dual curve γ̂ = γ + εγ∗ on S2
⊂ D3 corresponds to the rectifying strip with planar

directrix γ × γ∗ such that it is the binormal surface of γ × γ∗.
Proof. Let γ̂ = γ + εγ∗ be a dual curve on S2. Suppose that the ruled surface where the dual curve γ̂

corresponds to a rectifying strip in R3. Then the rectifying strip must be in the form of (26), that is, the
rectifying strip is given by

Rγ (t, δ) = γ(t) × γ∗(t) + δ
(
τ(t)
κ(t)

T(t) + B (t)
)
,

where τ(t)κ(t) T(t) + B (t) = γ(t), τ, κ, T and B are the torsion, curvature, tangent vector and binormal vector of
γ × γ∗ at the point

(
γ × γ∗

)
(t), respectively. Since γ̂ is a dual curve on S2, we have τ = 0 for all t ∈ R.

We recall that an elastica on a regular surface characterized by the Euler-Lagrange equation

·

κ1 +

·

(κ2
nτ1)
κn

+ κ1

κ2
1 + κ

2
n

2
− τ2

1 − C

 = 0 (28)

[5]. The best examples of elastica have often been geodesics. Then, we can give the following result.
Conclusion 2. Let γ̂ = γ + εγ∗ be a dual curve on S2 and Rγ corresponding binormal surface. Then the

directrix γ × γ∗ of Rγ is an elastica.
Proof. Suppose that Rγ is the binormal surface corresponding to a dual curve γ̂ = γ + εγ∗ on S2. Since

the directrix of a binormal surface is a geodesic, we have from Conclusion 1 and (28), the directrix γ× γ∗ of
Rγ is an elastica.

A planar elastica satisfies the Euler-Lagrange equations (27), that is a rectifying strip formed by a planar
elastica is an elastic strip. In this case, we arrive at the following conclusion, the proof of which is obvious.

Conclusion 3. A dual curve on S2 corresponds to elastic strip formed by planar elastica inR3. So a dual
spherical elastica correspond to elastic strips constituted by planar elastica in R3, too.
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