
Filomat 37:7 (2023), 2237–2249
https://doi.org/10.2298/FIL2307237Z

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Due to R+ not being a group under addition, L2(R+) admits no traditional Gabor system as
L2(R). Observing thatR+ is a group under a new addition “⊕”, we in this paper introduce and characterize
a class of weak Gabor dual frames in L2(R+) based on this new group structure. Some examples are also
provided.

1. Introduction

In the last decades, frame theory has interested many researchers in pure and applied mathematics
[2, 28]. The study of structured frames is an important part in the theory of function space frames. Among
them, a Gabor frame for L2(R) is generated by a translation-and-modulation operator system acting on
several functions in L2(R). Constructing Gabor dual frame pairs with desired properties has been attracting
much attention of many mathematicians (see[3–8, 11, 12, 15, 18–20, 26, 27, 30] and references therein).
Christensen, R. Y. Kim and H. O. Kim in [5, 6] investigated the constructions of the dual window functions
of Gabor frames with the “partition of unity” property. Stoeva in [26] characterized Gabor dual frames
pairs with compactly supported window functions. Christensen, Janssen, H. O. Kim and R. Y. Kim in
[3] investigated a class of window functions for which approximately dual windows can be calculated
explicitly, and presented the explicit estimates for the deviation from perfect reconstruction of the Gaussian
and two-sided exponential function. In addition, subspace Gabor analysis and Gabor analysis on local
fields have also been studied (see [1, 13–17, 21, 24, 25, 30, 31] and references therein). Recently, Li and Jia in
[20] generalized “Gabor dual frame” to “weak Gabor dual frame” (also called weak Gabor bi-frame), and
characterized weak Gabor dual pairs on periodic subsets of R. Observe that a pair of weak Gabor dual
frames is a pair of Gabor dual frames if they are Bessel sequences in addition.

This paper focuses on Gabor analysis on L2(R+) with R+ = [0, ∞). In contrast to R, R+ is not a group
under addition. This results in L2(R+) admitting no traditional nontrivial shift invariant system. Thus
it does not admit traditional wavelet or Gabor frames. Fortunately, R+ is an abelian group under a new
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addition “⊕” defined below. Based on this group structure, a class of wavelet frames for L2(R+) were
introduced and investigated ([9, 10]). Motivated by the above works, in this paper, we investigate a class
of weak Gabor dual frames for L2(R+).

To proceed, let us first review the addition “⊕”. We denote by Z, Z+ and N the set of integers,
nonnegative integers and positive integers, respectively; by Nt the set of {0, 1, · · · , t − 1} for t ∈ N; and
by ⌊y⌋, {y} the integer and fractional parts of y ∈ R+ respectively. Given 1 < p ∈ N, define addition and
subtraction onNp by

x1 ⊕ x2 = (x1 + x2)(mod p) =
{

x1 + x2 if x1 + x2 < p;
x1 + x2 − p if x1 + x2 ≥ p (1)

and

x1 ⊖ x2 = (x1 − x2)(mod p) =
{

x1 − x2 if x1 ≥ x2;
x1 − x2 + p if x1 < x2

for x1, x2 ∈Np. Every y ∈ R+ corresponds to the unique representation:

y =
∞∑
j=1

y− jp j−1 +

∞∑
j=1

y jp− j, (2)

where y− j, y j ∈Np are defined by

y− j = ⌊p1− jy⌋( mod p) and y j = ⌊p jy⌋( mod p) (3)

for j ∈N. For ỹ ∈ R+, we define ỹ j, ỹ− j similarly. Define addition “⊕”and subtraction “⊖” on R+ by

y ⊕ ỹ =
∞∑
j=1

(
y− j ⊕ ỹ− j

)
p j−1 +

∞∑
j=1

(
y j ⊕ ỹ j

)
p− j (4)

and

y ⊖ ỹ =
∞∑
j=1

(
y− j ⊖ ỹ− j

)
p j−1 +

∞∑
j=1

(
y j ⊖ ỹ j

)
p− j (5)

respectively for y, ỹ ∈ R+. Then R+ is a group under “⊕” with the inverse operation “⊖”, and the opposite
of x is ⊖x = 0⊖ x for x ∈ R+. This makes L2(R+) to be closed under translation based on “⊖”, and the Gabor
analysis on L2(R+) possible. Define the quasi-inner product on R+ by

⟨y, ỹ⟩p =
∞∑
j=1

(y j ỹ− j + y− j ỹ j) for y, ỹ ∈ R+, (6)

and the binary function

χ(y, ỹ) = e
2πi
p ⟨y, ỹ⟩p for y, ỹ ∈ R+. (7)

And define the modulation operator Mx0 : L2(R+) → L2(R+) and translation operator Tx0 : L2(R+) → L2(R+)
with x0 ∈ R+ respectively by

Mx0 f (·) = χ(x0, ·) f (·) and Tx0 f (·) = f (· ⊖ x0)

for f ∈ L2(R+). It is easy to check that they are both unitary operators on L2(R+), that their adjoint operators
are given by

M∗

x0
f (·) = χ(x0, ·) f (·) and T∗x0

f (·) = f (· ⊕ x0) for f ∈ L2(R+),
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and that
MyTỹ f (·) = χ(y, ỹ)TỹMy f (·) for f ∈ L2(R+) and y, ỹ ∈ R+.

Given L ∈N, g = {1l : 1 ≤ l ≤ L} ⊂ L2(R+), and a, b > 0, we define the Gabor system X(g, a, b) by

X(g, a, b) = {MmbTna1l : m, n ∈ Z+, 1 ≤ l ≤ L}. (8)

In [23], a necessary condition and two sufficient conditions for such Gabor systems to be frames for L2(R+)
are obtained in the time domain. In this paper, we work under the following general setup:

General setup:
Assumption 1. 1 < p ∈N.
Assumption 2. a = ps, b = pt

∈ Λwith s + t ≤ 0, where

Λ = {ps : s ∈ Z}. (9)

Observe that a and b in this general setup are so special. It is because the equation

χ(αx, y) = χ(x, αy) (10)

will be frequently used. But (10) need not hold for all x, y, α ∈ R+ by Lemma 2.6 and Examples 2.7,
2.8 below. Fortunately, (10) holds for x, y ∈ R+ if α ∈ Λ. Obviously, e2πiαx·y = e2πix·αy for x, y, α ∈ R.
This demonstrates that Gabor analysis behaves essentially different between on R+ and R. This paper is
devoted to characterizing weak Gabor dual frame pairs. Let ζE denote the characteristic function of E for a
measurable subset E of R+, and write

L∞c (R+) = { f ∈ L2(R+) : f ∈ L∞(R+) and supp( f ) is contained in a compact subset of R+}. (11)

Then L∞c (R+) is dense in L2(R+). Given g = {1l : 1 ≤ l ≤ L}, h = {hl : 1 ≤ l ≤ L} ⊂ L2(R+),
(X(g, a, b), X(h, a, b)) is said to be a pair of weak dual frames for L2(R+) associated with L2

c (R+) if

⟨ f , f̃ ⟩ =
L∑

l=1

∑
m,n∈Z+

⟨ f , MmbTna1l⟩⟨MmbTnahl, f̃ ⟩ for f , f̃ ∈ L∞c (R+). (12)

Observe that the series in (12) is absolutely convergent by the arguments in Lemma 2.9 below. It is easy
to check that (X(g, a, b), X(h, a, b)) is a pair of dual frames for L2(R+) if (12) holds, and X(g, a, b), X(h, a, b)
are Bessel sequences in L2(R+). Therefore, “weak Gabor dual frames” generalize “Gabor dual frames”.
Example 3.2 demonstrates that it is a genuine generalization. Our main result is as follows:

Theorem 1.1. Let p, a, b be as in the general setup and g, h ⊂ L2(R+). Then (X(g, a, b), X(h, a, b)) is a pair of
weak dual frames for L2(R+) associated with L∞c (R+) if and only if

L∑
l=1

∑
n∈Z+

1l(· ⊖ na ⊕
k
b

)hl(· ⊖ na) = bδk,0 (13)

a.e. on (0, a) for k ∈ Z+.

Remark 1.2. In Theorem 1.1, if X(g, a, b) and X(h, a, b) are Bessel sequences in L2(R+) in addition, then, by a
standard argument, (X(g, a, b), X(h, a, b)) is a pair of dual frames if and only if (13) holds.

Formally, Theorem 1.1 is similar to the “L2(R)-Gabor dual frames” characterization. But its proof is nontrivial
due to “⊕” and “χ(·, ·)” herein being essentially different from “+” and modulation factor in “L2(R)-Gabor
systems”. Section 2 focuses on some properties of “⊕” and Gabor systems in L2(R+). In particular, from
Lemmas 2.2, 2.6 and Examples 2.4-2.8, we know that the distribution law for “⊕” and multiplication does
not hold, and that χ(α·, ·) need not equal to χ(·, α·) for general α ∈ R+. This demonstrates that Gabor
analysis behaves different betweenR+ andR. Section 3 gives the proof of Theorem 1.1. Some examples are
also provided.
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2. Preliminaries

This section is devoted to some properties of “⊕” and Gabor systems in L2(R+). By a simple computation,
we have the following lemma.

Lemma 2.1. (i) [0, 1) ⊕ x = [0, 1) ⊖ x = [0, 1) for x ∈ [0, 1);
(ii) {⊖x : x ∈ [0, pJ)} = [0, pJ) = [0, pJ) ⊕ [0, pJ) = [0, pJ) ⊖ [0, pJ) for J ∈ Z.

The following lemma shows that the distribution law for “⊕” and multiplication holds if the multipliers
belong to Λ.

Lemma 2.2. Let Λ be as in (9), and α ∈ Λ. Then

α(x ⊕ y) = αx ⊕ αy (14)

and

α(x ⊖ y) = αx ⊖ αy (15)

for x, y ∈ R+.

Proof. Observe that (14) implies (15). Indeed, suppose (14) holds. Then

αx = α((x ⊖ y) ⊕ y) = α(x ⊖ y) ⊕ αy

for x, y ∈ R+. This leads to (15). Next we prove (14). First we claim that

p(x ⊕ y) = px ⊕ py for x, y ∈ R+ (16)

implies

α(x ⊕ y) = αx ⊕ αy for x, y ∈ R+ and α ∈ Λ. (17)

Indeed, suppose (16) holds. Then, given s ∈N,

ps(x ⊕ y) = ps−1(px ⊕ py)
= ps−2(p2x ⊕ p2y)
= · · ·

= psx ⊕ psy

for x, y ∈ R+. Thus

x ⊕ y = ps(p−sx ⊕ p−sy).

This implies that, given s ∈N,

p−s(x ⊕ y) = p−sx ⊕ p−sy

for x, y ∈ R+. Therefore, (17) holds. Next we prove (16). Arbitrarily fix x, y ∈ R+. We have

p(x ⊕ y) = p

 ∞∑
j=1

(x− j ⊕ y− j)p j−1 +

∞∑
j=1

(x j ⊕ y j)p− j


= (x1 ⊕ y1) +

∞∑
j=1

(x− j ⊕ y− j)p j +

∞∑
j=2

(x j ⊕ y j)p1− j

= (x1 ⊕ y1) +
∞∑
j=1

(x− j ⊕ y− j)p j +

∞∑
j=1

(x1+ j ⊕ y1+ j)p− j. (18)
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Also observe that

px =
∞∑
j=1

x− jp j +

∞∑
j=1

x jp1− j and py =
∞∑
j=1

y− jp j +

∞∑
j=1

y jp1− j,

equivalently,

px = x1 +

∞∑
j=1

x− jp j +

∞∑
j=1

x1+ jp− j (19)

and

py = y1 +

∞∑
j=1

y− jp j +

∞∑
j=1

y1+ jp− j. (20)

It leads to (16) by (18). The proof is completed.

Remark 2.3. We remark that (14) does not necessarily hold if α < Λ. The following Example 2.4 is a counterexample.

For α ∈ R+, we have

α(p ⊕ p−1) = (α1 + α−2) +
∞∑
j=1

(α− j + α− j−2)p j + (α−1 + α2)p−1 +

∞∑
j=2

(α1+ j + α j−1)p− j, (21)

αp ⊕ αp−1 = (α1 ⊕ α−2) +
∞∑
j=1

(α− j ⊕ α− j−2)p j + (α−1 ⊕ α2)p−1 +

∞∑
j=2

(α j−1 ⊕ α1+ j)p− j (22)

by a simple computation. This leads to the following example.

Example 2.4. α(p ⊕ p−1) , αp ⊕ αp−1 for α ∈ R+ satisfying

either α1 + α−2 > p or α−1 + α2 > p
or { j ∈N : α− j + α− j−2 > p} ∪ { j ∈N\{1} : α j−1 + α1+ j > p} , ∅. (23)

The following lemma gives a “⊕”-based partition of R+.

Lemma 2.5. Let Λ be as in (9). Then, given α ∈ Λ and γ ∈ R+, {[0, α) ⊕ γ ⊕ αk : k ∈ Z+} is a partition of R+.

Proof. By Lemma 2.2 and Lemma 2.1 (i), we have

[0, α) ⊕ γ ⊕ αk = α
(
[0, 1) ⊕ α−1γ ⊕ k

)
= α

(
([0, 1) ⊕ {α−1γ}) ⊕ ⌊α−1γ⌋ ⊕ k

)
= α

(
[0, 1) ⊕ (⌊α−1γ⌋ ⊕ k)

)
.

It follows that {[0, α) ⊕ γ ⊕ αk : k ∈ Z+} is a partition of R+ if and only if {[0, 1) ⊕ (⌊α−1γ⌋ ⊕ k) : k ∈ Z+} is a
partition of R+. Due to ⌊α−1γ⌋ ⊕Z+ = Z+ and ⌊α−1γ⌋ ⊕ k , ⌊α−1γ⌋ ⊕ l for k , l in Z+, this is equivalent to
{[0, 1) ⊕ k : k ∈ Z+} being a partition of R+. It holds since [0, 1) ⊕ k = [0, 1) + k and {[0, 1) + k : k ∈ Z+} is a
partition of R+. The proof is completed.

The following lemma gives a sufficient condition on χ(α·, ·) = χ(·, α·).
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Lemma 2.6. Let Λ be as in (9), and α ∈ Λ. Then

⟨x, αy⟩p = ⟨αx, y⟩p (24)

and

χ(αx, y) = χ(x, αy) (25)

for x, y ∈ R+.

Proof. Obviously, (24) implies (25) . Next we prove (24). Similarly to the beginning arguments in Lemma
2.2, we only need to prove

⟨x, py⟩p = ⟨px, y⟩p for x, y ∈ R+. (26)

Now we do this. For x, y ∈ R+, we have

x =
∞∑
j=1

x− jp j−1 +

∞∑
j=1

x jp− j and y =
∞∑
j=1

y− jp j−1 +

∞∑
j=1

y jp− j, (27)

where x j, x− j, y j, y− j ∈Np for j ∈N. This implies that

px =
∞∑
j=1

x− jp j +

∞∑
j=1

x jp1− j, py =
∞∑
j=1

y− jp j +

∞∑
j=1

y jp1− j,

equivalently,

px = x1 +

∞∑
j=1

x− jp j +

∞∑
j=1

x1+ jp− j (28)

and

py = y1 +

∞∑
j=1

y− jp j +

∞∑
j=1

y1+ jp− j. (29)

It follows that

⟨px, y⟩p = x1y1 +

∞∑
j=1

x− jy1+ j +

∞∑
j=1

x1+ jy− j (30)

by (27) and (28), and

⟨x, py⟩p = y1x1 +

∞∑
j=1

y− jx1+ j +

∞∑
j=1

y1+ jx− j (31)

by (27) and (29). Combining (30) and (31) leads to (26). The proof is completed.

The following Examples 2.7 and 2.8 show that (25) need not hold if α < Λ.

Example 2.7. Let p = 2, and x, y ∈ R+ satisfy

x2 j = y2 j = 0 for j ∈N; x−2 j = y−2 j = 0 for 2 ≤ j ∈N; x−2 = x−3 = y−2 = y−3 = 0; (32)
x1 = x−1 = y1 = y−1 = 1; x3 , y3. (33)

Then ⟨3x, y⟩2 − ⟨x, 3y⟩2 = y3 − x3 ∈ {1, −1} by a standard argument. Thus χ(x, 3y) , χ(3x, y).
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Example 2.8. Let 2 < p ∈N and x, y ∈ R+ satisfy

x j + x j+1 < p, y j + y j+1 < p for j ∈N, (34)
x− j + x− j+1 < p, y− j + y− j+1 < p for 2 ≤ j ∈N, (35)
x−1 + x1 ≥ p, x−2 + x−1 < p − 1, y2 , 0. (36)

Then ⟨(p + 1)x, y⟩p − ⟨x, (p + 1)y⟩p = −py1 + y2. This implies that χ(x, (p + 1)y) , χ((p + 1)x, y).

The following lemma gives an expression of the inner product of sampling sequences related to two
modulation systems.

Lemma 2.9. Let Λ be as in (9), and b ∈ Λ. Then, given 1, h ∈ L2(R+),∑
m∈Z+

⟨ f , Mmb1⟩⟨Mmbh, f ⟩ =
1
b

∫
R+

f (x)h(x)
∑
k∈Z+

1(x ⊕
k
b

) f (x ⊕
k
b

)dx

for an arbitrary measurable function f on R+ with
∑

k∈Z+
| f (· ⊕ k

b )|2 ∈ L∞([0, 1
b )).

Proof. Arbitrarily fix f satisfying
∑

k∈Z+
| f (·⊕ k

b )|2 ∈ L∞([0, 1
b )). By Lemma 2.5, {[0, 1

b )⊕ k
b : k ∈ Z+} is a partition

of R+. It follows that

∥ f ∥2 =

∫
[0, 1

b )

∑
k∈Z+

| f (x ⊕
k
b

)|2dx

≤
1
b
∥

∑
k∈Z+

| f (· ⊕
k
b

)|2∥L∞([0, 1
b ))

< ∞, (37)

and ∫
[0, 1

b )
(
∑
k∈Z+

| f (x ⊕
k
b

)||1(x ⊕
k
b

)|)2dx ≤

∫
[0, 1

b )
(
∑
k∈Z+

| f (x ⊕
k
b

)|2)(
∑
k∈Z+

|1(x ⊕
k
b

)|2)dx

≤ ∥

∑
k∈Z+

| f (· ⊕
k
b

)|2∥L∞([0, 1
b ))∥1∥

2 < ∞ (38)

which leads to (
∑

k∈Z+
| f (· ⊕ k

b )||1(· ⊕ k
b )|) ∈ L1([0, 1

b )). Similarly,∫
[0, 1

b )
(
∑
k∈Z+

| f (x ⊕
k
b

)||h(x ⊕
k
b

)|)2dx < ∞. (39)

Observe that

χ(mb, x ⊕
k
b

) = χ(mb, x)χ(mb,
k
b

)

= χ(mb, x)

for x ∈ R+ and m, k ∈ Z+ by Lemma 2.6. This implies that

⟨ f , Mmb1⟩ =

∫
[0, 1

b )

∑
k∈Z+

f (x ⊕
k
b

)1(x ⊕
k
b

)χ(mb, x ⊕
k
b

)dx

=

∫
[0, 1

b )

∑
k∈Z+

f (x ⊕
k
b

)1(x ⊕
k
b

)

χ(mb, x)dx (40)
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and

⟨ f , Mmbh⟩ =
∫

[0, 1
b )

∑
k∈Z+

f (x ⊕
k
b

)h(x ⊕
k
b

)

χ(mb, x)dx. (41)

Since {
√

bχ(mb, ·) : m ∈ Z+} is an orthonormal basis for L2([0, 1
b )), we have∑

k∈Z+

⟨ f , Mmb1⟩⟨Mmbh, f ⟩ =
1
b

∫
[0, 1

b )
G(x)

∑
k∈Z+

f (x ⊕
k
b

)h(x ⊕
k
b

)

 dx (42)

by (38)-(41), where

G(·) =
∑
k∈Z+

f (· ⊕
k
b

)1(· ⊕
k
b

). (43)

From (38) and (39), it follows that

|G(·)|
∑
k∈Z+

| f (· ⊕
k
b

)h(· ⊕
k
b

)| ∈ L1([0,
1
b

)).

Thus ∑
m∈Z+

⟨ f , Mmb1⟩⟨Mmbh, f ⟩ =
1
b

∑
k∈Z+

∫
[0, 1

b )
G(x) f (x ⊕

k
b

)h(x ⊕
k
b

)dx

=
1
b

∫
R+

f (x)h(x)
∑
k∈Z+

1(x ⊕
k
b

) f (x ⊕
k
b

)dx

by Lemma 2.5 and the 1
bZ+-periodicity of G(·) according to ⊕. The proof is completed.

Lemma 2.10. [29, Theorem 2.2] Let p, a, b be as in the general setup and h ∈ L2(R+). Suppose

B =
1
b

esssupx∈[0, a)

∑
k∈Z+

|

∑
n∈Z+

h(x ⊖ na)h(x ⊖ na ⊕
k
b

)| < ∞ (44)

and

A =
1
b

essinfx∈[0, a)

∑
n∈Z+

|h(x ⊖ na)|2 −
∑
k∈N

|

∑
n∈Z+

h(x ⊖ na)h(x ⊖ na ⊕
k
b

)|

 > 0. (45)

Then X(h, a, b) is a frame for L2(R+) with bounds A and B. In particular, if (44) is satisfied, then it is a Bessel
sequence in L2(R+) with Bessel bound B.

The following lemma reduces the inner product of sampling sequences corresponding to two Gabor systems
to an integral.

Lemma 2.11. Let p, a, b be as in the general setup and 1, h ∈ L2(R+). Then, given x0 ∈ R+, we have∑
m,n∈Z+

⟨ f , MmbTna1⟩⟨MmbTnah, f ⟩ =
1
b

∫
[0, 1

b )⊕x0

〈
γ(x)F(x), F(x)

〉
dx (46)

for f ∈ L∞c (R+), where

γ(x) =

∑
n∈Z+

1(x ⊖ na ⊕
k
b

)h(x ⊖ na ⊕
j
b

)


j∈Z+, k∈Z+

and F(x) =
{

f (x ⊕
k
b

)
}

k∈Z+

.
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Proof. Suppose supp( f ) ⊂ [0, pJ) for some J ∈ Z. Write

I(x) = {(n, k) ∈ Z2
+ : x ⊖ na, x ⊖ na ⊕

k
b
∈ [0, pJ)}, (47)

Ĩ(x) = {k ∈ Z+ : x ⊕
k
b
∈ [0, pJ

}) (48)

for x ∈ R+, and

I = {k ∈ Z+ : y, y ⊕
k
b
∈ [0, pJ) for some y ∈ R+}. (49)

Let us estimate (47)-(49). By Lemma 2.1 (ii) and the general setup,

I(x) ⊂ {(n, k) ∈ Z2
+ : na ⊖ x ∈ [0, pJ),

k
b
∈ [0, pJ) ⊖ [0, pJ)}

= {(n, k) ∈ Z2
+ : na ∈ [0, pJ) ⊕ x, k ∈ b[0, pJ)}

⊂ {(n, k) ∈ Z2
+ : n ∈ p−s([0, pJ) ⊕ x), k ∈ [0, pJ+t)}.

This implies that

I(x) ⊂ {(n, k) ∈ Z2
+ : n ∈ pJ−s([0, 1) ⊕ p−Jx), k ∈ [0, pJ+t)}

⊂ {(n, k) ∈ Z2
+ : n ∈ pJ−s[⌊p−Jx⌋, ⌊p−Jx⌋ + 1), k ∈ [0, pJ+t)}

= {(n, k) ∈ Z2
+ : n ∈ [pJ−s

⌊p−Jx⌋, pJ−s(⌊p−Jx⌋ + 1)), k ∈ [0, pJ+t)} (50)

by Lemma 2.1 (i), Lemma 2.2 and the fact that [0, 1) ⊕ k = [0, 1) + k for k ∈ Z+. Similarly, we have

Ĩ(x) ⊂ [pJ+t
⌊p−Jx⌋, pJ+t(⌊p−Jx⌋ + 1)), (51)

I ⊂ [0, pJ+t). (52)

It follows that their cardinalities satisfy

card(I(x)) ≤ (⌊pJ−s
⌋ + 1)(⌊pJ+t

⌋ + 1), (53)
card(Ĩ(x)) ≤ ⌊pJ+t

⌋ + 1, (54)
card(I) ≤ ⌊pJ+t

⌋ + 1. (55)

By (50) and (55),∑
k∈Z+

|

∑
n∈Z+

f (· ⊖ na) f (· ⊖ na ⊕
k
b

)| ≤ (⌊pJ−s
⌋ + 1)(⌊pJ+t

⌋ + 1)∥ f ∥2L∞(R+).

This implies that X( f̄ , a, b) is a Bessel sequence in L2(R+) by Lemma 2.10. Observe that

⟨ f , MmbTna1⟩ = χ(mb, na)⟨1̄, MmbT⊖na f̄ ⟩,

⟨ f , MmbTnah⟩ = χ(mb, na)⟨h̄, MmbT⊖na f̄ ⟩.

It follows that the left-hand side of (46) is well defined. Also by (51) and (54),∑
k∈Z+

| f (· ⊕
k
b

)|2 ≤ (⌊pJ+t
⌋ + 1)∥ f ∥2L∞(R+). (56)

Thus ∑
m,n∈Z+

⟨ f , MmbTna1⟩⟨MmbTnah, f ⟩

=
1
b

∑
n∈Z+

∫
R+

f (x)h(x ⊖ na)
∑
k∈Z+

1(x ⊖ na ⊕
k
b

) f (x ⊕
k
b

)dx (57)
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by Lemma 2.9. By (52), we have

∑
n∈Z+

∫
R+

| f (x)h(x ⊖ na)|
∑
k∈Z+

|1(x ⊖ na ⊕
k
b

) f (x ⊕
k
b

)|dx

≤ ∥ f ∥2L∞(R+)

∑
k∈[0, pJ+t)∩Z+

∑
n∈Z+

∫
[0, pJ)
|1(x ⊖ na ⊕

k
b

)h(x ⊖ na)|dx. (58)

Since [0, pJ) is bounded, there exists a finite subset E of Z+ such that [0, pJ) ⊂ ∪ j∈E([0, a) + ja). By Lemma
2.2,

[0, a) + ja = a([0, 1) + j)
= a([0, 1) ⊕ j)
= [0, a) ⊕ ja

for j ∈ Z+. So [0, pJ) ⊂ ∪ j∈E([0, a) ⊕ ja). Thus (58) implies that

∑
n∈Z+

∫
R+

| f (x)h(x ⊖ na)|
∑
k∈Z+

|1(x ⊖ na ⊕
k
b

) f (x ⊕
k
b

)|dx

≤ ∥ f ∥2L∞(R+)

∑
k∈[0, pJ+t)∩Z+

∑
n∈Z+

∑
j∈E

∫
[0, a)⊕ ja

|1(x ⊖ na ⊕
k
b

)h(x ⊖ na)|dx

= ∥ f ∥2L∞(R+)

∑
k∈[0, pJ+t)∩Z+

∑
j∈E

∑
n∈Z+

∫
[0, a)
|1(x ⊕ ja ⊖ na ⊕

k
b

)h(x ⊕ ja ⊖ na)|dx

= ∥ f ∥2L∞(R+)

∑
k∈[0, pJ+t)∩Z+

∑
j∈E

∑
n∈Z+

∫
[0, a)
|1(x ⊖ na ⊕

k
b

)h(x ⊖ na)|dx

= card(E)∥ f ∥2L∞(R+)

∑
k∈[0, pJ+t)∩Z+

∫
R+

|1(x ⊕
k
b

)h(x)|dx

≤ (⌊pJ+t
⌋ + 1)card(E)∥ f ∥2L∞(R+)∥1∥∥h∥

< ∞. (59)

Also observe that {[0, 1
b ) ⊕ x0 ⊕

j
b : j ∈ Z+} is a partition of R+ by Lemma 2.5. Collecting (57) and (59) leads

to ∑
m,n∈Z+

⟨ f , MmbTna1⟩⟨MmbTnah, f ⟩

=
1
b

∑
n∈Z+

∑
j∈Z+

∫
[0, 1

b )⊕x0

f (x ⊕
j
b

)h(x ⊖ na ⊕
j
b

)
∑
k∈Z+

1(x ⊖ na ⊕
k
b

) f (x ⊕
k
b

)dx

=
1
b

∫
[0, 1

b )⊕x0

∑
j∈Z+

∑
k∈Z+

∑
n∈Z+

1(x ⊖ na ⊕
k
b

)h(x ⊖ na ⊕
j
b

) f (x ⊕
k
b

) f (x ⊕
j
b

)dx

=
1
b

∫
[0, 1

b )⊕x0

⟨γ(x)F(x), F(x)⟩dx.

The proof is completed.
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3. Proof of Theorem 1.1 and examples

Proof of Theorem 1.1: By the polarization identity of inner product, (X(g, a, b), X(h, a, b)) is a pair of
weak dual frames for L2(R+) associated with L∞c (R+) if and only if

⟨ f , f ⟩ =
L∑

l=1

∑
m,n∈Z+

⟨ f , MmbTna1l⟩⟨MmbTnahl, f ⟩

for f ∈ L∞c (R+). This is equivalent to

b
∫

[0, 1
b )⊕x0

⟨F(x), F(x)⟩dx =
∫

[0, 1
b )⊕x0

⟨Γ(x)F(x), F(x)⟩dx for f ∈ L∞c (R+) and x0 ∈ R+ (60)

by Lemma 2.11, where

Γ(x) =

 L∑
l=1

∑
n∈Z+

1l(x ⊖ na ⊕
k
b

)hl(x ⊖ na ⊕
j
b

)


j∈Z+, k∈Z+

and F(x) =
{

f (x ⊕
k
b

)
}

k∈Z+

. (61)

Next we prove the equivalence between (60) and (13). To finish the proof, we first show that (60) holds if
and only if

Γ(·) = bI a.e. on (0,
1
b

) ⊕ x0 for x0 ∈ R+, (62)

where I is the identity operator. Obviously, (62) implies (60). Now suppose (60) holds. Arbitrarily fix
c = {c j} j∈Z+ ∈ l0(Z+), a finitely supported sequence space defined on Z+, and E ⊂ (0, 1

b ) ⊕ x0 with |E| > 0.
Take f in (60) by

F(·) =
1
√
|E|
ζ
∪k∈Z+ (E⊕ k

b )(·)c.

Then f is well defined, and
b
|E|

∫
E
⟨c, c⟩dx =

1
|E|

∫
E
⟨Γ(x)c, c⟩dx.

It leads to (62) by [22, Theorem 1.39], and the arbitrariness of E and c. Thus (60) and (62) are equivalent. Now
we finish the proof by showing the equivalence between (62) and (13). Observe that {[0, 1

b )⊕x0⊕
k
b : k ∈ Z+}

is a partition of R+ by Lemma 2.5. By the arbitrariness of x0 in (62), (62) is equivalent to

Γ(·) = bI a.e. on R+,

i.e.
L∑

l=1

∑
n∈Z+

1l(x ⊖ na ⊕
k
b

)hl(x ⊖ na ⊕
j
b

) = bδ j,k

for a.e. x ∈ R+ and j, k ∈ Z+. This is in turn equivalent to

L∑
l=1

∑
n∈Z+

1l(x ⊖ na ⊕
k
b

)hl(x ⊖ na) = bδk,0 for a.e. x ∈ R+ and k ∈ Z+ (63)

due to Z+ ⊖ Z+ = Z+. Obviously, (63) is equivalent to (13) due to the aZ+-periodicity of function
L∑

l=1

∑
n∈Z+
1l(x ⊖ na ⊕ k

b )hl(x ⊖ na) with k ∈ Z+. The proof is completed. □

The following Examples 3.1 and 3.2 are for Theorem 1.1, and Example 3.2 presents an example of weak
dual frame pairs which are not dual frame pairs.
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Example 3.1. Let p, a, b be as in the general setup, and let L = 2 and 0 < λ < 1. Choose {11, 12} and {h1, h2} ⊂ L2(R+)
such that

supp(11), supp(h1) ⊂ (0, λa) and supp(12), supp(h2) ⊂ (λa, a),

and

11(·)h1(·) + 12(·)h2(·) = b (64)

a.e. on (0, a). Then

L∑
l=1

∑
n∈Z+

1l(· ⊖ na ⊕
k
b

)hl(· ⊖ na) = bδ0, k a.e. on (0, a) for k ∈ Z+.

by a simple computation. Therefore, (X({11, 12}, a, b), X({h1, h2}, a, b)) is a pair of weak dual frames for L2(R+)
associated with L∞c (R+) by Theorem 1.1.

Example 3.2. Let p, a, b be as in the general setup, and let L = 2 and 0 < λ < 1. Choose {11, 12}, {h1, h2} ⊂ L2(R+)
such that

11(x) = A1ζ(0, λa)(x)xτ1 , h1(x) = Ã1ζ(0, λa)(x)x−τ1

12(x) = A2ζ(λa, a)(x)x−τ2 , h2(x) = Ã2ζ(λa, a)(x)xτ2 (65)

on R+, where Al, Ãl and τl with l = 1, 2 are constants satisfying Ā1Ã1 = Ā2Ã2 = b and 0 < τ1 < 1
2 . Then, by

Theorem 1.1, (X({11, 12}, a, b), X({h1, h2}, a, b)) is a pair of weak dual frames for L2(R+) associated with L2
c (R+).

But ∑
n∈Z+

|h1(x ⊖ na)|2 = |Ã1|
2ζ[0, λa)(x)x−2τ1

for x ∈ (0, a) by a simple computation, which implies that
∑

n∈Z+ |h1(·⊖na)|2 < L∞(R+). It follows that X({h1, h2}, a, b)
is not a Bessel sequence in L2(R+) by [29, Lemma 2.2]. Therefore, (X({11, 12}, a, b), X({h1, h2}, a, b)) is not a pair of
dual frames for L2(R+).
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Y. Zhang, Y.-Z. Li / Filomat 37:7 (2023), 2237–2249 2249

[13] J.-P. Gabardo, D. Han, Subspace Weyl-Heisenberg frames, J. Fourier Anal. Appl. 7 (2001) 419–433.
[14] J.-P. Gabardo, D. Han, Balian-Low phenomenon for subspace Gabor frames, J. Math. Phys. 45 (2004) 3362–3378.
[15] J.-P. Gabardo, D. Han, The uniqueness of the dual of Weyl-Heisenberg subspace frames, Appl. Comput. Harmon. Anal. 17 (2004)

226–240.
[16] J.-P. Gabardo, Y.-Z. Li, Density results for Gabor systems associated with periodic subsets of the real line, J. Approx. Theory 157

(2009) 172–192.
[17] J.-P. Gabardo, D. Han, Y.-Z. Li, Lattice tiling and density conditions for subspace Gabor frames, J. Funct. Anal. 265 (2013)

1170–1189.
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