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The asymptotic properties for the estimators in a semiparametric
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Abstract. In this paper, we investigate the parametric component and nonparametric component esti-
mators in a semiparametric regression model based on m-asymptotic negatively associated (m-ANA, for
short) random variables. The r-th (r > 1) mean consistency, complete consistency and uniform consistency
are obtained under some suitable conditions. In order to assess the finite sample performance, we also
present a numerical simulation in the last section of the paper. The results obtained in the paper extend the
corresponding ones for independent random errors, φ-mixing and other dependent random errors.

1. Introduction

1.1. Concept of m-ANA random variables
In this subsection, we are going to introduce the concepts of two dependent random variables which

are significant in this paper. First of all, let us recall the concept of asymptotic negatively associated (ANA,
for short) random variables which was first proposed by Zhang and Wang (1999).
Definition 1.1. A sequence {Xn,n ≥ 1} of random variables is called ANA (or ρ−-mixing) if

ρ−(s) = sup
{
ρ−(S,T) : S,T ⊂ N, dist(S,T) ≥ s

}
→ 0,

as s→∞, where

ρ−(S,T) = 0 ∨

 cov( f1(Xi, i ∈ S), f2(X j, j ∈ T))√
Var( f1(Xi, i ∈ S))Var( f2(X j, j ∈ T))

: f1, f2 ∈ O

 ,
and O is the set of nondecreasing functions.

An array {Xni, 1 ≤ i ≤ n,n ≥ 1} of random variables is called rowwise ANA if for every n ≥ 1, {Xni, 1 ≤ i ≤ n}
are ANA.
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Since ANA random variables are widely used in real life, many scholars at home and abroad are
interested in the investigation of the properties and have achieved many valuable results. For instance,
the moment inequalities and the complete convergence for partial sums have been obtained in Zhang
and Wang (1999); The moments of the maximum of normed partial sums have been exhibited in Liu and
Liu (2009); The precise asymptotics of complete moment convergence for ρ−-mixing sequences has been
gained in Fu and Wu (2017); The central limit theorems have been attained in Zhang (2000a, b); The weak
convergence and some inequalities for the maximum of partial sums have been acquired in Wang and Lu
(2006); The complete convergence for weighted sums without the assumption of identical distribution has
been considered in Tan and Wang (2014); The law of the iterated logarithm has been established in Wang
and Zhang (2007).

Wu et al. (2021) extended the concept of ANA random variables to m-ANA random variables as follows.
Definition 1.2. Let m ≥ 1 be a fixed integer. A sequence {Xn,n ≥ 1} of random variables is said to be m-ANA if for
any n ≥ 2 and any i1, i2, · · · , in such that |ik − i j| ≥ m for any 1 ≤ k , j ≤ n, we have that Xi1 ,Xi2 , · · · ,Xin are ANA.

It is easy to see that the concept of m-ANA random variables is equivalent to that of ANA random
variables under the condition of m = 1. Thus, we can consider m-ANA random variables as a more
extensive dependent sequence than ANA random variables. What’s more, since negatively associated (NA,
for short) implies ANA, then m-negatively associated (m-NA, for short) implies m-ANA. Therefore, it’s very
meaningful to research m-ANA random variables. Wu et al. (2021) obtained the complete consistency for
the weighted estimator in a nonparametric regression model and the strong consistency for conditional
value-at-risk estimator based on m-ANA random errors.

In this article, we are going to investigate the r-th mean consistency, complete consistency and uniform
consistency of the estimators under the semiparametric regression model (1.1) below based on m-ANA
random errors. Besides, we provide a numerical simulation to research the numerical performance of the
consistency for the least squares estimator and the nearest neighbor weight function estimator.

1.2. Semiparametric regression model

Consider the following semiparametric regression model:

y(n)
i = x(n)

i β + 1
(
t(n)
i

)
+ ε(n)

i , i = 1, 2, · · · ,n, n ≥ 1, (1.1)

where g is an unknown function defined on a compact set A in Rp, and β is an unknown parameter in R,
x(n)

i and t(n)
i are known to be nonrandom, y(n)

i represents the i-th response which is observable at points
x(n)

i and t(n)
i , ε(n)

i are random errors. Assume that for each n, (ε(n)
1 , ε

(n)
2 , · · · , ε

(n)
n ) has the same distribution as

(ε1, ε2, · · · , εn).
Seeing that the semiparametric regression model (1.1) contains both parametric and nonparametric

components, so it is more flexible and applicable than the classical linear or nonparametric regression
model. Recently, many statisticians have paid attention to the research under the semiparametric regression
model (1.1). For instance, the r-th mean and uniform r-th mean consistencies, strong and uniform strong
consistencies for the estimators of β and 1(t) based on independent errors have been established in Hu
(1999); The r-th mean consistency and strong consistency for the nearest neighbor estimators based on
martingale difference errors have been derived in Yan et al. (2001); The r-th mean consistency and complete
consistency for the estimators based on Lq-mixingale errors have been acquired in Pan et al. (2003); The
r-th mean consistency and complete consistency for the estimators based on linear time series have been
obtained in Hu (2006). Inspired by the above articles, Wang et al. (2019) gained the r-th and uniform r-th
(r ≥ 2) mean consistencies, complete and uniform complete consistencies for the estimators with φ-mixing
errors under the semiparametric regression model (1.1). Noting that sometimes the condition of r ≥ 2 can
not be satisfied, Wang et al. (2022) discussed the r-th (1 < r < 2) mean consistency and uniform consistency
for the estimators with φ-mixing errors under the semiparametric regression model (1.1). Moreover, Wang
et al. (2017) studied the following semiparametric regression model:

y( j)(xin, tin) = tinβ + 1(xin) + e( j)(xin), 1 ≤ j ≤ m, 1 ≤ i ≤ n, (1.2)
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with ρ̃-mixing errors and presented the strong consistency, r-th (r > 2) mean consistency and complete
consistency for estimators β̂n and 1̂n(t) of β and 1(t). Wu and Wang (2018) discussed the strong consistency
and r-th (1 < r ≤ 2) mean consistency for the estimators under the semiparametric regression model (1.2)
with ρ∗-mixing random errors.

Considering that the convergence properties of m-ANA random variables will have a very wide range
of applications in probability statistics, finance and insurance, reliability theory, complex systems and
econometrics, we work on the r-th (r > 1) mean consistency, uniform consistency and complete consistency
of the estimators under the semiparametric regression model (1.1) based on m-ANA random errors. Our
results obtained in the paper extend the corresponding ones for independent random errors, φ-mixing and
other dependent random errors.

The main contents of this article are organized as follows: In Section 2, we state some assumptions about
fixed design points and weight functions. Meanwhile, we also provide some necessary theorems required
for proving the conclusions of this article. In Section 3, we present the main results and their proofs,
including the r-th mean consistency of β̂n and 1̂n(t), complete consistency and uniform consistency of 1̂n(t).
In Section 4, we carry out a simulation to investigate the numerical performance of the consistency for the
least squares estimator and the nearest neighbor weight function estimator based on m-ANA samples.

Throughout the article, we assume that C, C1, C2, · · · are positive constants independent of n, x and t,
and C can take different values in various positions, I(E) denotes the indicator function of the set E, and ∥x∥
denotes the Euclidean norm of x.

2. Assumptions and lemmas

2.1. Estimators and assumptions

For the model (1.1), based on the least squares method and the weight function method, Pan et al. (2003)
obtained the estimators for β and 1(t) as follows:

β̂n =

n∑
i=1

x̃(n)
i ỹ(n)

i

n∑
i=1

(
x̃(n)

i

)2
, (2.1)

1̂n(t) =
n∑

i=1

Wni(t)
(
y(n)

i − x(n)
i β̂n

)
, (2.2)

where

x̃(n)
i = x(n)

i −

n∑
k=1

Wnk

(
t(n)
i

)
x(n)

k , ỹ(n)
i = y(n)

i −
n∑

k=1
Wnk

(
t(n)
i

)
y(n)

k , (2.3)

Wni (t) = Wni

(
t, t(n)

1 , · · · , t
(n)
n

)
, i = 1, 2, · · · ,n are measurable weight functions satisfying the following as-

sumptions:

A1 Wni(t) ≥ 0, 1 ≤ i ≤ n,
n∑

i=1
Wni(t) = 1, n ∈ N, for any t ∈ A;

A2 max
1≤k≤n

n∑
i=1

Wnk

(
t(n)
i

)
≤ C1;

A3

∣∣∣1(t1) − 1(t2)
∣∣∣ ≤ C2 ∥t1 − t2∥ , for any t1, t2 ∈ A ;

A4 lim infn→∞
1
n S2

n ≥ C3,where S2
n =

n∑
i=1

(
x̃(n)

i

)2
;
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A5 There exist some α ∈
(
0, 1

2

)
and hn, 1 ≤ hn ≤ n, such that

lim
n→∞

hn = ∞, lim
n→∞

hn

n1−2α = 0,

n∑
i=1

Wni(t)I
(∥∥∥t(n)

i − t
∥∥∥ > hn

n

)
≤ C4 ·

hn

n
, for any t ∈ A;

A6 max
1≤i≤n

∣∣∣x(n)
i

∣∣∣ ≤ C5nα,where α is the same as in A5;

A7 max
1≤k≤n

sup
t∈A

Wnk(t) = O
(
n−δ

)
, for some 0 < δ < 1;

A8 lim
n→∞

n∑
k=1

W2
nk(t) = 0, for any t ∈ A;

A9 lim
n→∞

sup
t∈A

n∑
k=1

W2
nk(t) = 0.

Remark 2.1. So far, many scholars have employed the above assumptions about design variables and weights. For
instance, Hu (2006) has used the assumptions A1-A6 and A8, Wang et al. (2019) have applied the assumptions A1-A6
and A8-A9, Wang et al. (2022) have utilized the assumptions A1-A7.

Remark 2.2. It follows by A4 that n1− 2
r

n∑
i=1

(
x̃(n)

i

)2
→ ∞ as n→ ∞ for r > 1. This conclusion will be required in the

proof of Theorem 3.2.

2.2. Some lemmas
The following lemmas are significant to prove the main results of the paper. The first lemma provides the

Rosenthal-type maximum inequality and Marcinkiewicz-Zygmund type maximum inequality applicable
to m-ANA random variables, which can be found in Wu et al. (2021)
Lemma 2.1. Suppose that {Xi, i ≥ 1} is a sequence of m-ANA random variables with EXi = 0 and E|Xi|

p < ∞ for
some p > 1. Then there exists a positive constant C depending only on p and ρ−(·) such that for any n ≥ 1,

E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣
p ≤ C


n∑

i=1

E |Xi|
p +

 n∑
i=1

EX2
i


p/2

 , f or p ≥ 2,

and

E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣
p ≤ C

n∑
i=1

E |Xi|
p , f or 1 < p < 2.

We acquire the following moment inequality for weighted sums of m-ANA random variables by using
the Rosenthal-type inequality for m-ANA random variables. Since the proof is similar to that of Lemma 2.3
in Wang et al. (2019), we omit the details here.
Lemma 2.2. Let {Xi, i ≥ 1} be a sequence of m-ANA random variables with EXi = 0 and sup

i
E|Xi|

p < ∞ for some

p ≥ 2. Then, for every real array {ani, 1 ≤ i ≤ n,n ≥ 1}, there exists a positive constant C such that

E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣
p ≤ C

 n∑
i=1

a2
ni


p
2

, for each n ≥ 1.

The next one was exhibited by Hu (2006).
Lemma 2.3. By A1, A3 and A5, we can get that

n∑
k=1

Wnk(t)
∣∣∣∣1(t) − 1 (t(n)

k

)∣∣∣∣ ≤ Chn

n
, for any t ∈ A.
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To reduce the conditions for proving Theorem 3.2, we propose the following lemma.
Lemma 2.4. By A4 and the Hölder’s inequality, we can get that for all n large enough,

n∑
i=1

∣∣∣̃x(n)
i

∣∣∣
S2

n
≤ C−

1
2

3 < ∞.

Proof. It follows by A4 and the Hölder’s inequality that for all n large enough,

n∑
i=1

∣∣∣̃x(n)
i

∣∣∣
S2

n
≤

 n∑
i=1

∣∣∣̃x(n)
i

∣∣∣2
1
2
 n∑

i=1

∣∣∣∣∣∣ 1
S2

n

∣∣∣∣∣∣2


1
2

=

(
n
S2

n

) 1
2

≤ C−
1
2

3 < ∞.

3. Main results and their proofs

3.1. Consistency of β̂n and 1̂n(t)
In this subsection, we will present our main results and their proofs. The first one is the complete

consistency for the linear combination of m-ANA random variables under some suitable conditions.
Theorem 3.1. Let {εi, i ≥ 1} be a sequence of m-ANA random variables with Eεi = 0, supi E |εi|

r < ∞ for some
r ≥ 2. Let {cni, 1 ≤ i ≤ n,n ≥ 1} be a nonrandom array. If there exists r ≥ 2 such that

∞∑
n=1

 n∑
i=1

c2
ni


r/2

< ∞, (3.1)

then
∑n

i=1 cniεi converges to zero completely.

Proof. For any ϵ > 0, by Markov’s inequality, Lemma 2.2 and (3.1) we get

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

cniεi

∣∣∣∣∣∣∣ > ϵ


≤

∞∑
n=1

E

∣∣∣∣∣∣∣
n∑

i=1

cniεi

∣∣∣∣∣∣∣
r

/ϵr

≤
C
ϵr

∞∑
n=1

 n∑
i=1

c2
ni


r/2

< ∞,

thus
∑n

i=1 cniεi converges to zero completely.
Next, the results mentioned in Theorem 3.2 and Theorem 3.3 are the r-th (r > 1) mean consistency for

the estimators β̂n and 1̂n(t).
Theorem 3.2. In the model (1.1), assume that conditions A1-A7 hold. Let {εi, i ≥ 1} be a sequence of m-ANA random
variables with Eεi = 0. If there exists some 1 < r < 2 such that

sup
i

E |εi|
r < ∞, (3.2)

then

lim
n→∞

E
∣∣∣β̂n − β

∣∣∣r = 0. (3.3)
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Moreover, if we assume that∣∣∣∣∣∣∣
n∑

i=1

Wni(t)x
(n)
i

∣∣∣∣∣∣∣ ≤ C < ∞, (3.4)

then

lim
n→∞

E
∣∣∣1̂n(t) − 1(t)

∣∣∣r = 0. (3.5)

Proof. For fixed n, we denote x̃(n)
i = x̃i, ỹ(n)

i = ỹi, x(n)
i = xi, y(n)

i = yi and t(n)
i = ti, i = 1, 2, · · · ,n.

By (2.1)-(2.3), we obtain that

β̂n − β =

 n∑
i=1

x̃i

1 (ti) −
n∑

k=1

Wnk(ti)1(tk) + εi −

n∑
k=1

Wnk(ti)εk


 /S2

n, (3.6)

which combining with the Cr-inequality implies that

E
∣∣∣β̂n − β

∣∣∣r = E

∣∣∣∣∣∣∣
 n∑

i=1

x̃i

1 (ti) −
n∑

k=1

Wnk(ti)1(tk) + εi −

n∑
k=1

Wnk(ti)εk


 /S2

n

∣∣∣∣∣∣∣
r

≤ 3r−1

∣∣∣∣∣∣∣
n∑

i=1

x̃i

1(ti) −
n∑

k=1

Wnk(ti)1(tk)

 /S2
n

∣∣∣∣∣∣∣
r

+ 3r−1E

∣∣∣∣∣∣∣
n∑

i=1

x̃iεi/S2
n

∣∣∣∣∣∣∣
r

+ 3r−1E

∣∣∣∣∣∣∣
n∑

i=1

x̃i

n∑
k=1

Wnk(ti)εk/S2
n

∣∣∣∣∣∣∣
r

.

(3.7)

Firstly, we will show that

lim
n→∞

∣∣∣∣∣∣∣
n∑

i=1

x̃i

1(ti) −
n∑

k=1

Wnk(ti)1(tk)

 /S2
n

∣∣∣∣∣∣∣
r

= 0. (3.8)

By A1, A5, A6 and Lemma 2.3, we get that∣∣∣∣∣∣∣1n
n∑

i=1

x̃i

1(ti) −
n∑

k=1

Wnk(ti)1(tk)


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣1n
n∑

i=1

xi −

n∑
j=1

Wnj(ti)x j


1(ti) −

n∑
k=1

Wnk(ti)1(tk)


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣1n
n∑

i=1

n∑
j=1

Wnj(ti)
(
xi − x j

) 1(ti) −
n∑

k=1

Wnk(ti)1(tk)


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣2n max
1≤i≤n

|xi|

n∑
i=1

1(ti) −
n∑

k=1

Wnk(ti)1(tk)


∣∣∣∣∣∣∣

≤
Cnα

n

n∑
i=1

n∑
k=1

Wnk(ti)|1(ti) − 1(tk)|

≤
Cnα

n

n∑
i=1

hn

n
= C

hn

n1−α → 0, as n→∞,

(3.9)
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which combining with A4 indicates that (3.8) holds. In the following, we will show that

lim
n→∞

E

∣∣∣∣∣∣∣
n∑

i=1

x̃iεi/S2
n

∣∣∣∣∣∣∣
r

= 0. (3.10)

We acquire by the Hölder’s inequality, Lemma 2.1, Remark 2.2 and (3.2) that

E

∣∣∣∣∣∣∣
n∑

i=1

x̃iεi/S2
n

∣∣∣∣∣∣∣
r

≤
C

S2r
n

n∑
i=1

E
∣∣∣̃xiεi

∣∣∣r
= CS−2r

n

n∑
i=1

|̃xi|
rE|εi|

r

≤ CS−2r
n

 n∑
i=1

x̃2
i


r
2
 n∑

i=1

1


1− r

2

sup
i

E|εi|
r

≤ CS−2r
n n1− r

2

 n∑
i=1

x̃2
i


r
2

≤ Cn1− r
2 S−r

n

= C
(
n1− 2

r S2
n

)− r
2
→ 0, as n→∞,

which implies that (3.10) holds. Now, we will prove that

lim
n→∞

E

∣∣∣∣∣∣∣
n∑

i=1

x̃i

n∑
k=1

Wnk(ti)εk/S2
n

∣∣∣∣∣∣∣
r

= 0. (3.11)

Noting that f (x) = |x|r is a convex function for r > 1, we can get that

E

∣∣∣∣∣∣∣
n∑

i=1

x̃i

n∑
k=1

Wnk(ti)εk/S2
n

∣∣∣∣∣∣∣
r

= E

∣∣∣∣∣∣∣∣
n∑

i=1

x̃i∑n
j=1 |̃x j|

n∑
j=1

|̃x j|

n∑
k=1

Wnk(ti)εk/S2
n

∣∣∣∣∣∣∣∣
r

=


∑n

j=1 |̃x j|

S2
n

r

E

∣∣∣∣∣∣∣
n∑

i=1

x̃i∑n
j=1 |̃x j|

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣
r

≤


∑n

j=1 |̃x j|

S2
n

r

E

 n∑
i=1

|̃xi|∑n
j=1 |̃x j|

∣∣∣∣∣∣∣
n∑

k=1

Wnk(ti)εk

∣∣∣∣∣∣∣


r

≤


∑n

j=1 |̃x j|

S2
n

r n∑
i=1

|̃xi|∑n
j=1 |̃x j|

E

∣∣∣∣∣∣∣
n∑

k=1

Wnk(ti)εk

∣∣∣∣∣∣∣
r

≤


∑n

j=1 |̃x j|

S2
n

r

max
1≤i≤n

E

∣∣∣∣∣∣∣
n∑

k=1

Wnk(ti)εk

∣∣∣∣∣∣∣
r

.
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By Lemma 2.1, (3.2), A1 and A7, we can see that

max
1≤i≤n

E

∣∣∣∣∣∣∣
n∑

k=1

Wnk(ti)εk

∣∣∣∣∣∣∣
r

≤ sup
t∈A

E

∣∣∣∣∣∣∣
n∑

k=1

Wnk(t)εk

∣∣∣∣∣∣∣
r

≤ C sup
t∈A

n∑
k=1

E |Wnk(t)εk|
r

≤ C sup
t∈A

n∑
k=1

Wr
nk(t) sup

k
E |εk|

r

≤ C
(
max
1≤k≤n

sup
t∈A

Wnk(t)
)r−1 n∑

k=1

Wnk(t)

≤ Cn−δ(r−1)
→ 0, as n→∞,

(3.12)

which together with Lemma 2.4 yields that (3.11) holds. Through (3.8), (3.10) and (3.11), it is clearly seen
that (3.3) holds.

Next, we will prove (3.5). From (2.1)-(2.3), we can gain that

1̂n(t) − 1(t)

=

n∑
i=1

Wni(t)
(
yi − xiβ̂n

)
− 1(t)

=

n∑
i=1

Wni(t)
(
xiβ + 1(ti) + εi − xiβ̂n

)
− 1(t)

=

n∑
i=1

Wni(t)xi

(
β − β̂n

)
+

n∑
i=1

Wni(t)
(
1(ti) − 1(t)

)
+

n∑
i=1

Wni(t)εi.

(3.13)

Hence, by the Cr-inequality and the above equality, we have

E
∣∣∣1̂n(t) − 1(t)

∣∣∣r
= E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi

(
β − β̂n

)
+

n∑
i=1

Wni(t)
(
1(ti) − 1(t)

)
+

n∑
i=1

Wni(t)εi

∣∣∣∣∣∣∣
r

≤ 3r−1E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi(β − β̂n)

∣∣∣∣∣∣∣
r

+ 3r−1

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)(1(ti) − 1(t))

∣∣∣∣∣∣∣
r

+ 3r−1E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)εi

∣∣∣∣∣∣∣
r

.

(3.14)

Then, we will prove that

lim
n→∞

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi(β − β̂n)

∣∣∣∣∣∣∣
r

= 0. (3.15)

It follows by (3.4) that

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi

(
β − β̂n

)∣∣∣∣∣∣∣
r

=

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi

∣∣∣∣∣∣∣
r

E
∣∣∣β − β̂n

∣∣∣r
≤ CE

∣∣∣β − β̂n

∣∣∣r ,
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which combining with (3.3) implies that (3.15) holds. In the following, we will show that

lim
n→∞

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)
(
1(ti) − 1(t)

)∣∣∣∣∣∣∣
r

= 0. (3.16)

By A5 and Lemma 2.3, we have

lim
n→∞

n∑
i=1

Wni(t)
∣∣∣1(ti) − 1(t)

∣∣∣ ≤ lim
n→∞

C
hn

n
= 0,

which means that (3.16) holds. And it follows by (3.12) that

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)εi

∣∣∣∣∣∣∣
r

→ 0, as n→∞. (3.17)

Therefore, we can acquire that (3.5) follows from (3.15)-(3.17) immediately. This completes the proof of the
theorem.
Remark 3.1. Comparing with Theorem 3.1 in Wang et al. (2022), we have the following promotions and improvements:

(1) The results of the r-th (1 < r < 2) mean consistency for the estimators β̂n and 1̂n(t) based on φ-mixing errors
are generalized to that based on m-ANA random errors;

(2) In this paper, the condition
∑n

i=1

∣∣∣̃x(n)
i

∣∣∣ /S2
n ≤ C < ∞, which was used in Wang et al. (2022) to prove the r-th

(1 < r < 2) mean consistency, is deleted. In addition, the condition
∑n

i=1

∣∣∣Wni(t)x
(n)
i

∣∣∣ ≤ C < ∞ in Wang et al. (2022)
is weakened to

∣∣∣∑n
i=1 Wni(t)x

(n)
i

∣∣∣ ≤ C < ∞.
Theorem 3.3. In the model (1.1), assume that conditions A1-A6 and A8 hold. Let {εi, i ≥ 1} be a sequence of m-ANA
random variables with Eεi = 0, supi E |εi|

r < ∞ for some r ≥ 2.
(i) If A5 and A6 hold for some α ∈ (0, 1

2 ), then

lim
n→∞

E
∣∣∣β̂n − β

∣∣∣r = 0. (3.18)

(ii) If A5 and A6 hold for some α ∈ (0, 1
4 ), then

lim
n→∞

E
∣∣∣1̂n(t) − 1(t)

∣∣∣r = 0. (3.19)

Proof. At first, we will prove (3.18). For fixed n, we denote x̃(n)
i = x̃i, ỹ(n)

i = ỹi, x(n)
i = xi, y(n)

i = yi and t(n)
i = ti,

i = 1, 2, · · · ,n. By (3.7), it is evident to see that we just need to prove that (3.8), (3.10) and (3.11) hold under
the condition r ≥ 2. We gain by (3.9) and A4 that

lim
n→∞

∣∣∣∣∣∣∣
n∑

i=1

x̃i

1(ti) −
n∑

k=1

Wnk(ti)1(tk)

 /S2
n

∣∣∣∣∣∣∣ = 0. (3.20)

Next, we shall prove that

lim
n→∞

E

∣∣∣∣∣∣∣
n∑

i=1

x̃iεi/S2
n

∣∣∣∣∣∣∣
r

= 0. (3.21)

It follows from A1 and A6 that

|̃xi| ≤ |xi| +

n∑
k=1

Wnk(ti) max
1≤k≤n

|xk| ≤ Cnα,
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and by Lemma 2.2, we can get that

E

∣∣∣∣∣∣∣1n
n∑

i=1

x̃iεi

∣∣∣∣∣∣∣
r

≤ C

 1
n2

n∑
i=1

x̃2
i


r/2

≤ C
( 1

n1−2α

)r/2

→ 0, as n→∞,

(3.22)

which combining with A4 yields that (3.21) holds. Then, we will exhibit that

lim
n→∞

E

∣∣∣∣∣∣∣
n∑

i=1

x̃i

n∑
k=1

Wnk(ti)εk/S2
n

∣∣∣∣∣∣∣
r

= 0. (3.23)

Through A2 and A6, we can get that∣∣∣∣∣∣∣
n∑

i=1

x̃iWnk(ti)

∣∣∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣̃xi

∣∣∣ max
1≤k≤n

n∑
i=1

Wnk(ti) ≤ Cnα,

and by Lemma 2.2, we have

E

∣∣∣∣∣∣∣1n
n∑

i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣
r

≤ C

 1
n2

n∑
k=1

 n∑
i=1

x̃iWnk(ti)


2

r/2

≤ C
( 1

n1−2α

)r/2

→ 0, as n→∞,

(3.24)

which together with A4 yields that (3.23) holds. Therefore, it is easily checked that (3.18) holds.
We now prove (3.19). It follows by (3.14) that we just need to prove that (3.15), (3.16) and (3.17) hold

under the condition r ≥ 2. At first, we will show that

lim
n→∞

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi(β − β̂n)

∣∣∣∣∣∣∣
r

= 0. (3.25)

It follows by A1, A6, (3.6) and the Cr-inequality that

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi

(
β − β̂n

)∣∣∣∣∣∣∣
r

≤ E

 n∑
i=1

Wni(t) max
1≤i≤n

|xi|
∣∣∣β − β̂n

∣∣∣
r

≤ CE
∣∣∣∣nα (β − β̂n

)∣∣∣∣r
≤ C

∣∣∣∣∣∣∣nαS2
n

n∑
i=1

x̃i

1(ti) −
n∑

k=1

Wnk(ti)1(tk)


∣∣∣∣∣∣∣
r

+ CE

∣∣∣∣∣∣∣nαS2
n

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣
r

+ CE

∣∣∣∣∣∣∣nαS2
n

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣
r

,

(3.26)

and by A5, (3.9), (3.22) and (3.24), we have

nα ·

∣∣∣∣∣∣∣1n
n∑

i=1

x̃i

1(ti) −
n∑

k=1

Wnk(ti)1(tk)


∣∣∣∣∣∣∣ ≤ C

hn

n1−2α → 0, as n→∞, (3.27)
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E

∣∣∣∣∣∣∣nα · 1
n

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣
r

≤ C
( 1

n1−4α

)r/2

→ 0, as n→∞, (3.28)

E

∣∣∣∣∣∣∣nα · 1
n

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣
r

≤ C
( 1

n1−4α

)r/2

→ 0, as n→∞, (3.29)

which together with A4 means that (3.25) holds. Then, we will prove that

lim
n→∞

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)εi

∣∣∣∣∣∣∣
r

= 0. (3.30)

It follows by Lemma 2.2 that

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)εi

∣∣∣∣∣∣∣
r

≤ C

 n∑
i=1

W2
ni(t)


r/2

,

which combining with A8 implies that (3.30) holds. According to (3.16) and the above proofs, we can easily
get that (3.19) is established. This completes the proof of the theorem.
Remark 3.2. Comparing with Theorem 3.2 in Wang et al. (2019), we generalize the r-th (r ⩾ 2) mean consistency
for the estimators β̂n and 1̂n(t) based on φ-mixing errors to the case of m-ANA random errors.

The following result is the complete consistency (r > 2) for the estimators β̂n and 1̂n(t).
Theorem 3.4. In the model (1.1), let {εi, i ≥ 1} be a sequence of m-ANA random variables with Eεi = 0, supi E|εi|

r <
∞ for some r > 2. Further we assume that A1-A6 hold.

(i) If A5 and A6 hold for some α ∈ (0, 1
2 −

1
r ), then β̂n converges to β completely, and thus, β̂n → β a.s..

(ii) If A5 and A6 hold for some α ∈ (0, 1
4 −

1
2r ), and

∞∑
n=1

 n∑
i=1

W2
ni(t)


r/2

< ∞, (3.31)

then 1̂n(t) converges to 1(t) completely, and thus, 1̂n(t)→ 1(t) a.s..

Proof. For fixed n, we denote x̃(n)
i = x̃i, ỹ(n)

i = ỹi, x(n)
i = xi, y(n)

i = yi and t(n)
i = ti, i = 1, 2, · · · ,n.

(i) For any ϵ > 0, by Markov’s inequality, (3.22) and (3.24), we have
∞∑

n=1

P


∣∣∣∣∣∣∣1n

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣ > ϵ


≤

∞∑
n=1

E

∣∣∣∣∣∣∣1n
n∑

i=1

x̃iεi

∣∣∣∣∣∣∣
r

/ϵr

≤
C
ϵr

∞∑
n=1

( 1
n1−2α

)r/2

< ∞,

(3.32)

and
∞∑

n=1

P


∣∣∣∣∣∣∣1n

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣ > ϵ


≤

∞∑
n=1

E

∣∣∣∣∣∣∣1n
n∑

i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣
r

/ϵr

≤
C
ϵr

∞∑
n=1

( 1
n1−2α

)r/2

< ∞.

(3.33)
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By (3.32), (3.33) and A4, for any ϵ > 0, we can attain that

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣ /S2
n > ϵ


=

∞∑
n=1

P


∣∣∣∣∣∣∣1n

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣ > S2
n

n
· ϵ


≤ C

∞∑
n=1

P


∣∣∣∣∣∣∣1n

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣ > C3 · ϵ

 < ∞,
(3.34)

and

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣ /S2
n > ϵ


=

∞∑
n=1

P


∣∣∣∣∣∣∣1n

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣ > S2
n

n
· ϵ


≤ C

∞∑
n=1

P


∣∣∣∣∣∣∣1n

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣ > C3 · ϵ

 < ∞.
(3.35)

It follows by (3.6), (3.20), (3.34) and (3.35) that

∞∑
n=1

P
(∣∣∣β − β̂n

∣∣∣ > ϵ)
≤

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

x̃i(1(ti) −
n∑

k=1

Wnk(ti)1(tk))

∣∣∣∣∣∣∣ /S2
n > ϵ/3

 + ∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣ /S2
n > ϵ/3


+

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣ /S2
n > ϵ/3

 < ∞,
which implies that β̂n converges to β completely.

(ii) We will prove that 1̂n(t) converges to 1(t) completely. Similar to the proof of (3.32) and (3.33), we
have by Markov’s inequality, (3.28) and (3.29) that

∞∑
n=1

P


∣∣∣∣∣∣∣nα · 1

n

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣ > ϵ


≤

∞∑
n=1

E

∣∣∣∣∣∣∣nα · 1
n

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣
r

/ϵr

≤
C
ϵr

∞∑
n=1

( 1
n1−4α

)r/2

< ∞,

(3.36)
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and
∞∑

n=1

P


∣∣∣∣∣∣∣nα · 1

n

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣ > ϵ


≤

∞∑
n=1

E

∣∣∣∣∣∣∣nα · 1
n

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣
r

/ϵr

≤
C
ϵr

∞∑
n=1

( 1
n1−4α

)r/2

< ∞.

(3.37)

By (3.36), (3.37) and A4, for any ϵ > 0, it is easily seen that

∞∑
n=1

P


∣∣∣∣∣∣∣nα ·

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣ /S2
n > ϵ


=

∞∑
n=1

P


∣∣∣∣∣∣∣nα · 1

n

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣ > S2
n

n
· ϵ


≤ C

∞∑
n=1

P


∣∣∣∣∣∣∣na
·

1
n

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣ > C3 · ϵ

 < ∞,
(3.38)

and
∞∑

n=1

P


∣∣∣∣∣∣∣nα ·

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣ /S2
n > ϵ


=

∞∑
n=1

P


∣∣∣∣∣∣∣nα · 1

n

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣ > S2
n

n
· ϵ


≤ C

∞∑
n=1

P


∣∣∣∣∣∣∣nα · 1

n

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣ > C3 · ϵ

 < ∞.
(3.39)

Hence, we have by (3.6), (3.27), (3.38), (3.39), A1 and A6 that

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

Wni(t)xi(β − β̂n)

∣∣∣∣∣∣∣ > ϵ


≤

∞∑
n=1

P
(∣∣∣C5nα · (β − β̂n)

∣∣∣ > ϵ)
≤

∞∑
n=1

P


∣∣∣∣∣∣∣C5nα ·

n∑
i=1

x̃i

1(ti) −
n∑

k=1

Wnk(ti)1(tk)


∣∣∣∣∣∣∣ /S2

n > ϵ/3


+

∞∑
n=1

P


∣∣∣∣∣∣∣C5nα ·

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣ /S2
n > ϵ/3


+

∞∑
n=1

P


∣∣∣∣∣∣∣C5nα ·

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣ /S2
n > ϵ/3

 < ∞.

(3.40)

Through Markov’s inequality, Lemma 2.2 and (3.31), it is apparent to check that

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

Wni(t)εi

∣∣∣∣∣∣∣ > ϵ
 ≤ C
ϵr

∞∑
n=1

 n∑
i=1

W2
ni(t)


r/2

< ∞, f or any ϵ > 0. (3.41)
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Meanwhile, by (3.13), (3.16), (3.40) and (3.41), we can acquire that for all n large enough,
∣∣∣∣∣ n∑
i=1

Wni(t)(1(ti) − 1(t))
∣∣∣∣∣ ≤

ϵ/3 and thus
∞∑

n=1

P
(∣∣∣1̂n(t) − 1(t)

∣∣∣ > ϵ)
≤

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

Wni(t)xi(β − β̂n)

∣∣∣∣∣∣∣ > ϵ/3


+

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

Wni(t)εi

∣∣∣∣∣∣∣ > ϵ/3
 < ∞,

which implies that 1̂n(t) converges to 1(t) completely. This completes the proof of the theorem.
Remark 3.3. Comparing with Theorem 3.3 in Wang et al. (2019), we generalize the complete consistency (r > 2) for
the estimators β̂n and 1̂n(t) based on φ-mixing errors to the case of m-ANA random errors.

3.2. Uniform consistency of 1̂n(t)
In this subsection, we will present the uniform r-th (r > 1) mean consistency for the estimator 1̂n(t).

Theorem 3.5. In the model (1.1), assume that the conditions of Theorem 3.2 hold. If

sup
t∈A

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)x
(n)
i

∣∣∣∣∣∣∣ ≤ C < ∞, (3.42)

then
lim
n→∞

sup
t∈A

E
∣∣∣1̂n(t) − 1(t)

∣∣∣r = 0. (3.43)

Proof. For fixed n, we denote x̃(n)
i = x̃i, ỹ(n)

i = ỹi, x(n)
i = xi, y(n)

i = yi, t(n)
i = ti, i = 1, 2, · · · ,n. By (3.13) and the

Cr-inequality, we have

sup
t∈A

E
∣∣∣1̂n(t) − 1(t)

∣∣∣r
= sup

t∈A
E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi(β − β̂n) +
n∑

i=1

Wni(t)(1(ti) − 1(t)) +
n∑

i=1

Wni(t)εi

∣∣∣∣∣∣∣
r

≤ 3r−1 sup
t∈A

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi(β − β̂n)

∣∣∣∣∣∣∣
r

+ 3r−1 sup
t∈A

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)(1(ti) − 1(t))

∣∣∣∣∣∣∣
r

+ 3r−1 sup
t∈A

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)εi

∣∣∣∣∣∣∣
r

.

(3.44)

Firstly, we shall prove that

lim
n→∞

sup
t∈A

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi(β − β̂n)

∣∣∣∣∣∣∣
r

= 0. (3.45)

It follows by (3.42) and (3.3) that

sup
t∈A

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi(β − β̂n)

∣∣∣∣∣∣∣
r

≤ E

sup
t∈A

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi

∣∣∣∣∣∣∣
r ∣∣∣β − β̂n

∣∣∣r
≤ CE|β − β̂n|

r
→ 0, as n→∞,
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which indicates that (3.45) holds. In the following, we will prove

lim
n→∞

sup
t∈A

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)(1(ti) − 1(t))

∣∣∣∣∣∣∣
r

= 0. (3.46)

We have by Lemma 2.3 and A5 that

sup
t∈A

n∑
i=1

Wni(t)|1(ti) − 1(t)| ≤ C
hn

n
→ 0, as n→∞,

which yields that (3.46) holds. It follows by (3.12) that

sup
t∈A

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)εi

∣∣∣∣∣∣∣
r

≤ Cn−δ(r−1)
→ 0, as n→∞. (3.47)

Thus, from all the statements above, (3.43) has been exhibited from (3.45)-(3.47). This completes the proof
of the theorem.
Remark 3.4. Comparing with Theorem 3.2 in Wang et al. (2022), we generalize the uniform r-th (1 < r < 2) mean
consistency for the estimator 1̂n(t) based on φ-mixing errors to the case of m-ANA random errors and we also delete
the condition

∑n
i=1

∣∣∣̃x(n)
i

∣∣∣ /S2
n ≤ C < ∞.

Theorem 3.6. In the model (1.1), assume that the conditions of Theorem 3.3 hold and condition A8 is replaced by A9.
Then

lim
n→∞

sup
t∈A

E
∣∣∣1̂n(t) − 1(t)

∣∣∣r = 0. (3.48)

Proof. For fixed n, we denote x̃(n)
i = x̃i, ỹ(n)

i = ỹi, x(n)
i = xi, y(n)

i = yi and t(n)
i = ti, i = 1, 2, · · · ,n. By (3.44), it is

easily seen that we just need to prove that (3.45), (3.46) and (3.47) hold under the condition r ≥ 2. It follows
by (3.26) that

sup
t∈A

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi(β − β̂n)

∣∣∣∣∣∣∣
r

≤ C

∣∣∣∣∣∣∣nαS2
n

n∑
i=1

x̃i

1(ti) −
n∑

k=1

Wnk(ti)1(tk)


∣∣∣∣∣∣∣
r

+ CE

∣∣∣∣∣∣∣nαS2
n

n∑
i=1

x̃iεi

∣∣∣∣∣∣∣
r

+ CE

∣∣∣∣∣∣∣nαS2
n

n∑
i=1

x̃i

n∑
k=1

Wnk(ti)εk

∣∣∣∣∣∣∣
r

,

which together with (3.27)-(3.29) obtains

lim
n→∞

sup
t∈A

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)xi(β − β̂n)

∣∣∣∣∣∣∣
r

= 0. (3.49)

It follows by Lemma 2.3 that

lim
n→∞

sup
t∈A

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)(1(ti) − 1(t))

∣∣∣∣∣∣∣
r

≤ lim
n→∞

(
Chn

n

)r

= 0. (3.50)

Through A9 and Lemma 2.2, we can learn that

lim
n→∞

sup
t∈A

E

∣∣∣∣∣∣∣
n∑

i=1

Wni(t)εi

∣∣∣∣∣∣∣
r

≤ C lim
n→∞

sup
t∈A

 n∑
i=1

W2
ni(t)


r/2

= 0. (3.51)

Thus, (3.48) follows by (3.49)-(3.51) immediately. This completes the proof of the theorem.
Remark 3.5. Comparing with Theorem 3.4 in Wang et al. (2019), we generalize the uniform r-th (r ⩾ 2) mean
consistency for the estimator 1̂n(t) based on φ-mixing errors to the case of m-ANA random errors.
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4. Numerical simulation

In this section, we are going to do a numerical simulation to investigate the numerical performance of
the consistency for the least squares estimator β̂n and the nearest neighbor weight function estimator 1̂n(t)
based on m-ANA samples. To start with, it is necessary for us to generate the data that we need to use. For
any n ≥ 3 and m ≥ 1, assume (e1, e2, · · · , en+m) ∼ Nn+m(0,Σ), where 0 is a zero vector and

Σ =



1 + 1
n+m −θ 0 · · · 0 0 0
−θ 1 + 2

n+m −θ · · · 0 0 0
0 −θ 1 + 3

n+m · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 + n+m−2

n+m −θ 0
0 0 0 · · · −θ 1 + n+m−1

n+m −θ
0 0 0 · · · 0 −θ 1 + 1


(n+m)×(n+m)

,

where 0 < θ < 1. It is evident that (e1, e2, · · · , en+m) is a NA vector for each n ≥ 3 and m ≥ 1 with finite
moment of any order in accordance with Joag-Dev and Proschan (1983). For fixed positive integer m and

1 ≤ i ≤ n, let εi =
m∑

k=1
ei+k−1. And we can prove that {εi, 1 ≤ i ≤ n} is a sequence of m-ANA random variables.

Furthermore, let us recall the concept of the nearest neighbor weight function estimator as follows. Put
A = [0, 1] and t(n)

i =
i
n , x(n)

i = (−1)i i
n , 1 ≤ i ≤ n. For any t ∈ A, we rewrite

|t(n)
1 − t|, |t(n)

2 − t|, · · · , |t(n)
n − t|

as follows:
|t(n)

R1(t) − t| ≤ |t(n)
R2(t) − t| ≤ · · · ≤ |t(n)

Rn(t) − t|,

if |t(n)
i − t| = |t(n)

j − t|, then |t(n)
i − t| is permuted before |t(n)

j − t|when i < j.
Let 1 ≤ kn ≤ n, the nearest neighbor weight functions are defined as follows:

W̃ni(t) =

 1
kn
, if |t(n)

i − t| ≤ |t(n)
Rkn (t) − t|,

0, otherwise.

Let kn = ⌊n0.8
⌋, hn = ⌊n0.4

⌋, m = 10 and θ = 0.5. It can be simply proved that all the conditions of the
theorems in our paper will be satisfied as long as we choose α > 0 sufficiently small.

Next, we will consider the simulation for the difference between the estimator β̂n and the parameter β.
Taking the sample sizes n as n = 200, 400, 900, 1600 respectively, we compute β̂n − β with β = 1.5, 2.5 and
3.5 under the condition of 1(t) = t6 sin(3t) + ln(t − cos t + 6) with 1000 replications and obtain the boxplots
of β̂n − β in Figures 1-3 by using R software.

Figures 1, 2 and 3 are the boxplots of β̂n − β with β = 1.5, 2.5 and 3.5 respectively. It is evident that
no matter β = 1.5, β = 2.5 or β = 3.5, the values of β̂n − β fluctuate around zero and the fluctuation ranges
decrease as the sample size n increases.

Then, we will consider the simulation for the difference between the estimator 1̂n(t) and the function
1(t). To reflect the generality of 1(t) selection, we choose 1(t) = t6 sin(3t) + ln(t − cos t + 6) which contains
trigonometric, power and logarithmic functions, and 1(t) = (t5+2t+7)et+sin t which contains trigonometric,
power and exponential functions, respectively. Taking the sample sizes n as n = 200, 400, 900, 1600 and
the points t = 0.3, 0.6, 0.9 respectively, we compute 1̂n(t) − 1(t) with 1(t) = t6 sin(3t) + ln(t − cos t + 6) and
1(t) = (t5 + 2t + 7)et + sin t under the condition of β =2.5 with 1000 replications and obtain the boxplots of
1̂n(t) − 1(t) in Figures 4-9 by using R software.
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Fig 1: Boxplots of β̂n − β with β=1.5 and g(t)=t6sin(3t)+ln(t − cost + 6)
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Fig 2: Boxplots of β̂n − β with β=2.5 and g(t)=t6sin(3t)+ln(t − cost + 6)
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Fig 3: Boxplots of β̂n − β with β=3.5 and g(t)=t6sin(3t)+ln(t − cost + 6)
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Figures 4, 5 and 6 are the boxplots of 1̂n(t)− 1(t) for 1(t) = t6 sin(3t)+ ln(t− cos t+ 6) and Figures 7, 8 and
9 are the boxplots of 1̂n(t) − 1(t) for 1(t) = (t5 + 2t + 7)et + sin t with the points t = 0.3, 0.6, 0.9 respectively.
It is easy to find that no matter 1(t) = t6 sin(3t) + ln(t − cos t + 6) or 1(t) = (t5 + 2t + 7)et + sin t, for the fixed
points t = 0.3, 0.6, 0.9, the values of 1̂n(t)− 1(t) fluctuate around zero and the fluctuation ranges decrease as
the sample size n increases. These simulations verify the validity of our theoretical results.

+

+

+

++

++

+++
+

+

+

Experiments times 1000
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Fig 4: Boxplots of ĝn(t) − g(t) with t=0.3 and g(t)=t6sin(3t)+ln(t − cost + 6)
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Fig 5: Boxplots of ĝn(t) − g(t) with t=0.6 and g(t)=t6sin(3t)+ln(t − cost + 6)
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Fig 6: Boxplots of ĝn(t) − g(t) with t=0.9 and g(t)=t6sin(3t)+ln(t − cost + 6)
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Fig 7: Boxplots of ĝn(t) − g(t) with t=0.3 and g(t)=(t5 + 2t + 7)et+sint
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Fig 8: Boxplots of ĝn(t) − g(t) with t=0.6 and g(t)=(t5 + 2t + 7)et+sint
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Fig 9: Boxplots of ĝn(t) − g(t) with t=0.9 and g(t)=(t5 + 2t + 7)et+sint
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