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Available at: http://www.pmf.ni.ac.rs/filomat

Hyperspaces and function graphs in digital topology

Laurence Boxera

aDepartment of Computer and Information Sciences, Niagara University, Niagara University, NY 14109, USA; and Department of Computer
Science and Engineering, State University of New York at Buffalo

Abstract. We adapt the study of hyperspaces and function spaces from classical topology to digital
topology. We define digital hyperspaces and digital function graphs, and study some of their relationships
and graphical properties.

1. Introduction

Classical topology has a large literature devoted to the study of hyperspaces, in which a topology is
induced on some set of subsets of a given topological space. By the time of the publication of [27], hundreds
of papers had been published on hyperspaces, and many more have appeared subsequently. Typically,
the topology of a hyperspace is induced by using the Hausdorff metric, which essentially measures how
two objects approximate each other with respect to position. The Hausdorff metric can be computed
efficiently [14, 29] and has been used by some students of digital image processing as a crude measure of
whether two images might represent the same real-world object. Other metrics have been developed in
order to compare objects with respect to topological or geometric properties [2, 4, 7, 9, 16, 17]. Variations
on the Hausdorffmetric were introduced in [11, 13, 18, 32]

Classical topology also has a large literature on function spaces, in which the set of functions

YX = { f : X→ Y | f is continuous}

between topological spaces, or some interesting subset of YX, is considered as a topological space whose
topology is determined from those of X and Y; see, e.g., [3, 5, 6, 8, 33].

In the current paper, we develop notions of hyperspaces and function graphs (the latter, an analog of
function spaces) for digital topology. The paper is organized as follows.

• Section 2 reviews basics of digital topology.

• In section 3, we introduce the adjacency that we use to form a hyperspace of digital images.

• Section 4 has elementary observations on the cardinalities of digital hyperspaces.
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• In section 5 we discuss certain digitally continuous functions on hyperspaces. In section 5.3, we
introduce the concept of a function graph as a digital analog of a function space. Classical topology
studies relations between hyperspaces and function spaces, e.g., [5, 6, 8]; in section 5.3 and later in the
paper, we study relations between digital hyperspaces and function graphs.

• In section 6 we study connectedness properties of digital hyperspaces.

• In section 7 we consider various notions of continuous multivalued functions in digital topology and
their relations with digital hyperspaces.

• In section 8 we obtain results concerning cycles and Girth in digital hyperspaces.

• In sections 9 and 10, we study, respectively, dominating sets and diameters of digital hyperspaces.

• We give some concluding remarks in section 11.

2. Preliminaries

Much of this section is quoted or paraphrased from [12, 13].
We use N to indicate the set of natural numbers, Z for the set of integers, and R for the set of real

numbers. We use #X for the number of points in a set X.

2.1. Adjacencies

A digital image is a graph (X, κ), where X is a nonempty subset of Zn for some positive integer n, and
κ is an adjacency relation for the points of X. The cu-adjacencies are commonly used. Let x, y ∈ Zn, x , y,
where we consider these points as n-tuples of integers:

x = (x1, . . . , xn), y = (y1, . . . , yn).

Let u ∈N, 1 ≤ u ≤ n. We say x and y are cu-adjacent if

• There are at most u indices i for which |xi − yi| = 1.

• For all indices j such that |x j − y j| , 1 we have x j = y j.

Often, a cu-adjacency is denoted by the number of points adjacent to a given point inZn using this adjacency.
E.g.,

• In Z1, c1-adjacency is 2-adjacency.

• In Z2, c1-adjacency is 4-adjacency and c2-adjacency is 8-adjacency.

• In Z3, c1-adjacency is 6-adjacency, c2-adjacency is 18-adjacency, and c3-adjacency is 26-adjacency.

We write x↔κ x′, or x↔ x′ when κ is understood, to indicate that x and x′ are κ-adjacent. Similarly, we
write x -κ x′, or x - x′ when κ is understood, to indicate that x and x′ are κ-adjacent or equal.

A sequence P = {yi}
m
i=0 in a digital image (X, κ) is a κ-path from a ∈ X to b ∈ X if a = y0, b = ym, and

yi -κ yi+1 for 0 ≤ i < m.
Y ⊂ X is κ-connected [28], or connected when κ is understood, if for every pair of points a, b ∈ Y there

exists a κ-path in Y from a to b.
Let N(X, x, κ) be the set

N(X, x, κ) = {y ∈ X | x↔κ y}.
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2.2. Digitally continuous functions
In a metric space, the continuity of f : X → Y is defined to preserve the intuition that if x0 and x1 are

sufficiently close, then f (x0) and f (x1) are close; i.e., “closeness,” and therefore connectivity, are preserved
by a continuous function. Digital continuity is defined to preserve connectedness, as at Definition 2.1 below.
By using adjacency as our standard of “closeness,” we get Theorem 2.2 below.

Definition 2.1. [12] (generalizing a definition of [28]) Let (X, κ) and (Y, λ) be digital images. A function
f : X→ Y is (κ, λ)-continuous if for every κ-connected A ⊂ X we have that f (A) is a λ-connected subset of Y.

If Y ⊂ X, we use the abbreviation κ-continuous for (κ, κ)-continuous.
When the adjacency relations are understood, we will simply say that f is continuous. Continuity can be

expressed in terms of adjacency of points:

Theorem 2.2. [12, 28] A function f : X→ Y is continuous if and only if x↔ x′ in X implies f (x) - f (x′).

See also [19, 20], where similar notions are referred to as immersions, gradually varied operators, and
gradually varied mappings.

Proposition 2.3. [12] If f : (X, κ) → (Y, λ) and 1 : (Y, λ) → (W, µ) are continuous maps between digital images,
then 1 ◦ f : X→W is (κ, µ)-continuous.

Remark 2.4. Notice P is a κ-path if and only if there is a (c1, κ)-continuous function p : [0,n]Z → X such that
p([0,n]Z) = P. It is therefore common to call such a function a κ-path.

To express the idea of following one path and then another, the product or concatenation of paths is
defined as follows.

Definition 2.5. [24] Let p1 : [0,m]Z → X and p2 : [0,n]Z → X be κ-paths such that p1(m) = p2(0). The product
or concatenation of these paths is the function p1 · p2 : [0,m + n]Z → X given by

(p1 · p2)(t) =
{

p1(t) if 0 ≤ t ≤ m;
p2(t −m) if m ≤ t ≤ m + n.

Lemma 2.6. [10] The concatenation of paths is associative, i.e.,

(p1 · p2) · p3 = p1 · (p2 · p3).

Let Y ⊂ X. A κ-continuous function r : X→ Y is a retraction, and Y is a κ-retract of X, if r|Y = idY.
A homotopy between continuous functions may be thought of as a continuous deformation of one of

the functions into the other over a finite time period.

Definition 2.7. ([12]; see also [24]) Let X and Y be digital images. Let f , 1 : X→ Y be (κ, λ)-continuous functions.
Suppose there is a positive integer m and a function F : X × [0,m]Z → Y such that

• for all x ∈ X, F(x, 0) = f (x) and F(x,m) = 1(x);

• for all x ∈ X, the induced function Fx : [0,m]Z → Y defined by

Fx(t) = F(x, t) for all t ∈ [0,m]Z

is (2, λ)−continuous. That is, Fx(t) is a path in Y.

• for all t ∈ [0,m]Z, the induced function Ft : X→ Y defined by

Ft(x) = F(x, t) for all x ∈ X

is (κ, λ)−continuous.
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Then F is a digital (κ, λ)−homotopy between f and 1, and f and 1 are digitally (κ, λ)−homotopic in Y, denoted
f ∼κ,λ 1.

If for some x0 ∈ X and y0 ∈ Y we have F(x0, t) = F(x0, 0) = y0 ∈ Y for all t ∈ [0,m]Z, we say F holds x fixed, F
is a pointed homotopy, and x0 and y0 are basepoints of the homotopy. □

A different notion of digital homotopy has been introduced by [26, 30]. The latter paper calls this strong
homotopy. It is defined as follows.

Definition 2.8. Let X and Y be digital images. Let f , 1 : X→ Y be (κ, λ)-continuous functions. Suppose there is a
positive integer m and a function F : X × [0,m]Z → Y such that

• for all x ∈ X, F(x, 0) = f (x) and F(x,m) = 1(x); and

• if x -κ y in X and t0 -c1 t1 in [0,m]Z, then F(x, t0) -λ F(y, t1) in Y.

Then F is a strong homotopy between f and 1, and f and 1 are strongly (κ, λ)-homotopic in Y.
If for some x0 ∈ X and y0 ∈ Y we have F(x0, t) = F(x0, 0) = y0 ∈ Y for all t ∈ [0,m]Z, we say F holds x0 fixed, F

is a strong pointed homotopy, and x0 and y0 are basepoints of the homotopy.

If there is a (strong) (pointed) (κ, κ)-homotopy F : X × [0,m]Z → X between the identity function 1X
and a constant function, we say F is a (digital) (strong) (pointed) κ-contraction and X is (strongly) (pointed)
κ-contractible.

If there are continuous f : (X, κ) → (Y, λ) and 1 : (Y, λ) → (X, κ) such that 1 ◦ f is (strongly) (pointed)
homotopic to idX and f ◦ 1 is (strongly) (pointed) homotopic to idY, then (X, κ) and (Y, λ) are (strongly)
(pointed) homotopy equivalent or have the same (strong) (pointed) homotopy type.

If r : X → X is a κ-retraction of X to Y ⊂ X that is (strongly) homotopic to idX, then r is a (strong in the
sense of digital homotopy) deformation retraction. If a (strong in the sense of digital homotopy) deformation
retraction of X to Y ⊂ X holds fixed every point of Y, then r is a strong (in the sense of deformation theory)
(strong in the sense of digital homotopy) deformation retraction.

If f : (X, κ) → (Y, λ) is a continuous bijection such that f−1 : (Y, λ) → (X, κ) is continuous, then f is an
isomorphism (called homeomorphism in [10]) and (X, κ) and (Y, λ) are isomorphic.

3. Hyperspaces

The book [27] is a good source for much of the material discussed in this section that is taken from
classical topology.

In classical topology, given a topological space X, we denote by 2X the set or hyperspace of nonempty
compact subsets of X. If X is a metric space with metric d, 2X becomes a metric space with the Hausdorff
metric, or some other metric, based on d.

Given a digital image (X, κ), we seek a somewhat parallel construction of a graph based on finite subsets
of X. We let

2X = {Y | ∅ , Y ⊂ X, #Y < ∞}.

We define the κ′ adjacency for 2X as follows.

Definition 3.1. Let {A,B} ⊂ 2X, A , B. Then A↔κ′ B if and only if given a ∈ A and b ∈ B, there exist a0 ∈ A and
b0 ∈ B such that a -κ b0 and b -κ a0.

The pair (2X, κ′) is a graph or tolerance space [34], the hyperspace of (X, κ). Note we do not call this hyperspace
a digital image, since 2X is not a subset of Zn. However, since digital topology’s notions of continuous
functions are defined in terms of graph adjacency, or, alternately, graph connectedness, they are naturally
applied to this construction.
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In classical topology, it is common to denote by C(X) the subset of 2X consisting of connected members
of 2X. Since the notation C(X, κ) is established in the literature of digital topology as the set of κ-continuous
self maps on X, we use the notation

K(X, κ′) = ({A ∈ 2X
| A is κ-connected}, κ′).

We will use the abbreviation K(X) when κ is understood.

Example 3.2. K([a, b]Z, c′1) and ({(x, y) ∈ Z2
| a ≤ x ≤ y ≤ b}, c2) are isomorphic graphs.

Proof. Let X = K([a, b]Z, c′1), Y = {(x, y) ∈ Z2
| a ≤ x ≤ y ≤ b}. Consider the function F : X → Y given by

F([m,n]Z) = (m,n). It is elementary to show that F is a (c′1, c2)-isomorphism.

4. Cardinality

Remark 4.1. Let (X, κ) be a digital image such that #X = n. Then #2X = 2n
− 1. This is because for each x ∈ X and

A ∈ 2X, either x ∈ A or x < A. This yields 2n possible combinations of pixels, but we exclude the empty set.

However, the following example shows that K(X) may be considerably smaller than 2X.

Example 4.2. #K([1,n]Z, c′1) = n(n + 1)/2.

Proof. For i ∈ [1,n]Z, the members of K([1,n]Z, c′1) that have i as their largest member are those of {[ j, i]Z}ij=1}.
Since there are i digital intervals with largest member i in K([1,n]Z, c′1),

#K([1,n]Z, c′1) =
n∑

i=1

i = n(n + 1)/2.

5. Maps on digital hyperspaces

In this section, we study maps induced on hyperspaces by continuous maps between digital images.

5.1. Induced maps
Given a continuous map f : (X, κ) → (Y, λ), we show below that f induces a (κ′, λ′)-continuous map

f∗ : 2X
→ 2Y such that f∗|K(X) : K(X) → K(Y) is also (κ′, λ′)-continuous. In the following, we will use the

notation f∗ to abbreviate f∗|K(X).

Theorem 5.1. Let (X, κ) and (Y, λ) be digital images and let f : X → Y. Then f is (κ, λ)-continuous if and only if
the induced functions f∗ : 2X

→ 2Y and f∗ : K(X)→ K(Y) defined by f∗(A) = f (A) are (κ′, λ′)-continuous.

Proof. Since a digitally continuous function preserves adjacency and connectivity, the same argument works
for both of the induced functions.

Suppose f is continuous. Let A,B ∈ 2X such that A↔κ′ B. Let x ∈ A. There exists y ∈ B such that x -κ y.
By the continuity of f we have f (x) -λ f (y). Similarly, for b ∈ B, there exists a ∈ A such that a -κ b and
f (a) -λ f (b). Therefore, f∗(A) = f (A) -λ′ f (B) = f∗(B). Thus f∗ is (κ′, λ′)-continuous.

Suppose f∗ is (κ′, λ′)-continuous. Let x, y ∈ X such that x↔κ y. Then {x} ↔κ′ {y}, so

{ f (x)} = f∗({x}) -λ′ f∗({y}) = { f (y)}.

Therefore, f (x) -λ f (y). Thus, f is (κ, λ)-continuous.

We have the following as an immediate consequence of Theorem 5.1.
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Corollary 5.2. Let (X, κ) and (Y, λ) be digital images and let f : X→ Y. Then the following are equivalent.

• f is a (κ, λ)-isomorphism;

• the induced function f∗ : 2X
→ 2Y is a (κ′, λ′)-isomorphism; and

• the induced function f∗ : K(X)→ K(Y) is a (κ′, λ′)-isomorphism

Proposition 5.3. Given continuous functions f : (X, κ)→ (Y, λ) and 1 : (Y, λ)→ (W, µ), we have (1 ◦ f )∗ = 1∗ ◦ f∗.

Proof. The assertion follows from the observation that A ∈ 2X implies

(1 ◦ f )∗(A) = (1 ◦ f )(A) = 1( f (A)) = 1∗( f∗(A)) = (1∗ ◦ f∗)(A).

The following is elementary.

Lemma 5.4. Let (X, κ) be a digital image. Then (idX)∗ = id(2X ,κ′) and (idX)∗ = id(K(X),κ′).

Theorem 5.5. The hyperspace construction yields covariant functors F,F′ from the category of digital images and
continuous functions to the category of graphs and continuous functions (respectively, to the category of connected
graphs and continuous functions), in which F(X, κ) = (2X, κ′), F′(X, κ) = K(X, κ′) and for f : (X, κ) → (Y, λ) we
have F( f ) = f∗, F′( f ) = f∗.

Proof. This follows from Proposition 5.3 and Lemma 5.4.

Not every continuous function on the hyperspace of a digital image is induced by a continuous map
between digital images, as shown by the following.

Example 5.6. Let X = [0, 1]Z. Let F : K(X, c′1) → K(X, c′1) be the function given by F(A) = X for all A ∈ K(X). F
is constant, hence continuous, and is not induced by any f : X → X since for each such function, e.g., f (0) ∈ X =
{ 0, 1 } = f∗(0), hence f∗({ 0 }) , F(0).

5.2. Retraction and homotopy
Theorem 5.7. Let (X, κ) and (Y, κ) be digital images and let r : X → Y be a κ-retraction. Then the induced maps
r∗ : 2X

→ 2Y and r∗ : K(X)→ K(Y) are κ′-retractions.

Proof. It follows from Theorem 5.1 that each version of r∗ is κ′-continuous. It is clear that r∗|2Y = id2Y ,
r∗(2X) = 2Y, r∗(K(X)) = K(Y), r∗|K(Y) = idK(Y). The assertion follows.

Theorem 5.8. Let f and 1 be (strongly) (pointed) homotopic maps from (X, κ) to (Y, λ). Then f∗ and 1∗ are (strongly)
(pointed) homotopic maps from (2X, κ′) to (2Y, λ′), and from K(X) to K(Y). In the case of (strongly) pointed homotopy,
if x0 ∈ X is held fixed by the (strong) pointed homotopy from f to 1, then {x0} is held fixed by the (strong) pointed
homotopy from f∗ to 1∗.

Proof. We give a proof for homotopy using 2X and 2Y. The proofs for strong or pointed homotopies and for
K(X) and K(Y) are similar.

By hypothesis, there is a function H : X × [0,n]Z → Y for some n ∈N such that

• H(x, 0) = f (x) and H(x,n) = 1(x) for all x ∈ X.

• For all x ∈ X, the induced function Hx : [0,n]Z → Y defined by Hx(t) = H(x, t) is (c1, λ)-continuous.

• For all t ∈ [0,n]Z, the induced function Ht : X→ Y defined by Ht(x) = H(x, t) is (κ, λ)-continuous.

Let H∗ : 2X
× [0,n]Z → 2Y be the function H∗(A, t) = Ht(A).
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• We have

H∗(A, 0) = H0(A) = f (A) = f∗(A).

Similarly, H∗(A,n) = 1∗(A).

• For all A ∈ 2X, consider the induced function H∗,A : [0,n]Z → 2Y defined by

H∗,A(t) = H(A, t) =
⋃
x∈A

{Hx(t)}.

Since 0 ≤ t < n implies Hx(t) -λ Hx(t + 1), it follows that H∗,A(t) -λ′ H∗,A(t + 1). Thus the induced
function H∗,A is (c1, λ′)-continuous.

• For all t ∈ [0,n]Z, consider the induced function H∗,t : 2X
→ 2Y given by

H∗,t(A) = H(A, t) =
⋃
x∈A

{Ht(x)}.

If A↔κ′ B then for each a ∈ A there exists b ∈ B such that a -κ b, and for each β ∈ B there exists α ∈ A
such that α -κ β. Therefore, Ht(a) -λ Ht(b) and Ht(α) -λ Ht(β). It follows that H∗,t(A) -λ′ H∗,t(B).
Thus H∗,t is (κ′, λ′)-continuous.

The above shows that H∗ is a homotopy from f∗ to 1∗.

Theorem 5.9. Let (X, κ) and (Y, λ) be digital images.
1. If (X, κ) and (Y, λ) have the same (pointed) homotopy type, then (2X, κ′) and (2Y, λ′) have the same (pointed)

homotopy type; as do K(X, κ′) and K(Y, λ′).
2. If (X, κ) and (Y, λ) have the same strong (pointed) homotopy type, then (2X, κ′) and (2Y, λ′) have the same

strong (pointed) homotopy type; as do K(X, κ′) and K(Y, λ′).
3. Let (X, κ) be (pointed) contractible (respectively, (pointed) strongly contractible). Then (2X, κ′) is contractible

(respectively, (pointed) strongly contractible); as is K(X, κ′).

Proof. We give proofs for the full hyperspaces 2X and 2Y; the proofs for K(X, κ′) and K(Y, λ′) are similar.

1. By hypothesis, there are continuous (pointed) maps f : (X, κ) → (Y, λ) and 1 : (Y, λ) → (X, κ) (with
basepoints x0 ∈ X, y0 ∈ Y) such that 1 ◦ f ∼(κ,κ) idX (holding x0 fixed) and f ◦ 1 ∼(λ,λ) idY (holding y0
fixed). By Proposition 5.3 and Theorem 5.8,

1∗ ◦ f∗ = (1 ◦ f )∗ ∼(κ′,κ′) (idX)∗ = id2X (holding {x0} fixed)

and

f∗ ◦ 1∗ = ( f ◦ 1)∗ ∼(λ′,λ′) (idY)∗ = id2Y (holding {y0} fixed).

Therefore, (2X, κ′) and (2Y, λ′) have the same homotopy type.
2. The proof for strong homotopy type is similar.
3. Since (pointed) contractible (respectively, (pointed) strongly contractible) means having the same

(pointed) homotopy type (respectively, (pointed) strong homotopy type) as a digital image of a single
point, the assertions concerning (pointed) contractibility (respectively, (pointed) strong contractibility)
follow from the above.

Theorem 5.10. Let H : (X, κ) × [0,n]Z → (X, κ) be a (strong, in the sense of strong homotopy) (strong, in the
sense of retraction theory) deformation retraction of X to a subset Y, i.e., a (strong) homotopy between the induced
maps H0,Hn : X → X such that H0 = idX and Hn is a retraction (that holds fixed every point of Y). Then
H∗ : (2X, κ′) × [0,n]Z → (2X, κ′) (respectively, H∗ : (K(X), κ′) × [0,n]Z → (K(X), κ′)) is a (strong, in the sense of
strong homotopy) (strong, in the sense of retraction theory) deformation retraction of (2X, κ′) to (2Y, κ′) (respectively,
of (K(X), κ′) to (K(X), κ′)).

Proof. These assertions follow from Theorems 5.9 and 5.7.
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5.3. Function graphs
In this section, we explore an analog of function spaces for digital images.

Definition 5.11. Let (X, κ) and (Y, λ) be digital images. Consider the set (Y, λ)(X,κ), or YX when κ and λ can be
assumed, defined by

(Y, λ)(X,κ) = { f : X→ Y | f is (κ, λ)-continuous}.

We say f , 1 ∈ YX are Φ(κ, λ)-adjacent, or Φ-adjacent when κ and λ can be assumed, if for all x ∈ X we have
f (x) -λ 1(x).

A more restrictive adjacency for YX, which we denote as Ψ(κ, λ), is proposed in [26]. We have the
following.

Definition 5.12. [26] Let f , 1 ∈ YX. Then f ↔Ψ(κ,λ) 1 if given x0 -κ x1 in X, f (x0) -λ 1(x1) in Y.

Remark 5.13. It is clear that f ↔Ψ(κ,λ) 1 implies f ↔Φ(κ,λ) 1. The converse is not generally valid. For example,
consider the functions f , 1 : [0, 2]Z → [0, 2]Z given by f (x) = x, 1(x) = min{2, x + 1}. It is easily seen that
f , 1 ∈ C([0, 2]Z, c1) and f ↔Φ(c1,c1) 1. However, since 0 ↔c1 1 and f (0) = 0 ̸↔c1 2 = 1(1), f and 1 are not
Ψ(c1, c1)-adjacent.

We show below, at Example 5.17, an important difference between Φ(c1, c1) andΨ(c1, c1).

Lemma 5.14. Let (X, κ) and (Y, λ) be digital images. Let f , 1 ∈ YX. Then f and 1 are homotopic in one step if and
only if f -Φ 1.

Proof. Suppose f and 1 are homotopic in one step. Then there exists H : X × [0, 1]Z → Y such that for all
x ∈ X, H(x, 0) = f (x) and H(x, 1) = 1(x), and the induced function Hx : [0, 1]Z → Y given by Hx(t) = H(x, t) is
(c1, λ) continuous. The latter implies

f (x) = H(x, 0) -λ H(x, 1) = 1(x)

for all x ∈ X, so f -Φ 1.
Suppose f -Φ 1. Then one sees easily that the function H : X × [0, 1]Z → Y defined by

H(x, 0) = f (x), H(x, 1) = 1(x),

is a homotopy in one step from f to 1.

The following was suggested by an anonymous reviewer.

Theorem 5.15. Let (X, κ) and (Y, λ) be digital images. Let f , 1 ∈ YX. Then f and 1 are homotopic if and only if f
and 1 belong to the same component of (YX,Φ).

Proof. Since both homotopy between functions and being connected by a path are transitive relations, the
assertion follows from Lemma 5.14.

Let (Sn, κ) be any cyclic graph of n > 4 points, with point set Sn = {xi}
n−1
i=0 such that xi ↔κ x j if and only if

|i − j| ∈ {1,n − 1}. Let r j ∈ C(Sn, κ) be the rotation r j(xi) = x(i+ j) mod n. We have the following.

Theorem 5.16. [15] If f ∈ C(Sn, κ) such that f and idSn are κ-homotopic, then f = r j for some j, 0 ≤ j < n.

We do not get a similar outcome if we substituteΨ for Φ in Theorem 5.15, as shown in the following.

Example 5.17. Let (Sn, κ) be any cyclic graph of n > 4 points. Then all the rotations r j are homotopic. However, no
distinct r j and rk belong to the same component of (SSn

n ,Ψ).
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Proof. Without loss of generality, k = j + m < n for some m, 0 < m < n − j. Then H : Sn × [0,m]Z → Sn,
defined by H(xi, t) = r j+t(xi), is a homotopy from r j to rk.

It follows from Theorem 5.16 that every induced map Ht of H for t ∈ [0,m]Z, and in particular, H1, is a
rotation.

• For 1 ≤ m < n − 2, r j(x0) = x j and rk(x1) = x( j+m+1) mod n are not κ-adjacent.

• For m = n − 2, we cannot follow the pattern used above, since

rk(x1) = r j+n−2(x1) = r j−2 mod n(x1) = x j−1 mod n

is adjacent to r j(x0). However,

rk(x0) = r j+n−2(x0) = r j−2 mod n(x0) = x j−2 mod n

is neither adjacent nor equal to r j(x0).

• For m = n − 1 we must have j = 0. Therefore, r j(x1) = x1 and rk(x0) = xn−1 are not κ-adjacent.

In every case, r j and rk are notΨ-adjacent. This completes the proof.

Theorem 5.18. Let (X, κ) and (Y, λ) be digital images. Let W be a λ-retract of Y. Then (WX,Φ(κ, λ)) is a retract of
(YX,Φ(κ, λ)).

Proof. Let r : Y → W be a λ-retraction. Then for every (κ, λ)-continuous f : X → Y, r ◦ f : X → W is
continuous by Proposition 2.3. Further, if f (X) ⊂W then r ◦ f = f . The assertion follows.

We present results that link the topics of hyperspaces and function graphs.

Theorem 5.19. Let f ↔Φ(κ,λ) 1 in YX. Then for A ∈ 2X, f (A) -λ′ 1(A).

Proof. Let y f ∈ f (A). Let x f ∈ f−1(y f ). Then y f = f (x f ) -λ 1(x f ). Similarly, given y1 ∈ 1(A), there exists
x1 ∈ 1−1(y1) such that f (x1) -λ 1(x1) = y1. It follows that f (A) -λ′ 1(A).

Theorem 5.20. Let (W, κ), (X, λ), and (Y, µ) be digital images. Suppose f , 1 ∈ YX are (λ, µ)-continuous. If f and 1
are

• (strongly) (λ, µ)-homotopic;

• (strongly) pointed (λ, µ)-homotopic with x0 held fixed,

then the induced maps f∗, 1∗ : (XW ,Φ(κ, λ))→ (YW ,Φ(κ, µ)), defined for all F ∈ XW by

f∗(F) = f ◦ F, 1∗(F) = 1 ◦ F,

are (Φ(κ, λ),Φ(κ, µ))-continuous and, respectively, f∗ and 1∗ are,

• (strongly) (Φ(κ, λ),Φ(κ, µ))-homotopic;

• (strongly) pointed (Φ(κ, λ),Φ(κ, µ))-homotopic with the constant function x̂0 held fixed.

Proof. Let F,G ∈ XW be (κ, λ)-continuous with F↔Φ(κ,λ) G and let w ∈W. Then

F(w) -λ G(w), so f∗(F)(w) = f ◦ F(w) -µ f ◦ G(w) = f∗(G)(w),

so f∗(F) -Φ(κ,µ) f∗(G), hence f∗ is continuous. Similarly, 1∗ is continuous.
We proceed with a proof for homotopic maps; the other assertions are proven similarly.
Let H : X × [0,n]Z → Y be a (λ, µ)-homotopy from f to 1. Let H∗ : (XW ,Φ(κ, λ)) × [0,n]Z → (YW ,Φ(κ, µ))

be given by H∗(F, t)(x) = H(F(x), t). We have the following.
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• H∗(F, 0)(x) = H(F(x), 0) = f (F(x)) = f∗(F)(x), so H∗|t=0 = f∗; and H∗(F,n)(x) = H(F(x),n) = 1(F(x)) =
1∗(F)(x), so H∗|t=n = 1∗.

• Given F ∈ XW , the induced function H∗,F : [0,n]Z → YW given by H∗,F(t)(w) = H(F(w), t) satisfies, for
t0 ↔c1 t1 in [0,n]Z,

H∗,F(t0)(w) = H(F(w), t0) -µ H(F(w), t1)(w) = H∗,F(t1)(w),

so H∗,F is (c1,Φ(λ, µ))-continuous.

• Given t ∈ [0,n]Z, the induced function H∗,t : XW
→ YW given by H∗,t(F)(w) = H(F(w), t) satisfies, for

F0 ↔Φ(κ,λ) F1 in XW ,

H∗,t(F0)(w) = H(F0(w), t) -µ H(F1(w), t) = H∗,t(F1)(w).

Therefore, H∗,t is (Φ(κ, λ),Φ(κ, µ))-continuous.

Therefore, H∗ is a homotopy from f∗ to 1∗.

Proposition 5.21. Let (V, κ), (W, λ), (X, µ), (Y, ν) be digital images. Let f : (W, λ)→ (X, µ) and 1 : (X, µ)→ (Y, ν)
be continuous. Consider the induced maps f∗ : WV

→ XV and 1∗ : XW
→ YW . We have (1◦ f )∗ = 1∗◦ f∗ : WV

→ YV.

Proof. Given F : V →W, we have

1∗ ◦ f∗(F) = 1∗( f ◦ F) = 1 ◦ ( f ◦ F) = (1 ◦ f ) ◦ F = (1 ◦ f )∗(F).

The assertion follows.

Corollary 5.22. Let (X, κ) and (Y, λ) be digital images. Suppose (X, κ) and (Y, λ) have the same (strong) (pointed)
homotopy type. Then (XX,Φ(κ, κ)) and (YY,Φ(λ, λ)) have the same (strong) (pointed) homotopy type, respectively.

Proof. We give a proof for “same homotopy type”; the other assertions are established similarly (in the
pointed cases, if x0 ∈ X and y0 ∈ Y are the basepoints of the assumption, then the constant maps x̂0 ∈ XX

and ŷ0 ∈ YY are the basepoints of the conclusion).
If (X, κ) and (Y, λ) have the same homotopy type, then there are continuous functions f : X → Y and

1 : Y→ X such that 1 ◦ f ∼κ,κ idX and f ◦ 1 ∼λ,λ idY. By Theorem 5.20 and Proposition 5.21, we have

(1 ◦ f )∗ ∼Φ(κ,κ) (idX)∗ = idXX

and similarly,

( f ◦ 1)∗ ∼Φ(λ,λ) (idY)∗ = idYY .

Thus, (XX,Φ(κ, κ)) and (YY,Φ(λ, λ)) have the same homotopy type.

Corollary 5.23. Let (X, κ) be a digital image. Suppose (X, κ) is

• (strongly) contractible;

• (strongly) pointed contractible with basepoint x0.

Then, respectively, (XX,Φ(κ, κ)) is

• (strongly) contractible;

• (strongly) pointed contractible with the constant function x̂0 as basepoint.

Proof. We give a proof for “contractible”; the other assertions follow similarly.
Since “contractible” means homotopy equivalent to a digital image with a single point, the assertion

follows from Corollary 5.22.
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6. Connectedness in digital hyperspaces

We have the following.

Proposition 6.1. Let (X, κ) be a digital image. Let W be a nonemptyκ′-connected subset of K(X). Then W′ =
⋃

Y∈W Y
is a κ-connected subset of X.

Proof. Let x0, x1 ∈W′. There exist Yi ∈W such that xi ∈ Yi ∈ K(X, κ′). Since W is κ′-connected, there exists a
κ′-path {Wi}

n
i=0 ⊂W from Y0 to Y1, i.e., W0 = Y0, Wi ↔κ′ Wi+1, and Wn = Y1.

By Definition 3.1, there exist pi ∈ Wi, qi+1 ∈ Wi+i such that pi -κ qi+1. As each Wi is κ-connected, there
exist κ-paths P0 ⊂ Y0 =W0 from x0 to p0; Pi ⊂Wi from qi to pi+1, 1 ≤ i < n; and Pn ⊂Wn = Y1 from pn to x1.

Then
⋃n

i=0 Pi is a κ-path in W′ from x0 to x1. It follows that W′ is κ-connected.

Proposition 6.2. Let C0 and C1 be distinct components of (X, κ). Let

Ai ∈ K(Ci, κ
′) for i ∈ {0, 1}. (1)

Then A0 and A1 are points of distinct components of K(X, κ′).

Proof. Were A0 and A1 in the same component of K(X, κ′), then there would exist a path {B j}
n
j=0 ⊂ K(X, κ′)

such that A0 = B0,

B j ↔κ′ B j+1 for 1 ≤ j < n, (2)

and Bn = A1. By (1), there is a smallest k ∈ N such that 0 ≤ k < n, Bk ⊂ C0, and Bk+1 1 C0. But by (2),
Bk ∪ Bk+1 is κ-connected and therefore must be a subset of C0, contrary to our choice of k. It follows that A0
and A1 are points of distinct components of K(X, κ′).

Proposition 6.3. Let (X, κ) be a finite connected digital image. Then K(X, κ′) is connected.

Proof. Let A ∈ K(X, κ′). We show there is a path in K(X, κ′) from A to X. If A = X, we are done. Otherwise,
since X is connected, there are sequences {xi}

m
i=1 ⊂ X \A and {A j}

m
j=0 such that A = A0, A j+1 = A j ∪ {x j+1}, A j+1

is connected, and Am = X. Therefore, A j ↔κ′ A j+1. Thus {A j}
m
j=0 is a κ′-path in K(X, κ′) from A to X.

Since A was arbitrarily chosen, it follows that K(X, κ′) is connected.

Proposition 6.4. Let D be a component of (X, κ). Then K(D, κ′) is a component of K(X, κ′).

Proof. By Proposition 6.3, K(D, κ′) is connected. The conclusion follows from Proposition 6.2.

Theorem 6.5. Let (X, κ) be a digital image. Then X is κ-connected if and only if K(X, κ′) is κ′-connected.

Proof. Suppose (X, κ) is connected. By Proposition 6.4, K(X, κ′) is κ′-connected.
Conversely, suppose K(X, κ′) is κ′-connected. By Proposition 6.2, (X, κ) must be connected.

Lemma 6.6. Let (X, κ) be a digital image. Let A be a finite member of K(X, κ′). Then there is a path P in K(A, κ′)
from a singleton to A.

Proof. Let x0 ∈ A. By Proposition 6.3, there is a path in K(A, κ′) from { x0 } to A.

Suppose (X, κ) is a connected digital image. We say Y ⊂ X disconnects (X, κ) if X \ Y is not κ-connected.

Theorem 6.7. Let (X, κ) be a connected digital image. Let Y ⊂ X. Let

Y = {B ∈ K(X, κ′) | B ∩ Y , ∅}. (3)

If Y disconnects (X, κ) thenY disconnects K(X, κ′).
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Proof. Suppose Y disconnects (X, κ). Then there are x0, x1 that are in distinct components of X \ Y.
SupposeY fails to disconnect K(X, κ′). Then there exists a κ′-path

P = {B j}
n
j=0 ⊂ K(X, κ′) \ Y (4)

from {x0} to {x1}. By Definition 3.1, there exist y j, z j ∈ B j such that y j -κ z j+1 for j < n. Since B j is connected,
there are κ-paths P0 ⊂ B0 from x0 to y0, P j ⊂ B j from z j to y j, and Pn ⊂ Bn from zn to x1. Then P =

⋃n
j=0 P j is

a κ-path in
⋃n

j=0 B j ⊂ X from x0 to x1. Since Y disconnects X, we must have P ∩ Y , ∅. Hence for some k,
Bk ∩ Y , ∅, contrary to (4). The contradiction establishes thatY disconnects K(X, κ′).

7. Multivalued functions and hyperspaces

In this section, we examine relations between various notions of continuous multivalued functions
between digital images, and hyperspaces of digital images.

Definition 7.1. A multivalued function F : (X, κ)⊸ (Y, λ)

• has strong continuity [31] if for each pair of adjacent x, y ∈ X, every point of F(x) is adjacent or equal to some
point of F(y) and every point of F(y) is adjacent or equal to some point of F(x);

• has weak continuity [31] if for each pair of adjacent x, y ∈ X, F(x) and F(y) are adjacent sets in Y, i.e., there
exist a ∈ F(x), b ∈ F(y) such that a -λ b;

• is connectivity preserving [25] if F(A) ⊂ Y is connected whenever A ⊂ X is connected;

• is continuous [21, 22] if X ⊂ Zn, κ = cu for 1 ≤ u ≤ n, and F is generated by a continuous function
f : S(X, r)→ Y for some positive integer r; where S(X, r) =

⋃
x∈X S({x}, r), where for x = (x1, . . . , xn), S({x}, r)

is the set of all points (y1, . . . , yn) such that for each index i we have yi = xi + ki/r for some integer ki such
that 0 ≤ ki < r; S(X, r) inherits cu in the sense that (y1, . . . , yn) -cu (a1, . . . , an) in S(X, r) if for at most u
indices i, |yi − ai| = 1/r and for all other indices j, y j = a j; and “F is generated by f ” means for all x ∈ X,
F(x) =

⋃
y∈S({x},r){ f (y)}.

We have the following.

Theorem 7.2. Let F : (X, κ) ⊸ (Y, λ) be a strongly continuous multifunction between digital images. Then the
function F∗ : (2X, κ′)→ (2Y, λ′) defined by F∗(A) = F(A) is continuous.

Proof. Let A0 ↔κ′ A1 in 2X. We must show that F(A0) -λ′ F(A1) in 2Y.
Let x ∈ A0, y ∈ A1 such that x -κ y. By Definition 7.1, for every p ∈ F(x) there exists q ∈ F(y) such that

p -λ q. Similarly, given u ∈ A1, v ∈ A0 such that u ↔κ v, for every r ∈ F(u) there exists s ∈ F(v) such that
r -λ s. The assertion follows.

The following shows that in substituting weak continuity, continuity, or connectivity-preserving for
strong continuity, we fail to obtain a result analogous to Theorem 7.2.

Example 7.3. Let F : ([0, 1]Z, c1) ⊸ ([0, 2]Z, c1) be defined by F(0) = {0}, F(1) = {1, 2}. Then F has weak c1-
continuity, is c1-continuous, and is c1-connectivity-preserving, but since 2 ∈ F(1) has no c1-neighbor in F(0), the
induced function F∗ : (2X, c′1)→ (2Y, c′1) is not (c′1, c

′

1)-continuous.



L. Boxer / Filomat 37:7 (2023), 2279–2293 2291

8. Cycles and Girth

The reader is reminded that:

• a point in 2X is a nonempty subset of X;

• a cycle in X is a closed path of at least 3 distinct points in which no node repeats, but in which a point
x can be adjacent to points distinct from the predecessor and successor of x in the path (the cycle does
not need to be chordless).

Proposition 8.1. Let (X, κ) be a digital image. Then K(X, κ′) has a 3-cycle if and only if (X, κ) has a non-isolated
point.

Proof. It is elementary that if the points of (X, κ) are all isolated, then K(X, κ′) has no cycle.
Suppose x ∈ X is not isolated in (X, κ). Then there exists y ∈ X such that x↔κ y. Then

{
{x}, {x, y}, {y}

}
is

a 3-cycle in K(X, κ′).

The girth of a graph (X, κ) is variously described in the literature as the length of a shortest or of a
longest [1] cycle in (X, κ). We may distinguish these concepts as girth and Girth, respectively. In light of
Proposition 8.1, the Girth is more interesting, so in the following we focus on Girth.

Example 8.2. If (X, κ) is a digital image and x ∈ X such that N(X, x, κ) has distinct points u and v that are not
κ-adjacent, then K(X, κ′) has Girth of at least 6.

Proof. By hypothesis, there exist distinct u, v ∈ N(X, x, κ). Then by Definition 3.1, K(X, κ′) has a 6-cycle

{u}, {u, x}, {u, x, v}, {x, v}, {v}, {x}.

We have the following.

Example 8.3. The Girth of (2[1,4]Z , c′1) is 15, which is equal to #(2[1,4]Z , c′1). I.e., (2[1,4]Z , c′1) has a cycle containing all
members of (2[1,4]Z , c′1).

Proof. It is easy to see that the following sequence of the 15 distinct members of (2[1,4]Z , c′1) is a c′1-cycle.

{1, 2}, {1, 2, 3}, {1, 3}, {1, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3, 4}, {2, 3, 4}, {2, 3},

{2, 4}, {3, 4}, {4}, {3}, {2}, {1}

9. Dominating set

A subset D of a graph (X, κ) is a dominating set for, or dominates, (X, κ), if given x ∈ X there exists d ∈ D
such that d -κ x.

Theorem 9.1. Let (X, κ) be a digital image and let D ⊂ X. Let

D = {A ∈ 2X
| A ∩D , ∅}

Then D dominates (X, κ) if and only ifD dominates (2X, κ′).

Proof. Suppose D dominates (X, κ). Let x ∈ A ∈ 2X. There exists y ∈ D such that x -κ y. It follows from
Definition 3.1 that

A′ = A ∪ {y} -κ′ A.

Since A is arbitrary and A′ ∈ D, it follows thatD dominates (2X, κ′).
SupposeD dominates (2X, κ′). Let x ∈ X. Then there exists A ∈ D such that A -κ′ {x}. Therefore, for all

a ∈ A we have a -κ x. Since there exists d ∈ A ∩D, d -κ x. Thus, D dominates X.
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10. Diameter

Definition 10.1. [23] Let (X, κ) be a connected graph. The shortest path metric for (X, κ) is

dℓ(x, y) = min{len1th(P) | P is a κ-path in X from x to y}, for x, y ∈ X.

Definition 10.2. The diameter of a finite connected graph (X, κ) is

diam(X, κ) = max{dℓ(x, y) | x, y ∈ X}.

Definition 10.3. [1] Let (X, κ) be a connected digital image. For x ∈ X, the associated number e(x) of x is

e(x) = max{dℓ(x, y) | y ∈ X}.

A center of (X, κ) is a point x0 ∈ X such that

e(x0) = min{e(x) | x ∈ X}.

The associated number of the center is the radius of (X, κ).

We have the following.

Theorem 10.4. Let (X, κ) be a finite connected digital image with radius r. Let #X = n. Then diam(K(X, κ′)) <
2(n + r − 1).

Proof. Let x0 be a center of (X, κ). Let A0,A1 ∈ K(X, κ′). Let y0 ∈ A0, y1 ∈ A1. By assumption, there are paths
Pi of length at most r from x0 to yi. Thus, P0∪P1 is a κ-path in X of length at most 2r from y0 to y1. It follows
from Definition 3.1 that P = {{p} | p ∈ P0 ∪ P1} is a κ′-path in K(X) of length at most 2r from {y0} to {y1}.

Let Q0 = {y0}. We argue inductively as follows. Suppose we have Qk ∈ K(X, κ′) such that Qk ⊂ A0.
If Qk , A0, then since A0 is connected, there exists q ∈ A0 \ Qk such that for some q′ ∈ Qk, q ↔κ q′. By
Definition 3.1, we have

Qk+1 = Qk ∪ {q′} ↔κ′ Qk.

Since Q#A0−1 = A0, the set P0 = {Q j}
#A0−1
j=0 is a path in K(X, κ′) of length #A0 − 1 from {y0} to A0; equivalently,

from A0 to {y0}.
Similarly, we can construct a path P1 in K(X, κ′) of length #A1 − 1 from {y1} to A1. Therefore, P0 ∪P∪P1

is a path in K(X, κ′) of length at most

#A0 − 1 + 2r + #A1 − 1 ≤ 2(n + r − 1)

from A0 to A1. Further, we may assume min{#A0, #A1} < n; since otherwise A0 = X = A1, so there is a path
of length 0 from A0 to A1 in K(X, κ′). It follows that for any A0,A1 ∈ K(X, κ′) there is a path in K(X, κ′) from
A0 to A1 of length less than 2(n + r − 1). The assertion follows.

11. Further remarks

We have introduced into digital topology the study of hyperspaces of digital images, and have taken
a somewhat different approach to function graphs than that introduced in [26]. We have studied some
relations between digital hyperspaces and digital function graphs. We have examined a number of prop-
erties of digital hyperspaces concerning cardinality, continuous maps and homotopy, connectivity, cycles
and Girth, dominating sets, and diameters.

Suggestions from anonymous reviewers are gratefully acknowledged.
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