On the g_{z}-Kato decomposition and generalization of Koliha Drazin invertibility

Zakariae Aznay ${ }^{\text {a }}$, Abdelmalek Ouahab ${ }^{\text {a }}$, Hassan Zariouh ${ }^{\text {b }}$
${ }^{a}$ Laboratory (L.A.N.O), Department of Mathematics, Faculty of Science, Mohammed I University, Oujda 60000 Morocco. ${ }^{b}$ Department of Mathematics (CRMEFO), and laboratory (L.A.N.O), Faculty of Science, Mohammed I University, Oujda 60000 Morocco.

Abstract

In [24], Koliha proved that $T \in L(X)$ (X is a complex Banach space) is generalized Drazin invertible operator iff there exists an operator S commuting with T such that $S T S=S$ and $\sigma\left(T^{2} S-T\right) \subset\{0\}$ iff $0 \notin \operatorname{acc} \sigma(T)$. Later, in $[14,34]$ the authors extended the class of generalized Drazin invertible operators and they also extended the class of pseudo-Fredholm operators introduced by Mbekhta [27] and other classes of semi-Fredholm operators. As a continuation of these works, we introduce and study the class of $g_{z^{-}}$ invertible (resp., g_{z}-Kato) operators which generalizes the class of generalized Drazin invertible operators (resp., the class of generalized Kato-meromorphic operators introduced by Živković-Zlatanović and Duggal in [35]). Among other results, we prove that T is g_{z}-invertible iff T is g_{z}-Kato with $\tilde{p}(T)=\tilde{q}(T)<\infty$ iff there exists a commuting operator S with T such that $S T S=S$ and $\operatorname{acc} \sigma\left(T^{2} S-T\right) \subset\{0\}$ iff $0 \notin \operatorname{acc}(\operatorname{acc} \sigma(T))$. As application and using the concept of the Weak SVEP introduced at the end of this paper, we give new characterizations of Browder-type theorems.

1. Introduction

Let $T \in L(X)$, where $L(X)$ is the Banach algebra of bounded linear operators acting on an infinite dimensional complex Banach space ($X,\|\|$.$) . Throughout this paper T^{*}, \alpha(T)$ and $\beta(T)$ means respectively, the dual of T, the dimension of the kernel $\mathcal{N}(T)$ and the codimension of the range $\mathcal{R}(T)$. The ascent and the descent of T are defined by $p(T)=\inf \left\{n \in \mathbb{N}: \mathcal{N}\left(T^{n}\right)=\mathcal{N}\left(T^{n+1}\right)\right\}($ with $\inf \emptyset=\infty)$ and $q(T)=\inf \{n \in$ $\left.\mathbb{N}: \mathcal{R}\left(T^{n}\right)=\mathcal{R}\left(T^{n+1}\right)\right\}$. A subspace M of X is T-invariant if $T(M) \subset M$ and the restriction of T on M is denoted by $T_{M}(M, N) \in \operatorname{Red}(T)$ if M, N are closed T-invariant subspaces and $X=M \oplus N(M \oplus N$ means that $M \cap N=\{0\})$. Let $n \in \mathbb{N}$, denote by $T_{[n]}=T_{\mathcal{R}\left(T^{n}\right)}$ and by $m_{T}=\inf \left\{n \in \mathbb{N}: \inf \left\{\alpha\left(T_{[n]}\right), \beta\left(T_{[n]}\right)\right\}<\infty\right\}$ the essential degree of T. According to [10, 28], T is called upper semi-B-Fredholm (resp., lower semi-BFredholm) if the essential ascent $p_{e}(T)=\inf \left\{n \in \mathbb{N}: \alpha\left(T_{[n]}\right)<\infty\right\}<\infty$ and $\mathcal{R}\left(T^{p_{e}(T)+1}\right)$ is closed (resp., the essential descent $q_{e}(T)=\inf \left\{n \in \mathbb{N}: \beta\left(T_{[n]}\right)<\infty\right\}<\infty$ and $\mathcal{R}\left(T^{q_{e}(T)}\right)$ is closed). If T is an upper or a lower (resp., upper and lower) semi-B-Fredholm, then T is called semi-B-Fredholm (resp., B-Fredholm) and its index is defined by $\operatorname{ind}(T)=\alpha\left(T_{\left[m_{T}\right]}\right)-\beta\left(T_{\left[m_{T}\right]}\right) . T$ is said to be an upper semi-B-Weyl (resp., lower semi-B-Weyl, B-Weyl, left Drazin invertible, right Drazin invertible, Drazin invertible) if T is an upper semi-B-Fredholm with ind $(T) \leq 0$ (resp., T is a lower semi-B-Fredholm with $\operatorname{ind}(T) \geq 0, T$ is a B-Fredholm with

[^0]$\operatorname{ind}(T)=0, T$ is an upper semi-B-Fredholm and $p\left(T_{\left[m_{T}\right]}\right)<\infty, T$ is a lower semi-B-Fredholm and $q\left(T_{\left[m_{T}\right]}\right)<\infty$, $\left.p\left(T_{\left[m_{T}\right]}\right)=q\left(T_{\left[m_{T}\right]}\right)<\infty\right)$. If T is upper semi-B-Fredholm (resp., lower semi-B-Fredholm, semi-B-Fredholm, B-Fredholm, upper semi-B-Weyl, lower semi-B-Weyl, B-Weyl, left Drazin invertible, right Drazin invertible, Drazin invertible) with essential degree $m_{T}=0$, then T is said to be an upper semi-Fredholm (resp., lower semi-Fredholm, semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, upper semi-Browder, lower semi-Browder, Browder) operator. T is said to be bounded below if T is upper semi-Fredholm with $\alpha(T)=0$.

The degree of stable iteration of T is defined by $\operatorname{dis}(T)=\inf \Delta(T)$, where

$$
\Delta(T)=\left\{m \in \mathbb{N}: \alpha\left(T_{[m]}\right)=\alpha\left(T_{[r]}\right), \forall r \in \mathbb{N} r \geq m\right\} .
$$

T is said to be semi-regular if $\mathcal{R}(T)$ is closed and $\operatorname{dis}(T)=0$, and is said to be quasi-Fredholm if there exists $n \in \mathbb{N}$ such that $\mathcal{R}\left(T^{n}\right)$ is closed and $T_{[n]}$ is semi-regular, see [25,27]. Note that every semi-B-Fredholm operator is quasi-Fredholm [10, Proposition 2.5].

According to [1], T is said to have the SVEP at $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of $\lambda, f \equiv 0$ is the only analytic solution of the equation $(T-\mu I) f(\mu)=0 \quad \forall \mu \in U_{\lambda} . T$ is said to have the SVEP on $A \subset \mathbb{C}$ if T has the SVEP at every $\lambda \in A$, and is said to have the SVEP if it has the SVEP on \mathbb{C}. It is easily seen that $T \oplus S$ has the SVEP at λ if and only if T and S have the SVEP at λ, see [1, Theorem 2.15]. Moreover,

$$
\begin{aligned}
& p(T-\lambda I)<\infty \Longrightarrow \mathrm{T} \text { has the SVEP at } \lambda(A) \\
& q(T-\lambda I)<\infty \Longrightarrow T^{*} \text { has the SVEP at } \lambda, \quad(B)
\end{aligned}
$$

and these implications become equivalences if $T-\lambda I$ has topological uniform descent [1, Theorem 2.97, Theorem 2.98]. For definitions and properties of operators which have topological uniform descent, see [18].

Definition 1.1. [1] (i) The local spectrum of T at $x \in X$ is the set defined by

$$
\sigma_{T}(x):=\left\{\begin{array}{l}
\lambda \in \mathbb{C}: \text { for all open neighborhood } U_{\lambda} \text { of } \lambda \text { and analytic function } \\
f: U_{\lambda} \longrightarrow X \text { there exists } \mu \in U_{\lambda} \text { such that }(T-\mu I) f(\mu) \neq x .
\end{array}\right\}
$$

(ii) If F is a complex closed subset, then the local spectral subspace of T associated to F is defined by

$$
X_{T}(F)=\left\{x \in X: \sigma_{T}(x) \subset F\right\} .
$$

A Banach space operator S is said to be nilpotent of degree d if $S^{d}=0$ and $S^{d-1} \neq 0$ [with the degree of the null operator takes 0 if it acts on the space $\{0\}$ and takes 1 otherwise]. S is a quasi-nilpotent (resp., Riesz, meromorphic) operator if $S-\lambda I$ is invertible (resp., Browder, Drazin invertible) for all non-zero complex λ. Note that S is nilpotent $\Longrightarrow S$ is quasi-nilpotent $\Longrightarrow S$ is Riesz $\Longrightarrow S$ is meromorphic. Denote by $\mathcal{K}(T)$ the analytic core of T (see [27]):

$$
\mathcal{K}(T)=\left\{x \in X: \exists \epsilon>0, \exists\left(u_{n}\right)_{n} \subset X \text { such that } x=u_{0}, T u_{n+1}=u_{n} \text { and }\left\|u_{n}\right\| \leq \epsilon^{n}\|x\| \forall n \in \mathbb{N}\right\},
$$

and by $\mathcal{H}_{0}(T)$ the quasi-nilpotent part of $T: \quad \mathcal{H}_{0}(T)=\left\{x \in X: \lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{\frac{1}{n}}=0\right\}$.
In [23, Theorem 4, 1958], Kato proved that if T is a semi-Fredholm operator, then T is of Kato-type of degree d, that is there exists $(M, N) \in \operatorname{Red}(T)$ such that:
(i) T_{M} is semi-regular.
(ii) T_{N} is nilpotent of degree d.

Later, these operators are characterized by Labrousse [25, 1980] in the case of Hilbert space. The important results obtained by Kato and Labrousse opened the field to many researchers to work in this direction [$7,11,14,16,27,33-35]$. In particular, Berkani [7] showed that T is B-Fredholm (resp., B-Weyl) if and only if there exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is Fredholm (resp., Weyl) and T_{N} is nilpotent. On the other hand,
it is well known [16] that T is Drazin invertible if and only if there exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is invertible and T_{N} is nilpotent.
If the condition (ii) " T_{N} is nilpotent" mentioned in the Kato's decomposition is replaced by " T_{N} is quasinilpotent" (resp., " T_{N} is Riesz", " T_{N} is meromorphic"), we find the pseudo-Fredholm [27] (resp., generalized Kato-Riesz [34], generalized Kato-meromorphic [35]) decomposition. By the same argument the pseudo B-Fredholm [32, 33] (resp., generalized Drazin-Riesz Fredholm [11, 34], generalized Drazin-meromorphic Fredholm [35]) decomposition are obtained by substituting in the B-Fredholm decomposition the condition " T_{N} is nilpotent" by " T_{N} is quasi-nilpotent" (resp., " T_{N} is Riesz", " T_{N} is meromorphic"). Similarly, the Drazin decomposition has been generalized [24, 34, 35].

We summarize in the following definition several known decompositions.

Definition 1.2. $[5,7,10-12,14,27,33-35] T$ is said to be
(i) of Kato-type of order d [resp., quasi upper semi-B-Fredholm, quasi lower semi-B-Fredholm, quasi B-Fredholm, quasi upper semi-B-Weyl, quasi lower semi-B-Weyl, quasi semi-B-Weyl] if there exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is semi-regular [resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl] and T_{N} is nilpotent of degree d. We write $(M, N) \in K D(T)$ if it is a Kato-type decomposition.
(ii) Pseudo-Fredholm [resp., upper pseudo semi-B-Fredholm, lower pseudo semi-B-Fredholm, pseudo B-Fredholm, upper pseudo semi-B-Weyl, lower pseudo semi-B-Weyl, pseudo B-Weyl, left generalized Drazin invertible, right generalized Drazin invertible, generalized Drazin invertible] if there exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is semi-regular [resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded below, surjective, invertible] and T_{N} is quasi-nilpotent. We write $(M, N) \in G K D(T)$ if it is a pseudo-Fredholm type decomposition.
(iii) Generalized Kato-Riesz [resp., generalized Drazin-Riesz upper semi-Fredholm, generalized Drazin-Riesz lower semi-Fredholm, generalized Drazin-Riesz Fredholm, generalized Drazin-Riesz upper semi-Weyl, generalized DrazinRiesz lower semi-Weyl, generalized Drazin-Riesz Weyl, generalized Drazin-Riesz bounded below, generalized DrazinRiesz surjective, generalized Drazin-Riesz invertible] if there exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is semi-regular [resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded below, surjective, invertible] and T_{N} is Riesz.
(iv) Generalized Kato-meromorphic [resp., generalized Drazin-meromorphic upper semi-Fredholm, generalized Drazinmeromorphic lower semi-Fredholm, generalized Drazin-meromorphic Fredholm, generalized Drazin-meromorphic upper semi-Weyl, generalized Drazin-meromorphic lower semi-Weyl, generalized Drazin-meromorphic Weyl, generalized Drazin-meromorphic bounded below, generalized Drazin-meromorphic surjective, generalized Drazin-meromorphic invertible] if there exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is semi-regular [resp., upper semi-Fredholm, lower semiFredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded below, surjective, invertible] and T_{N} is meromorphic.

As a continuation of the studies mentioned above, we define new classes of operators: one of them named g_{z}-Kato which generalizes the class of generalized Kato-meromorphic operators. We prove that the g_{z}-Kato spectrum $\sigma_{g_{z} K}(T)$ is compact and $\operatorname{acc} \sigma_{p f}(T) \subset \sigma_{g_{z} K}(T)$. Moreover, we show that if T is g_{z}-Kato, then $\alpha\left(T_{M}\right), \beta\left(T_{M}\right), p\left(T_{M}\right)$ and $q\left(T_{M}\right)$ are independent of the choice of the decomposition $(M, N) \in g_{z} K D(T)$. An other class named g_{z}-invertible which generalizes the class of generalized Drazin invertible operators introduced by Koliha. As a characterization of g_{z}-invertible operator, we prove that T is g_{z}-invertible iff $0 \notin \operatorname{acc}(\operatorname{acc} \sigma(T))$ iff there exists a Drazin invertible operator S such that $T S=S T, S T S=S$ and $T^{2} S-T$ is zeroloid. These characterizations are analogous to those proved by Koliha [24] which established that T is generalized Drazin invertible operator iff $0 \notin \operatorname{acc} \sigma(T)$ iff there exists an operator S such that $T S=S T$, $S T S=S$ and $T^{2} S-T$ is quasi-nilpotent. As application, using the new spectra studied in the present work and the concept of the Weak SVEP introduced at the end of this paper, we give new characterizations of Browder-type theorems.

The next list summarizes some notations and symbols that we will need later.

$r(T)$: the spectral radius of T
iso A	$:$ isolated points of a complex subset A
$\operatorname{acc} A$: accumulation points of a complex subset A
\bar{A}	: the closure of a complex subset A
A^{C}	: the complementary of a complex subset A
$B(\lambda, \epsilon)$: the open ball of radius ϵ centered at λ
$D(\lambda, \epsilon)$: the closed ball of radius ϵ centered at λ
(B)	: the class of operators satisfying Browder's theorem $\left(T \in(B)\right.$ if $\left.\sigma_{u}(T)=\sigma_{b}(T)\right)$
$\left(B_{e}\right)$: the class of operators satisfying essential Browder's theorem $[4]\left(T \in\left(B_{e}\right)\right.$ if $\left.\sigma_{e}(T)=\sigma_{b}(T)\right)$
$(a B)$: the class of operators satisfying a-Browder's theorem $\left(T \in(a B)\right.$ if $\left.\sigma_{u w}(T)=\sigma_{u b}(T)\right)$

$\sigma(T)$: spectrum of T
$\sigma_{a}(T)$: approximate points spectrum of T
$\sigma_{s}(T)$: surjective spectrum of T
$\sigma_{s e}(T)$: semi-regular spectrum of T
$\sigma_{e}(T)$: essential spectrum of T
$\sigma_{u f}(T)$: upper semi-Fredholm spectrum of T
$\sigma_{l f}(T)$: lower semi-Fredholm spectrum of T
$\sigma_{w}(T)$: Weyl spectrum of T
$\sigma_{u z w}(T)$: upper semi-Weyl spectrum of T
$\sigma_{l v}(T)$: lower semi-Weyl spectrum of T
$\sigma_{b}(T)$: Browder spectrum of T
$\sigma_{b f}(T)$: B-Fredholm spectrum of T
$\sigma_{p f}(T)$: pseudo-Fredholm spectrum of T
$\sigma_{p b f}(T)$: pseudo B-Fredholm spectrum of T
$\sigma_{u p b f}(T)$: upper pseudo semi-B-Fredholm spectrum of T
$\sigma_{l p b f}(T)$: lower pseudo semi-B-Fredholm spectrum of T
$\sigma_{p b w}(T)$: pseudo B-Weyl spectrum of T
$\sigma_{u p b w}(T)$: upper pseudo semi-B-Weyl spectrum of T
$\sigma_{l p b w}(T)$: lower pseudo semi-B-Weyl spectrum of T
$\sigma_{g d}(T)$: generalized Drazin invertible spectrum of T
$\sigma_{l g d}(T)$: left generalized Drazin invertible spectrum of T
$\sigma_{r g d}(T)$: right generalized Drazin invertible spectrum of T
$\sigma_{d}(T)$: Drazin spectrum of T
$\sigma_{b w}(T)$: B-Weyl spectrum of T

2. The g_{z}-Kato decomposition

We begin this section by the following definition of zeroloid operators.
Definition 2.1. We say that $T \in L(X)$ is a zeroloid operator if acc $\sigma(T) \subset\{0\}$.
The next remark summarizes some properties of zeroloid operators.
Remark 2.2. (i) A zeroloid operator has at most a countable spectrum.
(ii) Since acc $\sigma(T) \subset \sigma_{d}(T)$ for every $T \in L(X)$, then every meromorphic operator is zeroloid. But the operator $I+Q$ shows that the converse is not true, where I is the identity operator and Q is the quasi-nilpotent operator defined on the Hilbert space $\ell^{2}(\mathbb{N})$ by $Q\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, \frac{x_{2}}{2}, \ldots\right)$.
(iii) T is zeroloid if and only if T^{n} is zeroloid for every integer $n \geq 1$.
(iv) Let $(T, S) \in L(X) \times L(Y)$, then $T \oplus S$ is zeroloid if and only if T and S are zeroloid.
(v) Here and elsewhere denote by $\operatorname{comm}(T)=\{S \in L(X): T S=S T\}$. So if $Q \in \operatorname{comm}(T)$ is a quasi-nilpotent or a power finite rank operator, then T is zeroloid if and only if $T+Q$ is zeroloid.

According to [4], the p-ascent $\tilde{p}(T)$ and the p-descent $\tilde{q}(T)$ of a pseudo-Fredholm operator $T \in L(X)$ are defined respectively, by $\tilde{p}(T)=p\left(T_{M}\right)$ and $\tilde{q}(T)=q\left(T_{M}\right)$, where M is any subspace which complemented by a subspace N such that $(M, N) \in G K D(T)$.

Proposition 2.3. If $T \in L(X)$ is a pseudo-Fredholm operator, then the following statements are equivalent:
(a) $\tilde{p}(T)<\infty$;
(b) T has the SVEP at 0;
(c) $\mathcal{H}_{0}(T) \cap \mathcal{K}(T)=\{0\} ;$
(d) $\mathcal{H}_{0}(T)$ is closed.
dually, the following are equivalent:
(e) $\tilde{q}(T)<\infty$;
(f) T^{*} has the SVEP at 0;
(g) $\mathcal{H}_{0}(T)+\mathcal{K}(T)=X$.

Proof. $(\mathrm{a}) \Longleftrightarrow(\mathrm{b})$ Let $(M, N) \in G K D(T)$, then T_{M} is semi-regular and T_{N} is quasi-nilpotent. As $p\left(T_{M}\right)=\tilde{p}(T)$ then by the implication (A) above, we deduce that $\tilde{p}(T)<\infty$ if and only if T_{M} has the SVEP at 0 . Hence $\tilde{p}(T)<\infty$ if and only if T has the SVEP at 0 . The equivalence (e) \Longleftrightarrow (f) goes similarly. The equivalences (b) $\Longleftrightarrow(\mathrm{c}),(\mathrm{c}) \Longleftrightarrow(\mathrm{d})$ and $(\mathrm{f}) \Longleftrightarrow(\mathrm{g})$ are proved in [1, Theorem 2.79, Theorem 2.80].

Lemma 2.4. For $T \in L(X)$, the following statements are equivalent:
(i) T is zeroloid;
(ii) $\sigma_{*}(T) \subset\{0\}$, where $\sigma_{*} \in\left\{\sigma_{p f}, \sigma_{u p b f}, \sigma_{l p b f}, \sigma_{u p b w}, \sigma_{l p b w}, \sigma_{l g d}, \sigma_{r g d}, \sigma_{p b f}, \sigma_{p b w}\right\}$.

Proof. (i) \Longrightarrow (ii) Obvious, since $\sigma_{g d}(T)=\operatorname{acc} \sigma(T)$.
(ii) \Longrightarrow (i) If $\sigma_{*}(T) \subset\{0\}$, then $\mathbb{C} \backslash\{0\} \subset \Omega$, where Ω is the component of $\left(\sigma_{p f}(T)\right)^{C}$. Suppose that there exists $\lambda \in$ $\operatorname{acc} \sigma(T) \backslash\{0\}$, then $\lambda \notin \sigma_{*}(T)$ and hence $\tilde{p}(T-\lambda I)=\infty$ or $\tilde{q}(T-\lambda I)=\infty$, but this is impossible. Indeed, assume that $\tilde{p}(T-\lambda I)=\infty$, as $T-\lambda I$ is pseudo-Fredholm, from Proposition 2.3 we have $\mathcal{H}_{0}(T-\lambda I) \cap \mathcal{K}(T-\lambda I) \neq\{0\}$. And from [12, Corollary 4.3], we obtain $\overline{\mathcal{H}_{0}(T-\lambda I)} \cap \mathcal{K}(T-\lambda I)=\overline{\mathcal{H}_{0}(T-\mu I)} \cap \mathcal{K}(T-\mu I)$ for every $\mu \in \Omega$. This implies that $\tilde{p}(T-\mu I)=\infty$ for all $\mu \in \Omega \backslash\{0\}$ [otherwise $\mathcal{H}_{0}(T-\mu I)$ becomes closed for some $\mu \in \Omega \backslash\{0\}$ and then $\overline{\mathcal{H}_{0}(T-\lambda I)} \cap \mathcal{K}(T-\lambda I)=\{0\}$, which is impossible] and this is contradiction. Thus $\tilde{q}(T-\lambda I)=\infty$, but this leads (by the same argument) to a contradiction. Hence T is zeroloid.

Proposition 2.5. $T \in L(X)$ is zeroloid if and only if T_{M} and $T_{M^{+}}^{*}$ are zeroloid, where M is any closed T-invariant subspace.

Proof. If T is zeroloid, then its resolvent $(\sigma(T))^{C}$ is connected. From [15, Proposition 2.10], we obtain that $\sigma(T)=\sigma\left(T_{M}\right) \cup \sigma\left(T_{M^{\perp}}^{*}\right)$. Thus T_{M} and $T_{M^{\perp}}^{*}$ are zeroloid. Conversely, if T_{M} and $T_{M^{\perp}}^{*}$ are zeroloid, then T is zeroloid, since the inclusion $\sigma(T) \subset \sigma\left(T_{M}\right) \cup \sigma\left(T_{M^{\perp}}^{*}\right)$ is always true.

Definition 2.6. Let $T \in L(X)$. A pair of subspaces $(M, N) \in \operatorname{Red}(T)$ is a generalized Kato zeroloid decomposition associated to $T\left[(M, N) \in g_{z} K D(T)\right.$ for brevity] if T_{M} is semi-regular and T_{N} is zeroloid. If such a pair exists, we say that T is a g_{z}-Kato operator.

Example 2.7. (i) Every zeroloid operator and every semi-regular operator are g_{z}-Kato.
(ii) Every generalized Kato-meromorphic operator is g_{z}-Kato. But the converse is not true, see Example 4.13 below.

Our next result gives a punctured neighborhood theorem for g_{z}-Kato operators. Recall that the reduced minimal modulus $\gamma(T)$ of an operator T is defined by $\gamma(T):=\inf _{x \notin \mathcal{N}(T)} \frac{\|T x\|}{d(x, \mathcal{N}(T))}$, where $d(x, \mathcal{N}(T))$ is the distance between x and $\mathcal{N}(T)$.

Theorem 2.8. Let $T \in L(X)$ be a g_{z}-Kato operator. For every $(M, N) \in g_{z} K D(T)$, there exists $\epsilon>0$ such that for all $\lambda \in B(0, \epsilon) \backslash\{0\}$ we have
(i) $T-\lambda I$ is pseudo-Fredholm.
(ii) $\alpha\left(T_{M}\right)=\operatorname{dim} \mathcal{N}(T-\lambda I) \cap \mathcal{K}(T-\lambda I) \leq \alpha(T-\lambda I)$.
(iii) $\beta\left(T_{M}\right)=\operatorname{codim}\left[\mathcal{R}(T-\lambda I)+\mathcal{H}_{0}(T-\lambda I)\right] \leq \beta(T-\lambda I)$.

Proof. Let $\epsilon=\gamma\left(T_{M}\right)>0$ and let $\lambda \in B(0, \epsilon) \backslash\{0\}$. From [18, Theorem 4.7], $T_{M}-\lambda I$ is semi-regular, $\alpha\left(T_{M}\right)=$ $\alpha\left(T_{M}-\lambda I\right)$ and $\beta\left(T_{M}\right)=\beta\left(T_{M}-\lambda I\right)$. As T_{N} is zeroloid then from [4], $T_{N}-\lambda I$ is pseudo-Fredholm with $\mathcal{N}\left(T_{N}-\lambda I\right) \cap \mathcal{K}\left(T_{N}-\lambda I\right)=\{0\}$ and $N=\mathcal{R}\left(T_{N}-\lambda I\right)+\mathcal{H}_{0}\left(T_{N}-\lambda I\right)$. Hence $T-\lambda I$ is pseudo-Fredholm, $\alpha\left(T_{M}\right)=\operatorname{dim} \mathcal{N}(T-\lambda I) \cap \mathcal{K}(T-\lambda I)$ and $\beta\left(T_{M}\right)=\operatorname{codim}\left[\mathcal{R}(T-\lambda I)+\mathcal{H}_{0}(T-\lambda I)\right]$.

Since every pseudo-Fredholm operator is g_{z}-Kato, from Theorem 2.8 we immediately obtain the following corollary. Hereafter, we denote by $\sigma_{g_{z} K}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I\right.$ is not g_{z}-Kato operator $\}$ the g_{z}-Kato spectrum.

Corollary 2.9. The g_{z}-Kato spectrum $\sigma_{g_{z} K}(T)$ of an operator $T \in L(X)$ is compact.

Proposition 2.10. If $T \in L(X)$ is a g_{z}-Kato operator, then $\alpha\left(T_{M}\right), \beta\left(T_{M}\right), p\left(T_{M}\right)$ and $q\left(T_{M}\right)$ are independent of the choice of the generalized Kato zeroloid decomposition $(M, N) \in g_{z} K D(T)$.

Proof. Let $\left(M_{1}, N_{1}\right),\left(M_{2}, N_{2}\right) \in g_{z} K D(T)$ and let $n \geq 1$. It is easily seen that T^{n} is also a g_{z}-Kato operator and $\left(M_{1}, N_{1}\right),\left(M_{2}, N_{2}\right) \in g_{z} K D\left(T^{n}\right)$. We put $\epsilon_{n}=\min \left\{\gamma\left(T_{M_{1}}^{n}\right), \gamma\left(T_{M_{2}}^{n}\right)\right\}$. If $\lambda \in B\left(0, \epsilon_{n}\right) \backslash\{0\}$, then by Theorem 2.8 we obtain $\alpha\left(T_{M_{1}}^{n}\right)=\alpha\left(T_{M_{2}}^{n}\right)=\operatorname{dim} \mathcal{N}\left(T^{n}-\lambda I\right) \cap \mathcal{K}\left(T^{n}-\lambda I\right)$ and $\beta\left(T_{M_{1}}^{n}\right)=\beta\left(T_{M_{2}}^{n}\right)=\operatorname{codim}\left[\mathcal{R}\left(T^{n}-\lambda I\right)+\mathcal{H}_{0}\left(T^{n}-\lambda I\right)\right]$. Hence $p\left(T_{M_{1}}\right)=p\left(T_{M_{2}}\right)$ and $q\left(T_{M_{1}}\right)=q\left(T_{M_{2}}\right)$.

Let $T \in L(X)$ be a g_{z}-Kato operator. Following Proposition 2.10, we denote by $\tilde{\alpha}(T)=\alpha\left(T_{M}\right), \tilde{\beta}(T)=\beta\left(T_{M}\right)$, $\tilde{p}(T)=p\left(T_{M}\right)$ and $\tilde{q}(T)=q\left(T_{M}\right)$, where $(M, N) \in g_{z} K D(T)$ be arbitrary. If in addition, T_{M} is semi-Fredholm, then for every $\left(M^{\prime}, N^{\prime}\right) \in g_{z} K D(T)$ the operator $T_{M^{\prime}}$ is also semi-Fredholm and $\operatorname{ind}\left(T_{M}\right)=\operatorname{ind}\left(T_{M^{\prime}}\right)$ (this result will be extended in Lemma 3.4).

The next lemma extends [30, Theorem A.16]. In the sequel, for $T \in L(X)$ and $(M, N) \in \operatorname{Red}(T)$, we define the operator $T_{(M, N)} \in L(X)$ by $T_{(M, N)}=T P_{M}+P_{N}$, where P_{M} is the projection operator on X onto M.

Lemma 2.11. Let $T \in L(X)$ and let $(M, N) \in \operatorname{Red}(T)$. The following assertions are equivalent:
(i) $\mathcal{R}\left(T_{M}\right)$ is closed;
(ii) $\mathcal{R}\left(T_{N^{+}}^{*}\right)$ is closed;
(iii) $\mathcal{R}\left(T_{N^{+}}^{*}\right) \oplus M^{\perp}$ is closed in the weak-*-topology $\sigma\left(X^{*}, X\right)$ on X^{*}.

Proof. As $(M, N) \in \operatorname{Red}(T)$ then $\left(P_{N}\right)^{*}=P_{M^{\perp}}$ and $\left(T P_{M}\right)^{*}=T^{*} P_{N^{\perp}}$. So $\left(T_{(M, N)}\right)^{*}=\left(T P_{M}+P_{N}\right)^{*}=T^{*} P_{N^{\perp}}+P_{M^{\perp}}=$ $T_{\left(N^{\perp}, M^{\perp}\right)}^{*}$. Thus $\mathcal{R}\left(T_{(M, N)}\right)=\mathcal{R}\left(T_{M}\right) \oplus N$ and $\mathcal{R}\left(\left(T_{(M, N)}\right)^{*}\right)=\mathcal{R}\left(T_{N^{\perp}}^{*}\right) \oplus M^{\perp}$. Moreover, $\mathcal{R}\left(T_{M}\right)$ is closed if and only if $\mathcal{R}\left(T_{(M, N)}\right)$ is closed. By applying [30, Theorem A.16] to the operator $T_{(M, N)}$, the proof is complete.

From this Lemma and some known classical properties of pseudo-Fredholm and quasi-Fredholm operators, we immediately obtain:

Corollary 2.12. Let $T \in L(X)$. The following statements hold:
(i) If T is pseudo-Fredholm, then $\mathcal{R}\left(T^{*}\right)+\mathcal{H}_{0}\left(T^{*}\right)$ is closed in $\sigma\left(X^{*}, X\right)$.
(ii) If T is a Hilbert space quasi-Fredholm operator of degree d, then $\mathcal{R}\left(T^{*}\right)+\mathcal{N}\left(T^{d *}\right)$ is closed in $\sigma\left(X^{*}, X\right)$.

The following lemma extends some well known results in spectral theory, as relation between nullity, deficiency and some other spectral quantities of a given operator T and its dual T^{*}.

Lemma 2.13. Let $T \in L(X)$ and let $(M, N) \in \operatorname{Red}(T)$. The following statements hold:
(i) T_{M} is semi-regular if and only if $T_{N^{+}}^{*}$ is semi-regular.
(ii) If $\mathcal{R}\left(T_{M}\right)$ is closed, then $\alpha\left(T_{M}\right)=\beta\left(T_{N^{\perp}}^{*}\right), \beta\left(T_{M}\right)=\alpha\left(T_{N^{+}}^{*}\right), p\left(T_{M}\right)=q\left(T_{N^{+}}^{*}\right)$ and $q\left(T_{M}\right)=p\left(T_{N^{\perp}}^{*}\right)$.
(iii) $\sigma_{a}\left(T_{M}\right)=\sigma_{s}\left(T_{N^{+}}^{*}\right), \sigma_{s}\left(T_{M}\right)=\sigma_{a}\left(T_{N^{+}}^{*}\right), \sigma_{*}\left(T_{M}\right)=\sigma_{*}\left(T_{N^{+}}^{*}\right)$ and $r\left(T_{M}\right)=r\left(T_{N^{+}}^{*}\right)$, where $\sigma_{*} \in\left\{\sigma, \sigma_{s e}, \sigma_{e}, \sigma_{s f}, \sigma_{b f}, \sigma_{d}, \sigma_{b}\right\}$. Moreover, if T_{M} is semi-Fredholm, then ind $\left(T_{M}\right)=-\operatorname{ind}\left(T_{N^{+}}^{*}\right)$.
Proof. (i) We have $\mathcal{N}\left(T_{(M, N)}\right)=\mathcal{N}\left(T_{M}\right)$ and $\left(T_{(M, N)}\right)^{n}=T_{(M, N)}^{n}$ for every $n \in \mathbb{N}$. It is easy to see that T_{M} is semi-regular if and only if $T_{(M, N)}$ is semi-regular. As $\left(T_{(M, N)}\right)^{*}=T_{\left(N^{\perp}, M^{\perp}\right)}^{*}$ then T_{M} is semi-regular if and only if $T_{N^{\perp}}^{*}$ is semi-regular.
(ii) We have $\mathcal{N}\left(\left(T_{(M, N)}\right)^{n}\right)=\mathcal{N}\left(T_{M}^{n}\right)$ and $\mathcal{R}\left(\left(T_{(M, N)}\right)^{n}\right)=\mathcal{R}\left(T_{M}^{n}\right) \oplus N$ for every $n \in \mathbb{N}$. As $\mathcal{R}\left(T_{(M, N)}\right)=\mathcal{R}\left(T_{M}\right) \oplus N$ is closed then $\alpha\left(T_{M}\right)=\alpha\left(T_{(M, N)}\right)=\beta\left(T_{\left(N^{\perp}, M^{\perp}\right)}^{*}\right)=\beta\left(T_{N^{\perp}}^{*}\right)$. The other equalities go similarly.
(iii) As $\left(T_{M} \oplus 0_{N}\right)^{*}=\left(T P_{M}\right)^{*}=T^{*} P_{N^{\perp}}=T_{N^{\perp}}^{*} \oplus 0_{M^{\perp}}$, then $\sigma_{*}\left(T_{M}\right) \cup \sigma_{*}\left(0_{N}\right)=\sigma_{*}\left(T_{M} \oplus 0_{N}\right)=\sigma_{*}\left(T_{N^{\perp}}^{*} \oplus 0_{M^{+}}\right)=$ $\sigma_{*}\left(T_{N^{\perp}}^{*}\right) \cup \sigma_{*}\left(0_{M^{\perp}}\right)$. We know that $\sigma_{*}(S)=\emptyset$ for every nilpotent operator S with $\sigma_{*} \in\left\{\sigma_{b f}, \sigma_{d}\right\}$. Furthermore, the first and the second points imply that $0 \in \sigma_{*}\left(T_{M}\right)$ if and only if $0 \in \sigma_{*}\left(T_{N^{+}}^{*}\right)$, where $\sigma_{*} \in\left\{\sigma, \sigma_{s e}, \sigma_{e}, \sigma_{s f}, \sigma_{b}\right\}$. So $\sigma_{*}\left(T_{M}\right)=\sigma_{*}\left(T_{N^{+}}^{*}\right)$ and $r\left(T_{M}\right)=r\left(T_{N^{+}}^{*}\right)$. The proof of the other equalities spectra is obvious, see Lemma 2.11. Moreover, if T_{M} is semi-Fredholm, then $T_{N^{+}}^{*}$ is also semi-Fredholm and $\operatorname{ind}\left(T_{M}\right)=-\operatorname{ind}\left(T_{N^{+}}^{*}\right)$.

Corollary 2.14. Let $T \in L(X)$ and $\operatorname{let}(M, N) \in \operatorname{Red}(T)$. Then $(M, N) \in g_{z} K D(T)$ if and only if $\left(N^{\perp}, M^{\perp}\right) \in g_{z} K D\left(T^{*}\right)$. In particular, if T is g_{z}-Kato, then T^{*} is g_{z}-Kato.

Proposition 2.15. If $T \in L(X)$ is g_{z}-Kato, then
(a) There exist $S, R \in L(X)$ such that:
(i) $T=S+R, R T=T R=0, S$ is quasi-Fredholm of degree $d \leq 1$ and R is zeroloid.
(ii) $\mathcal{N}(S)+\mathcal{N}(R)=X$ and $\mathcal{R}(S) \oplus \overline{\mathcal{R}(R)}$ is closed.
(b) There exist $S, R \in L(X)$ such that $S R=R S=(S+R)-I=T$, S is semi-regular and R is zeroloid.

Proof. (a) Let $(M, N) \in g_{z} K D(T)$. The operators $S=T P_{M}$ and $R=T P_{N}$ respond to the statement (a). Indeed, as T_{N} is zeroloid and $\operatorname{acc} \sigma(R)=\operatorname{acc} \sigma\left(T_{N}\right)$ then R is zeroloid. Suppose that $M \notin\{\{0\}, X\}$ (the other case is trivial) and let $n \in \mathbb{N} \geq 1$, then $\mathcal{N}\left(S^{n}\right)=N \oplus \mathcal{N}\left(T_{M}^{n}\right)$ and $\mathcal{R}(S)=\mathcal{R}\left(T_{M}\right)$ is closed. As T_{M} is semi-regular, it follows that $\mathcal{N}\left(S^{n}\right)+\mathcal{R}(S)=N+\mathcal{N}\left(T_{M}^{n}\right)+\mathcal{R}\left(T_{M}\right)=N+\mathcal{N}\left(T_{M}\right)+\mathcal{R}\left(T_{M}\right)=\mathcal{N}(S)+\mathcal{R}(S)$. Consequently, S is quasi-Fredholm of degree $d \leq 1$. Moreover, $\mathcal{N}(S)+\mathcal{N}(R)=X$ and $\mathcal{R}(S) \oplus \overline{\mathcal{R}(R)}=\mathcal{R}\left(T_{M}\right) \oplus \overline{\mathcal{R}\left(T_{N}\right)}$ is closed.
(b) Let $(M, N) \in g_{z} K D(T)$. If we take $S=T_{(M, N)}$ and $R=T_{(N, M)}$, then $S R=R S=(S+R)-I=T, S=T_{M} \oplus I_{N}$ is semi-regular and $R=I_{M} \oplus T_{N}$ is zeroloid.

In the case of Hilbert space operator T, the next proposition shows that the statement (a) of Proposition 2.15 is equivalent to say that T is g_{z}-Kato.
Proposition 2.16. If H is a Hilbert space, then $T \in L(H)$ is g_{z}-Kato if and only if there exist $S, R \in L(H)$ such that $T=S+R$ and
(i) $R T=T R=0, S$ is quasi-Fredholm of degree $\operatorname{dis}(S) \leq 1, R$ is a zeroloid operator;
(ii) $\mathcal{N}(S)+\mathcal{N}(R)=H$ and $\mathcal{R}(S) \oplus \overline{\mathcal{R}(R)}$ is closed.

Proof. Assume that S is quasi-Fredholm of degree 1 (the case of S semi-regular is obvious), then from the proof of [27, Theorem 2.2], there exists $(M, N) \in G K D(S)$ such that $T_{M}=S_{M}$ and $T_{N}=R_{N}$. As R is zeroloid then Proposition 2.5 entails that T_{N} is zeroloid. Thus T is g_{z}-Kato. For the converse, see Proposition 2.15.

3. g_{z}-Fredholm operators

Definition 3.1. $T \in L(X)$ is said to be an upper semi- g_{z}-Fredholm (resp., lower semi- g_{z}-Fredholm, g_{z}-Fredholm) operator if there exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is an upper semi-Fredholm (resp., lower semi-Fredholm, Fredholm) operator and T_{N} is zeroloid. T is said a semi- g_{z}-Fredholm if it is an upper or a lower semi- g_{z}-Fredholm.
Every zeroloid operator is g_{z}-Fredholm. Every generalized Drazin-meromorphic semi-Fredholm is a semi-g_{z}-Fredholm, and we show by Example 4.13 that the converse is generally not true.

The next proposition gives some relations between semi- g_{z}-Fredholm and g_{z}-Kato operators.
Proposition 3.2. Let $T \in L(X)$. The following statements are equivalent:
(i) T is semi- g_{z}-Fredholm $\left[\right.$ resp., upper semi- g_{z}-Fredholm, lower semi- g_{z}-Fredholm, g_{z}-Fredholm $]$;
(ii) T is g_{z}-Kato and min $\{\tilde{\alpha}(T), \tilde{\beta}(T)\}<\infty\left[\right.$ resp., T is g_{z}-Kato and $\tilde{\alpha}(T)<\infty, T$ is g_{z}-Kato and $\tilde{\beta}(T)<\infty, T$ is g_{z}-Kato and $\max \{\tilde{\alpha}(T), \tilde{\beta}(T)\}<\infty]$;
(iii) T is g_{z}-Kato and $0 \notin \operatorname{acc} \sigma_{\text {spbf }}(T)$ [resp., T is g_{z}-Kato and $0 \notin \operatorname{acc} \sigma_{\text {upbf }}(T), T$ is g_{z}-Kato and $0 \notin \operatorname{acc} \sigma_{\text {lpbf }}(T)$, T is g_{z}-Kato and $\left.0 \notin \operatorname{acc} \sigma_{p b f}(T)\right]$, where $\sigma_{\text {spbf }}(T):=\sigma_{\text {upbf }}(T) \cup \sigma_{\text {lpbf }}(T)$.

Proof. (i) \Longleftrightarrow (ii) Assume that T is semi- g_{z}-Fredholm, then there exists $(A, B) \in \operatorname{Red}(T)$ such that T_{A} is semi-Fredholm and T_{B} is zeroloid. From [5, Corollary 3.7], there exists $(M, N) \in g_{z} K D(T)$ such that T_{M} is semi-Fredholm. Thus T is g_{z}-Kato operator and $\min \{\tilde{\alpha}(T), \tilde{\beta}(T)\}=\min \left\{\alpha\left(T_{M}\right), \beta\left(T_{M}\right)\right\}<\infty$. The converse is obvious. The other equivalence cases go similarly.
(ii) $\Longleftrightarrow(i i i)$ Is a consequence of Theorem 2.8.

Corollary 3.3. $T \in L(X)$ is g_{z}-Fredholm if and only if T is an upper and a lower semi- g_{z}-Fredholm.
The following lemma will allow us to define the index for semi- g_{z}-Fredholm operators.
Lemma 3.4. Let $T \in L(X)$. If there exist two pair of closed T-invariant subspaces (M, N) and $\left(M^{\prime}, N^{\prime}\right)$ such that $M \oplus N=M^{\prime} \oplus N^{\prime}$ is closed, T_{M} and $T_{M^{\prime}}$ are semi-Fredholm, T_{N} and $T_{N^{\prime}}$ are zeroloid, then $\operatorname{ind}\left(T_{M}\right)=\operatorname{ind}\left(T_{M^{\prime}}\right)$.

Proof. As T_{M} and $T_{M^{\prime}}$ are semi-Fredholm operators then from the punctured neighborhood theorem for semi-Fredholm operators, there exists $\epsilon>0$ such that $B(0, \epsilon) \subset \sigma_{s f}\left(T_{M}\right)^{C} \cap \sigma_{s f}\left(T_{M^{\prime}}\right)^{C}, \operatorname{ind}\left(T_{M}-\lambda I\right)=\operatorname{ind}\left(T_{M}\right)$ and $\operatorname{ind}\left(T_{M^{\prime}}-\lambda I\right)=\operatorname{ind}\left(T_{M^{\prime}}\right)$ for every $\lambda \in B(0, \epsilon)$. From [4, Remark 2.4] and the fact that T_{N} and $T_{N^{\prime}}$ are zeroloid, we conclude that $B_{0}:=B(0, \epsilon) \backslash\{0\} \subset \sigma_{s f}\left(T_{M}\right)^{C} \cap \sigma_{s f}\left(T_{M^{\prime}}\right)^{C} \cap \sigma_{g d}\left(T_{N}\right)^{C} \cap \sigma_{g d}\left(T_{N^{\prime}}\right)^{C} \subset \sigma_{s p b f}\left(T_{M \oplus N}\right)^{C}$. Let $\lambda \in B_{0}$, then $(T-\lambda I)_{M \oplus N}$ is pseudo semi-B-Fredholm and ind $\left((T-\lambda I)_{M \oplus N}\right)=\operatorname{ind}\left(T_{M}-\lambda I\right)+\operatorname{ind}\left(T_{N}-\lambda I\right)=$ $\operatorname{ind}\left(T_{M^{\prime}}-\lambda I\right)+\operatorname{ind}\left(T_{N^{\prime}}-\lambda I\right)$. Thus ind $\left(T_{M}\right)=\operatorname{ind}\left(T_{M^{\prime}}\right)$.

Definition 3.5. Let $T \in L(X)$ be a semi- g_{z}-Fredholm. We define its index ind (T) as the index of T_{M}, where M is a closed T-invariant subspace which has a complementary closed T-invariant subspace N such that T_{M} is semi-Fredholm and T_{N} is zeroloid. From Lemma 3.4, the index of T is independent of the choice of the pair (M, N) appearing in Definition 3.1 of T as a semi- g_{z}-Fredholm. In addition, we have from Proposition 3.2, ind $(T)=\tilde{\alpha}(T)-\tilde{\beta}(T)$.

We say that $T \in L(X)$ is an upper semi- g_{z}-Weyl (resp., lower semi- g_{z}-Weyl, g_{z}-Weyl) operator if T is an upper semi- g_{z}-Fredholm (resp., lower semi- g_{z}-Fredholm, g_{z}-Fredholm) with $\operatorname{ind}(T) \leq 0(\operatorname{resp}$., $\operatorname{ind}(T) \geq 0$, $\operatorname{ind}(T)=0)$.

Remark 3.6. (i) Every zeroloid operator T is g_{z}-Fredholm with $\tilde{\alpha}(T)=\tilde{\beta}(T)=\operatorname{ind}(T)=0$. A pseudo semi-B-Fredholm is semi- g_{z}-Fredholm and its usual index coincides with its index as a semi- g_{z}-Fredholm.
(ii) T is g_{z}-Fredholm if and only if T is semi- g_{z}-Fredholm with an integer index. And T is g_{z}-Weyl if and only if T is upper and lower semi- g_{z}-Weyl.

Proposition 3.7. If $T \in L(X)$ and $S \in L(Y)$ are semi- g_{z}-Fredholm, then
(i) T^{n} is semi- g_{z}-Fredholm and ind $\left(T^{n}\right)=n$.ind (T) for every integer $n \geq 1$.
(ii) $T \oplus S$ is semi- g_{z}-Fredholm and $\operatorname{ind}(T \oplus S)=\operatorname{ind}(T)+\operatorname{ind}(S)$.

Proof. (i) As T is semi- g_{z}-Fredholm, then there exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is semi-Fredholm and T_{N} is zeroloid. So $(M, N) \in \operatorname{Red}\left(T^{n}\right), T_{M}^{n}$ is semi-Fredholm and T_{N}^{n} is zeroloid. Thus $\operatorname{ind}\left(T^{n}\right)=\operatorname{ind}\left(T_{M}^{n}\right)=$ $n \cdot \operatorname{ind}\left(T_{M}\right)=n . \operatorname{ind}(T)$.
(ii) Since $T \in L(X)$ and $S \in L(Y)$ are semi- g_{z}-Fredholm, then there exist $\left(M_{1}, N_{1}\right) \in \operatorname{Red}(T)$ and $\left(M_{2}, N_{2}\right) \in$ $\operatorname{Red}(S)$ such that $T_{M_{1}}$ and $T_{M_{2}}$ are semi-Fredholm, $T_{N_{1}}$ and $T_{N_{2}}$ are zeroloid. Hence $T_{M_{1} \oplus M_{2}}$ is semi-Fredholm and $T_{N_{1} \oplus N_{2}}$ is zeroloid. Moreover, $\left(M_{1} \oplus M_{2}, N_{1} \oplus N_{2}\right) \in \operatorname{Red}(T \oplus S)$. Hence ind $(T \oplus S)=\operatorname{ind}\left((T \oplus S)_{M_{1} \oplus M_{2}}\right)=$ $\operatorname{ind}\left(T_{M_{1}}\right)+\operatorname{ind}\left(S_{M_{2}}\right)=\operatorname{ind}(T)+\operatorname{ind}(S)$.

Denote by $\sigma_{u g_{z}} f(T), \sigma_{l g_{z}} f(T), \sigma_{s g_{z} f}(T), \sigma_{g_{z} f}(T), \sigma_{u g_{z} w}(T), \sigma_{l g_{z} w}(T), \sigma_{s g_{z} w}(T)$ and $\sigma_{g_{z} w}(T)$ respectively, the upper semi- g_{z}-Fredholm spectrum, the lower semi- g_{z}-Fredholm spectrum, the semi- g_{z}-Fredholm, the g_{z}-Fredholm spectrum, the upper semi- g_{z}-Weyl spectrum, the lower semi- g_{z}-Weyl spectrum, the semi- g_{z}-Weyl spectrum and the g_{z}-Weyl spectrum of T.

Corollary 3.8. For every $T \in L(X)$, we have $\sigma_{g_{z} f}(T)=\sigma_{u g_{z} f} f(T) \cup \sigma_{l g_{z} f} f(T)$ and $\sigma_{g_{z} w}(T)=\sigma_{u g_{z} w}(T) \cup \sigma_{l g_{z} w}(T)$.
Proposition 3.9. Let $T \in L(X)$ be a semi-B-Fredholm operator which is semi- g_{z}-Fredholm. Then T is quasi semi-BFredholm and its index as a semi-B-Fredholm coincides with its index as a semi- g_{z}-Fredholm.

Proof. Let $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is semi-Fredholm and T_{N} is zeroloid. Since T is semi-B-Fredholm then T_{N} is Drazin invertible. So there exists $(A, B) \in \operatorname{Red}\left(T_{N}\right)$ such that T_{A} is invertible and T_{B} is nilpotent. It is easy to get that $M \oplus A$ is closed, so that $T_{M \oplus A}$ is semi-Fredholm. Consequently, $T=T_{M \oplus A} \oplus T_{B}$ is quasi semi-B-Fredholm. Furthermore, the punctured neighborhood theorem for semi-Fredholm operators implies that $\operatorname{ind}\left(T_{M}\right)=\operatorname{ind}\left(T_{\left[m_{T}\right]}\right)$.

From [29, Theorem 7] and the previous proposition, we obtain the following corollary.
Corollary 3.10. Every B-Fredholm operator $T \in L(X)$ is g_{z}-Fredholm and its usual index coincides with its index as a g_{z}-Fredholm operator.

Proposition 3.11. If $T \in L(X)$ is a semi- g_{z}-Fredholm operator, then T^{*} is semi- g_{z}-Fredholm, $\tilde{\alpha}(T)=\tilde{\beta}\left(T^{*}\right), \tilde{\beta}(T)=$ $\tilde{\alpha}\left(T^{*}\right)$ and $\operatorname{ind}(T)=-\operatorname{ind}\left(T^{*}\right)$.

Proof. See Lemma 2.13.
Our next definition gives a new class of operators that extends the class of semi-Browder operators.
Definition 3.12. We say that $T \in L(X)$ is an upper semi- g_{z}-Browder (resp., lower semi- g_{z}-Browder, g_{z}-Browder) if T is a direct sum of an upper semi-Browder (resp., lower semi-Browder, Browder) operator and a zeroloid operator.

Proposition 3.13. Let $T \in L(X)$. The following statements are equivalent:
(i) T is an upper semi- g_{z}-Browder [resp., lower semi- g_{z}-Browder, g_{z}-Browder];
(ii) T is an upper g_{z}-Weyl and T has the SVEP at 0 [resp., T is a lower semi- g_{z}-Weyl and T^{*} has the SVEP at $0, T$ is g_{z}-Weyl and T or T^{*} has the SVEP at 0];
(iii) T is an upper semi- g_{z}-Fredholm and T has the SVEP at $0\left[r e s p ., T\right.$ is a lower semi- g_{z}-Fredholm and T^{*} has the SVEP at 0, T is g_{z}-Fredholm and $T \oplus T^{*}$ has the SVEP at 0].

Proof. (i) \Longleftrightarrow (ii) Suppose that T is g_{z}-Browder, then there exists $(M, N) \in g_{z} K D(T)$ such that T_{M} is Browder. So $T_{M},\left(T_{M}\right)^{*}, T_{N}$ and $\left(T_{N}\right)^{*}$ have the SVEP at 0 . Thus T and T^{*} have the SVEP at 0 . Conversely, if T is g_{z}-Weyl and T or T^{*} has the SVEP at 0 , then there exists $(M, N) \in g_{z} K D(T)$ such that T_{M} is Weyl and T_{M} or $\left(T_{M}\right)^{*}$ has the SVEP at 0 . So $\max \{\tilde{\alpha}(T), \tilde{\beta}(T)\}<\infty$ and $\min \{\tilde{p}(T), \tilde{q}(T)\}<\infty$. This implies from [1, Lemma 1.22] that $\max \{\tilde{p}(T), \tilde{q}(T)\}<\infty$ and then T_{M} is Browder. Therefore T is g_{z}-Browder. The other equivalence cases go similarly.
(i) \Longleftrightarrow (iii) Suppose that T is g_{z}-Fredholm and $T \oplus T^{*}$ has the SVEP at 0 . Let $(M, N) \in g_{z} K D(T)$ such that T_{M} is Fredholm and T_{N} is zeroloid. Hence $T_{M} \oplus\left(T_{M}\right)^{*}$ has the SVEP at 0 . From the implications (A) and (B) mentioned in the introduction, we deduce that T_{M} is Browder and then T is g_{z}-Browder. The converse is clear and the other equivalence cases go similarly.

The proofs of the following results are obvious and are left to the reader.
Proposition 3.14. If $T \in L(X)$ is semi- g_{z}-Fredholm, then there exists $\epsilon>0$ such that $B_{0}:=B(0, \epsilon) \backslash\{0\} \subset\left(\sigma_{s p b f}(T)\right)^{C}$ and $\operatorname{ind}(T)=\operatorname{ind}(T-\lambda I)$ for every $\lambda \in B_{0}$.

Corollary 3.15. For every $T \in L(X)$, the following assertions hold:
(i) $\sigma_{u g_{z} f} f(T), \sigma_{l g_{z} f}(T), \sigma_{s g_{z} f}(T), \sigma_{g_{z} f}(T), \sigma_{u g_{z} w}(T), \sigma_{l g_{z} w}(T), \sigma_{s g_{z} w}(T)$ and $\sigma_{g_{z} w}(T)$ are compact.
(ii) If Ω is a component of $\left(\sigma_{u g_{z} f}(T)\right)^{C}$ or $\left(\sigma_{l g_{z} f}(T)\right)^{C}$, then the index ind $(T-\lambda I)$ is constant as λ ranges over Ω.

Corollary 3.16. Let $T \in L(X)$. The following statements are equivalent:
(i) T is semi- g_{z}-Weyl $\left[\right.$ resp., upper semi- g_{z}-Weyl, lower semi- g_{z}-Weyl, g_{z}-Weyl];
(ii) T is g_{z}-Kato and $0 \notin \operatorname{acc} \sigma_{\text {spbw }}(T)\left[\right.$ resp., T is g_{z}-Kato and $0 \notin \operatorname{acc} \sigma_{u p b w}(T), T$ is g_{z}-Kato and $0 \notin \operatorname{acc} \sigma_{\text {lpbw }}(T)$, T is g_{z}-Kato and $0 \notin$ acc $\left.\sigma_{p b w}(T)\right]$, where $\sigma_{s p b w}(T):=\sigma_{u p b w}(T) \cup \sigma_{\text {lpbw }}(T)$.

4. g_{z}-invertible operators

Recall [1] that $T \in L(X)$ is said to be Drazin invertible if there exists an operator $S \in L(X)$ which commutes with T with $S T S=S$ and $T^{n} S T=T^{n}$ for some integer $n \in \mathbb{N}$. The index of a Drazin invertible operator T is defined by $i(T)=\min \left\{n \in \mathbb{N}: \exists S \in L(X)\right.$ such that $S T=T S, S T S=S$ and $\left.T^{n} S T=T^{n}\right\}$.

Proposition 4.1. Let $T \in L(X)$. If $p(T)<\infty(\operatorname{resp} ., q(T)<\infty)$ then $p(T)=\operatorname{dis}(T)(r e s p ., q(T)=\operatorname{dis}(T))$. Moreover, if T is Drazin invertible, then $i(T)=\operatorname{dis}(T)$.

Proof. Suppose that $p(T)<\infty$, then $\mathcal{N}\left(T_{[n]}\right)=\{0\}$ for every $n \geq p(T)$. This implies that $\mathcal{N}\left(T_{[d]}\right)=\{0\}$, where $d:=\operatorname{dis}(T)$. Thus $p(T) \leq d$, and as we always have $d \leq \min \{p(T), q(T)\}$ then $p(T)=d$. If $q(T)<\infty$, then $X=\mathcal{R}(T)+\mathcal{N}\left(T^{n}\right)$ for every $n \geq q(T)$. Since $\mathcal{R}(T)+\mathcal{N}\left(T^{d}\right)=\mathcal{R}(T)+\mathcal{N}\left(T^{m}\right)$ for every integer $m \geq d$, then $X=\mathcal{R}(T)+\mathcal{N}\left(T^{d}\right)$. Hence $T_{[d]}$ is surjective and consequently $q(T)=d$. If in addition T is Drazin invertible, then the proof of the equality desired is an immediate consequence of [1, Theorem 1.134].

Definition 4.2. We say that T is quasi left Drazin invertible (resp., quasi right Drazin invertible) if there exists $(M, N) \in K D(T)$ such that T_{M} is bounded below (resp., surjective).

Proposition 4.3. Let $T \in L(X)$. The following hold:
(i) T is Drazin invertible if and only if T is quasi left and quasi right Drazin invertible.
(ii) If T is quasi left Drazin invertible, then T is left Drazin invertible.
(iii) If T is quasi right Drazin invertible, then T is right Drazin invertible.

Furthermore, the converses of (ii) and (iii) are true in the case of Hilbert space.
Proof. (i) Assume that T is Drazin invertible, then $n:=p(T)=q(T)<\infty$. It is well known that $\left(\mathcal{R}\left(T^{n}\right), \mathcal{N}\left(T^{n}\right)\right) \in$ $\operatorname{Red}(T), T_{\mathcal{R}\left(T^{n}\right)}$ is invertible and $T_{\mathcal{N}\left(T^{n}\right)}$ is nilpotent. So T is quasi left and quasi right Drazin invertible. Conversely, if T is quasi left and quasi right Drazin invertible, then $\tilde{\alpha}(T)=\tilde{\beta}(T)=0$. Therefore $\alpha\left(T_{M}\right)=$ $\tilde{\alpha}(T)=\tilde{\beta}(T)=\beta\left(T_{M}\right)=0$ for every $(M, N) \in K D(T)$. Thus T is Drazin invertible.
(ii) Let $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is bounded below and T_{N} is nilpotent of degree d. As a bounded below operator is semi-regular, we deduce from [5, Theorem 2.21] that $d=\operatorname{dis}(T)$. Clearly, $\mathcal{R}\left(T^{n}\right)$ is closed and $T_{[n]}=\left(T_{M}\right)_{[n]}$ is bounded below for every integer $n \geq d$. Hence T is left Drazin invertible. Conversely, assume that T is left Drazin invertible Hilbert space operator. Then T is upper semi-B-Fredholm, which entails from [10, Theorem 2.6] and [5, Corollary 3.7] that there exists $(M, N) \in K D(T)$ such that T_{M} is upper semi-Browder. Using [4, Lemma 2.17], we conclude that T_{M} is bounded below and then T is quasi left Drazin invertible.
(iii) Goes similarly with (ii).

Proposition 4.4. $T \in L(X)$ is an upper semi-Browder [resp., lower semi-Browder] if and only if T is a quasi left Drazin invertible [resp., quasi right Drazin invertible] and dim $N<\infty$ for every (or for some) $(M, N) \in K D(T)$.

Proof. If T is an upper semi-Browder, then T is upper semi-Fredholm. From [5, Corollary 3.7], there exists $(M, N) \in K D(T)$ with T_{M} is upper semi-Browder. It follows from [4, Lemma 2.17] that T_{M} is bounded below. Let $(A, B) \in K D(T)$ be arbitrary. Since a nilpotent operator $S \in L(Y)$ is semi-Fredholm iff $\operatorname{dim} Y<\infty$, then $\operatorname{dim} B<\infty$. The converse is obvious and the other case goes similarly.

Definition 4.5. $T \in L(X)$ is said to be left g_{z}-invertible (resp., right g_{z}-invertible) if there exists $(M, N) \in g_{z} K D(T)$ such that T_{M} is bounded below (resp., surjective). T is called g_{z}-invertible if it is left and right g_{z}-invertible.

Remark 4.6. (i) It is clear that T is g_{z}-invertible if and only if there exists $(M, N) \in g_{z} K D(T)$ such that T_{M} is invertible.
(ii) Every generalized Drazin-meromorphic invertible operator is g_{z}-invertible.

We prove in the following result that the class of g_{z}-invertible operators preserves some properties of Drazin invertibility [16, 24].
Theorem 4.7. Let $T \in L(X)$. The following statements are equivalent:
(i) T is g_{z}-invertible;
(ii) T is g_{z}-Browder;
(iii) There exists $(M, N) \in g_{z} K D(T)$ such that T_{M} is Drazin invertible;
(iv) There exists a Drazin invertible operator $S \in L(X)$ such that $T S=S T, S T S=S$ and $T^{2} S-T$ is zeroloid. A such S is called a g_{z}-inverse of T;
(v) There exists a bounded projection P on X which commutes with $T, T+P$ is generalized Drazin invertible and TP is zeroloid;
(vi) There exists a bounded projection P on X commuting with T such that there exist $U, V \in L(X)$ which satisfy $P=T U=V T$ and $T(I-P)$ is zeroloid;
(vii) T is g_{z}-Kato and $\tilde{p}(T)=\tilde{q}(T)<\infty$.

Proof. The equivalences (i) \Longleftrightarrow (ii) and (i) \Longleftrightarrow (iii) are immediate consequences of Propositions 4.3 and 4.4. (i) \Longleftrightarrow (iv) Assume that T is g_{z}-invertible and let $(M, N) \in g_{z} K D(T)$ such that T_{M} is invertible. The operator $S=\left(T_{M}\right)^{-1} \oplus 0_{N}$ is Drazin invertible. Moreover, $T S=S T=I_{M} \oplus 0_{N}, S T S=S$ and $T^{2} S-T=0_{M} \oplus\left(-T_{N}\right)$. As T_{N} is zeroloid then $T^{2} S-T$ is also zeroloid. Conversely, suppose that there exists a Drazin invertible operator S such that $T S=S T, S T S=S$ and $T^{2} S-T$ is zeroloid. Then $T S$ is a projection. If we take $M=\mathcal{R}(T S)$ and $N=\mathcal{N}(T S)$, then $(M, N) \in \operatorname{Red}(T) \cap \operatorname{Red}(S)$. We have T_{M} is one-to-one. Indeed, $x \in \mathcal{N}\left(T_{M}\right)$ implies
that $x=T S y$ and $T x=0$, so $x=(T S)^{2} y=S T x=0$. Since $\mathcal{R}\left(T_{M}\right)=M$ then T_{M} is invertible. Let us to show that $S=\left(T_{M}\right)^{-1} \oplus 0_{N}$. We have $S_{N}=0_{N}$, since $S=S T S$. Let $x=T S y \in M$, as $S y=S T S y \in M$ then $S x=S y=\left(T_{M}\right)^{-1} T_{M} S y=\left(T_{M}\right)^{-1} x$. Hence $S=\left(T_{M}\right)^{-1} \oplus 0_{N}$ and $T^{2} S-T=0_{M} \oplus\left(-T_{N}\right)$. Thus T_{N} is zeroloid and then T is g_{z}-invertible.
(i) \Longleftrightarrow (v) Suppose that there exists a bounded projection P on X which commutes with $T, T+P$ is generalized Drazin invertible and $T P$ is zeroloid. Then $(A, B):=(\mathcal{N}(P), \mathcal{R}(P)) \in \operatorname{Red}(T), T_{A}=(T+P)_{A}$ is generalized Drazin invertible and $T_{B}=(T P)_{B}$ is zeroloid. Thus there exists $(C, D) \in \operatorname{Red}\left(T_{A}\right)$ such that T_{C} is invertible and T_{D} is quasi-nilpotent. Hence $(C, D \oplus B) \in g_{z} K D(T)$ and then T is g_{z}-invertible. Conversely, let $(M, N) \in g_{z} K D(T)$ such that T_{M} is invertible. Clearly, $P:=0_{M} \oplus I_{N}$ is a projection and $T P=P T$. Furthermore, $T P=0_{M} \oplus T_{N}$ is zeroloid and $T+P=T_{M} \oplus(T+I)_{N}$ is generalized Drazin invertible, since $-1 \notin \operatorname{acc} \sigma\left(T_{N}\right)=\sigma_{g d}\left(T_{N}\right)$.
(vi) \Longrightarrow (i) Suppose that there exists a bounded projection P on X commuting with T such that there exist $U, V \in L(X)$ which satisfy $P=T U=V T$ and $T(I-P)$ is zeroloid. In addition, we assume that $U, V \in \operatorname{comm}(T)$ (for the general case, one can see the proof of the implication (v) \Longrightarrow (vi) of [35, Theorem 2.4]). Then $I_{M} \oplus 0_{N}=T_{M} U_{M} \oplus T_{N} U_{N}=V_{M} T_{M} \oplus V_{N} T_{N}$, where $(M, N):=(\mathcal{R}(P), \mathcal{N}(P)) \in \operatorname{Red}(T)$, and thus $T_{M} U_{M}=V_{M} T_{M}=I_{M}$ and $T_{N} U_{N}=V_{N} T_{N}=0_{N}$. Hence T_{M} is invertible. Moreover, T_{N} is zeroloid, since $T(I-P)=0_{M} \oplus T_{N}$ is zeroloid. Consequently, T is g_{z}-invertible.
(iv) \Longrightarrow (vi) and (i) \Longleftrightarrow (vii) are clear.

The next two theorems are analogous to the previous one.
Theorem 4.8. Let $T \in L(X)$. The following statements are equivalent:
(i) T is left g_{z}-invertible;
(ii) T is upper semi- g_{z}-Browder;
(iii) There exists $(M, N) \in g_{z} K D(T)$ such that T_{M} is quasi left Drazin invertible;
(iv) T is g_{z}-Kato and $\tilde{p}(T)=0$;
(v) T is g_{z}-Kato and $0 \notin \operatorname{acc} \sigma_{l g d}(T)$.

Theorem 4.9. Let $T \in L(X)$. The following statements are equivalent:
(i) T is right g_{z}-invertible;
(ii) T is lower semi- g_{z}-Browder;
(iii) There exists $(M, N) \in g_{z} K D(T)$ such that T_{M} is quasi right Drazin invertible;
(iv) T is g_{z}-Kato and $\tilde{q}(T)=0$;
(v) T is g_{z}-Kato and $0 \notin \operatorname{acc} \sigma_{r g d}(T)$.

Corollary 4.10. If $T \in L(X)$ is g_{z}-invertible and S is a g_{z}-inverse of T, then TST is the Drazin inverse of S and $p(S)=q(S)=\operatorname{dis}(S) \leq 1$.
Proof. Obvious.
Hereafter, $\sigma_{l g_{z} d}(T), \sigma_{r g_{z} d}(T)$ and $\sigma_{g_{z} d}(T)$ are respectively, the left g_{z}-invertible spectrum, the right g_{z}-invertible spectrum and the g_{z}-invertible spectrum of T.

Theorem 4.11. For every $T \in L(X)$ we have $\sigma_{g_{z} d}(T)=\operatorname{acc}(\operatorname{acc} \sigma(T))$.
Proof. Let $\mu \notin \operatorname{acc}(\operatorname{acc} \sigma(T))$. Without loss of generality we assume that $\mu=0$ [note that acc $\operatorname{acc} \sigma(T-\alpha I)=$ $\operatorname{acc}(\operatorname{acc} \sigma(T))-\alpha$, for every complex $\alpha]$. If $0 \notin \operatorname{acc} \sigma(T)$, then T is generalized Drazin invertible and in particular g_{z}-invertible. If $0 \in \operatorname{acc} \sigma(T)$ then $0 \in \operatorname{acc}$ (iso $\left.\sigma(T)\right)$. We distinguish two cases:
Case 1: $\operatorname{acc}(\operatorname{iso} \sigma(T)) \neq\{0\}$. It follows that $\epsilon:=\inf _{\lambda \in \operatorname{acc}(i s o \sigma(T)) \backslash\{0\}}|\lambda|>0$. Moreover, the sets $F_{2}:=D\left(0, \frac{\epsilon}{2}\right) \cap \overline{\text { iso } \sigma(T)}$ and $F_{1}:=((\operatorname{acc} \sigma(T)) \backslash\{0\}) \cup\left(\overline{\text { iso } \sigma(T)} \backslash F_{2}\right)$ are closed and disjoint. Indeed, $F_{1} \cap F_{2}=F_{2} \cap[(\operatorname{acc} \sigma(T)) \backslash\{0\}] \subset$ [acc (iso $\sigma(T)) \backslash\{0\}] \cap D\left(0, \frac{\epsilon}{2}\right)=\emptyset$. As $0 \notin \operatorname{acc}(\operatorname{acc} \sigma(T))$ then $(\operatorname{acc} \sigma(T)) \backslash\{0\}$ is closed. Let us to show that $C:=\left(\overline{\text { iso } \sigma(T)} \backslash F_{2}\right)$ is closed. If $\lambda \in \operatorname{acc} C$ (the case of acc $C=\emptyset$ is obvious), then $\lambda \in \overline{\text { iso } \sigma(T)}$. Let $\left(\lambda_{n}\right)_{n} \subset C$ be a non stationary sequence that converges to λ, it follows that $\lambda \neq 0$. We have $\lambda \notin F_{2}$. Otherwise, $\lambda \in D\left(0, \frac{\epsilon}{2}\right)$ and then $\lambda \notin$ acc (iso $\sigma(T)$. So $\lambda \in$ iso $\sigma(T)$ and this is a contradiction. Therefore C is closed and then F_{1} is
closed. As $\sigma(T)=F_{1} \cup F_{2}$ then there exists $(M, N) \in \operatorname{Red}(T)$ such that $\sigma\left(T_{M}\right)=F_{1}$ and $\sigma\left(T_{N}\right)=F_{2}$. So T_{M} is invertible and $0 \in \operatorname{acc} \sigma\left(T_{N}\right)$. Let $v \in F_{2}$, then $v \notin \operatorname{acc} \sigma\left(T_{N}\right) \backslash\{0\}$, since $F_{1} \cap F_{2}=F_{2} \cap(\operatorname{acc} \sigma(T) \backslash\{0\})=\emptyset$. Hence acc $\sigma\left(T_{N}\right)=\{0\}$ and T is g_{z}-invertible.
Case 2: $\operatorname{acc}($ iso $\sigma(T))=\{0\}$. Then $F_{2}:=D(0,1) \cap \overline{\operatorname{iso} \sigma(T)}$ and $F_{1}:=((\operatorname{acc} \sigma(T)) \backslash\{0\}) \cup\left(\overline{\text { iso } \sigma(T)} \backslash F_{2}\right)$ are closed disjoint subsets and give the desired result. For this, if $\lambda \in \bar{C}$, where $C:=\overline{\operatorname{iso} \sigma(T)} \backslash F_{2}$, then there exists a sequence $\left(\lambda_{n}\right) \subset C$ that converges to λ. As acc (iso $\left.\sigma(T)\right)=\{0\}$ and $\lambda(\neq 0) \in \overline{\text { iso } \sigma(T)}$ then $\lambda \in$ iso $\sigma(T)$. Therefore $\left(\lambda_{n}\right)_{n}$ is stationary and so $\lambda \in C$. Thus F_{1} is closed and hence there exists $(M, N) \in \operatorname{Red}(T)$ such that $\sigma\left(T_{M}\right)=F_{1}$ and $\sigma\left(T_{N}\right)=F_{2}$. Conclusion, T is g_{z}-invertible.
Conversely, if T is g_{z}-invertible, then $T=T_{1} \oplus T_{2}$, where T_{1} is invertible and T_{2} is zeroloid. And then there exists $\epsilon>0$ such that $B(0, \epsilon) \backslash\{0\} \subset\left(\sigma\left(T_{1}\right)\right)^{C} \cap\left(\operatorname{acc} \sigma\left(T_{2}\right)\right)^{C} \subset(\operatorname{acc} \sigma(T))^{C}$. Thus $0 \notin \operatorname{acc}(\operatorname{acc} \sigma(T))$.

From the previous theorem and some well known results in perturbation theory, we obtain the following corollary.

Corollary 4.12. Let $T \in L(X)$. The following statements hold:
(i) $\sigma_{l g_{z} d}(T), \sigma_{r g_{z} f}(T)$ and $\sigma_{g_{z} d}(T)$ are compact.
(ii) $\sigma_{g_{z}} d(T)=\sigma_{g_{z} d}\left(T^{*}\right)$.
(iii) If $S \in L(Y)$, then $T \oplus S$ is g_{z}-invertible if and only if T and S are g_{z}-invertible.
(iv) T is g_{z}-invertible if and only if T^{n} is g_{z}-invertible for some (equivalently for every) integer $n \geq 1$.
(v) If $Q \in \operatorname{comm}(T)$ is quasi-nilpotent, then $\sigma_{g_{z} d}(T)=\sigma_{g_{z} d}(T+Q)$.
(vi) If $F \in \mathcal{F}_{0}(X) \cap \operatorname{comm}(T)$, then $\sigma_{g_{z} d}(T)=\sigma_{g_{z} d}(T+F)$, where $\mathcal{F}_{0}(X)$ is the set of all power finite rank operators.

Example 4.13. Let $T \in L(X)$ be the operator such that $\sigma(T)=\sigma_{d}(T)=\overline{\left\{\frac{1}{n}\right\}}$. Then T is g_{z}-invertible and not generalized Drazin-meromorphic invertible, since $0 \in \operatorname{acc} \sigma_{d}(T)$ (see [35, Theorem 5]). Note also that T is not generalized Kato-meromorphic. Otherwise, we get $\tilde{\alpha}(T)=\tilde{\beta}(T)=0$, since T is g_{z}-invertible. Hence T is generalized Drazin-meromorphic invertible and this is a contradiction.

Proposition 4.14. Let $T \in L(X)$. The following statements are equivalent:
(i) $0 \in$ iso $(\operatorname{acc} \sigma(T))\left(\right.$ i.e. T is g_{z}-invertible and not generalized Drazin invertible);
(ii) $T=T_{1} \oplus T_{2}$, where T_{1} is invertible and acc $\sigma\left(T_{2}\right)=\{0\}$;
(iii) T is g_{z}-Kato and there exists a non stationary sequence of isolated points of $\sigma(T)$ that converges to 0 .

Proof. (i) \Longrightarrow (ii) Follows directly from the proof of Theorem 4.11. Note here that acc $\sigma\left(T_{N}\right)=\{0\}$ for every $(M, N) \in g_{z} K D(T)$.
(ii) \Longrightarrow (iii) As $T=T_{1} \oplus T_{2}, T_{1}$ is invertible and $\operatorname{acc} \sigma\left(T_{2}\right)=\{0\}$, then $0 \in$ iso $(\operatorname{acc} \sigma(T))$ and there exists a non stationary sequence $\left(\lambda_{n}\right)_{n} \subset$ iso $\sigma\left(T_{2}\right)$ that converges to 0 . Thus T is g_{z}-invertible and there exists $N \in \mathbb{N}$ such that $\lambda_{n} \in \sigma(T) \backslash$ acc $\sigma(T)=$ iso $\sigma(T)$ for all $n \geq N$.
(iii) \Longrightarrow (i) Assume that $T=T_{1} \oplus T_{2}, T_{1}$ is semi-regular, T_{2} is zeroloid and there exists a non stationary sequence $\left(\lambda_{n}\right)_{n}$ of isolated point of $\sigma(T)$ that converges to 0 . Hence $0 \in \operatorname{acc} \sigma(T)$ and $T \oplus T^{*}$ has the SVEP at 0 . This entails that T is g_{z}-invertible and then $0 \in$ iso $(\operatorname{acc} \sigma(T))$.

Recall that $\sigma \subset \sigma(T)$ is called a spectral set (called also isolated part) of T if σ and $\sigma(T) \backslash \sigma$ are closed, see [17]. Let T be a g_{z}-invertible operator which is not generalized Drazin invertible. From Proposition 4.14, we conclude that there exists a non-zero strictly decreasing sequence $\left(\lambda_{n}\right)_{n} \subset$ iso $\sigma(T)$ that converges to 0 such that $\sigma:=\overline{\left\{\lambda_{n}: n \in \mathbb{N}\right\}}$ is a spectral set of T. If P_{σ} is the spectral projection associated to σ, then $\left(M_{\sigma}, N_{\sigma}\right):=\left(\mathcal{N}\left(P_{\sigma}\right), \mathcal{R}\left(P_{\sigma}\right)\right) \in g_{z} K D(T), \sigma\left(T_{N_{\sigma}}\right)=\sigma$ and $\sigma\left(T_{M_{\sigma}}\right)=\sigma(T) \backslash \sigma$. Thus $T+r P_{\sigma}=T_{M_{\sigma}} \oplus(T+r I)_{N_{\sigma}}$ is invertible for every $|r|>\left|\lambda_{0}\right|$ and then the operator $T_{\sigma}^{D}:=\left(T+r P_{\sigma}\right)^{-1}\left(I-P_{\sigma}\right)=\left(T_{M_{\sigma}}\right)^{-1} \oplus 0_{N_{\sigma}}$ is a g_{z}-inverse of T and depends only on σ. Note that $P_{\sigma}=I-T T_{\sigma}^{D} \in \operatorname{comm}^{2}(T):=\{S \in \operatorname{comm}(L): L \in \operatorname{comm}(T)\}$, so that $\left(M_{\sigma}, N_{\sigma}\right) \in \operatorname{Red}(S)$ for every operator $S \in \operatorname{comm}(T)$ and $T_{\sigma}^{D} \in \operatorname{comm}^{2}(T)$. Note also that $T+P_{\sigma}$ is generalized Drazin invertible and $T P_{\sigma}$ is zeroloid.

Lemma 4.15. Let $T \in L(X)$ be a g_{z}-invertible operator and $(M, N) \in g_{z} K D(T)$ such that T_{M} invertible and $\sigma\left(T_{M}\right) \cap \sigma\left(T_{N}\right)=\emptyset$. Then $\sigma\left(T_{N}\right) \backslash\{0\} \subset$ iso $\sigma(T)$ and for every $S \in \operatorname{comm}(T)$ we have $(M, N) \in \operatorname{Red}(S)$.

Proof. If T is generalized Drazin invertible, then $0 \notin \operatorname{acc} \sigma(T)$ and so acc $\sigma\left(T_{N}\right)=\emptyset$, hence $\sigma\left(T_{N}\right)$ is a finite set of isolated points of $\sigma(T)$. Let P_{σ} be the spectral projection associated to $\sigma=\sigma\left(T_{N}\right)$. From [17, Proposition 2.4] and the fact that $P_{\sigma} \in \operatorname{comm}^{2}(T)$ we deuce that $(M, N)=\left(\mathcal{N}\left(P_{\sigma}\right), \mathcal{R}\left(P_{\sigma}\right)\right) \in \operatorname{Red}(S)$ for every $S \in \operatorname{comm}(T)$. If T is not generalized Drazin invertible, then there exists a strictly decreasing sequence $\left(\lambda_{n}\right)_{n}$ of isolated point of $\sigma(T)$ that converges to 0 and such that $\sigma\left(T_{N}\right)=\overline{\left\{\lambda_{n}: n \in \mathbb{N}\right\}}$. Thus $\sigma\left(T_{N}\right) \backslash\{0\} \subset$ iso $\sigma(T)$. Let P be the spectral projection associated to the spectral set $\sigma\left(T_{N}\right)$, then $(M, N)=(\mathcal{N}(P), \mathcal{R}(P))$ and so $(M, N) \in \operatorname{Red}(S)$ for every $S \in \operatorname{comm}(T)$.

Remark 4.16. It is not difficult to see that the following assertions are aquivalent:
(i) $\exists(M, N) \in \operatorname{Red}(S)$ such that T_{M} is invertible for every $S \in \operatorname{comm}(T)$;
(ii) $\exists L \in \operatorname{comm}^{2}(T)$ such that $L=L^{2} T$.

Theorem 4.17. Let $T \in L(X)$. The following statements are equivalent:
(i) T is g_{z}-invertible;
(ii) $0 \notin \operatorname{acc}(\operatorname{acc} \sigma(T))$;
(iii) There exists $(M, N) \in g_{z} K D(T)$ such that T_{M} invertible and $\sigma\left(T_{M}\right) \cap \sigma\left(T_{N}\right)=\emptyset$;
(iv) There exists a spectral set σ of T such that $0 \notin \sigma(T) \backslash \sigma$ and $\sigma \backslash\{0\} \subset$ iso $\sigma(T)$;
(v) There exists a bounded projection $P \in \operatorname{comm}^{2}(T)$ such that $T+P$ is generalized Drazin invertible and TP is zeroloid.

Proof. For the equivalence (i) \Longleftrightarrow (ii), see Theorem 4.11. For the equivalences (i) \Longleftrightarrow (iii) and (i) \Longleftrightarrow (v), see Theorem 4.7 and the paragraph preceding Lemma 4.15 (the case of T is generalized Drazin invertible is clear). The proof of the equivalence (iii) \Longleftrightarrow (iv) is a consequence of Lemma 4.15 and the spectral decomposition theorem.

Proposition 4.18. For every g_{z}-invertible operator $T \in L(X)$, the following statements hold:
(i) Let $(M, N),\left(M^{\prime}, N^{\prime}\right) \in g_{z} K D(T)$ such that $T_{M}, T_{M^{\prime}}$ are invertible and $\sigma\left(T_{M}\right) \cap \sigma\left(T_{N}\right)=\sigma\left(T_{M^{\prime}}\right) \cap \sigma\left(T_{N^{\prime}}\right)=\emptyset$. If $\left(T_{M}\right)^{-1} \oplus 0_{N}=\left(T_{M^{\prime}}\right)^{-1} \oplus 0_{N^{\prime}}$, then $(M, N)=\left(M^{\prime}, N^{\prime}\right)$.
(ii) Let σ, σ^{\prime} two spectral sets of T such that $0 \notin \sigma(T) \backslash\left(\sigma \cap \sigma^{\prime}\right)$ and $\left(\sigma \cup \sigma^{\prime}\right) \backslash\{0\} \subset$ iso $\sigma(T)$. If $\left(T+r P_{\sigma}\right)^{-1}\left(I-P_{\sigma}\right)=$ $\left(T+r^{\prime} P_{\sigma^{\prime}}\right)^{-1}\left(I-P_{\sigma^{\prime}}\right)$, where P_{σ} is the spectral projection of T associated to $\sigma,|r|>\max _{\lambda \in \sigma}|\lambda|$ and $\left|r^{\prime}\right|>\max _{\lambda \in \sigma^{\prime}}|\lambda|$, then $\sigma=\sigma^{\prime}$.
Proof. (i) From the proof of Lemma 4.15, we have $(M, N)=\left(\mathcal{N}\left(P_{\sigma}\right), \mathcal{R}\left(P_{\sigma}\right)\right)$ and $\left(M^{\prime}, N^{\prime}\right)=\left(\mathcal{N}\left(P_{\sigma^{\prime}}\right), \mathcal{R}\left(P_{\sigma^{\prime}}\right)\right)$, where $\sigma=\sigma\left(T_{N}\right)$ and $\sigma^{\prime}=\sigma\left(T_{N^{\prime}}\right)$. As $\left(T_{M}\right)^{-1} \oplus 0_{N}=\left(T_{M^{\prime}}\right)^{-1} \oplus 0_{N^{\prime}}$ then $\sigma\left(T_{M}\right)=\sigma\left(T_{M^{\prime}}\right)$ and thus $\sigma\left(T_{N}\right)=\sigma\left(T_{N^{\prime}}\right)$. This proves that $(M, N)=\left(M^{\prime}, N^{\prime}\right)$.
(ii) Follows from (i).

The previous Proposition 4.18 gives a sense to the next remark.
Remark 4.19. If $T \in L(X)$ is g_{z}-invertible, then
(i) For every $(M, N) \in g_{z} K D(T)$ such that T_{M} is invertible and $\sigma\left(T_{M}\right) \cap \sigma\left(T_{N}\right)=\emptyset$, the g_{z}-inverse operator $T_{(M, N)}^{D}:=$ $\left(T_{M}\right)^{-1} \oplus 0_{N} \in \operatorname{comm}^{2}(T)$, and we call $T_{(M, N)}^{D}$ the g_{z}-inverse of T associated to (M, N).
(ii) If σ is a spectral set of T such that $0 \notin \sigma(T) \backslash \sigma$ and $\sigma \backslash\{0\} \subset$ iso $\sigma(T)$, then the operator $T_{\sigma}^{D}:=\left(T+r P_{\sigma}\right)^{-1}\left(I-P_{\sigma}\right) \in$ comm $^{2}(T)$ is a g_{z}-inverse of T, where $|r|>\max _{\lambda \in \sigma}|\lambda|$, and we call T_{σ}^{D} the g_{z}-inverse of T associated to σ.

Note that if $T \in L(X)$ is generalized Drazin invertible which is not invertible, then by [24, Lemma 2.4] and Proposition 4.18 we conclude that the Drazin inverse of T is exactly the g_{z}-inverse of T associated to $\sigma=\{0\}$, in other words $T^{D}=T_{\{0\}}^{D}$.

Proposition 4.20. Let $T, S \in L(X)$ two commuting g_{z}-invertible. If σ and σ^{\prime} are spectral sets of T and S, respectively such that $0 \notin(\sigma(T) \backslash \sigma) \cup\left(\sigma(S) \backslash \sigma^{\prime}\right), \sigma \backslash\{0\} \subset$ iso $\sigma(T)$ and $\sigma^{\prime} \backslash\{0\} \subset$ iso $\sigma(S)$, then $T, S, T_{\sigma}^{D}, S_{\sigma^{\prime}}^{D}$ are mutually commutative.

Proof. As $T S=S T$ then the previous remark entails that $T_{\sigma}^{D}=\left(T+r P_{\sigma}\right)^{-1}\left(I-P_{\sigma}\right) \in \operatorname{comm}\left(S_{\sigma^{\prime}}^{D}\right)$, and analogously for other operators.

The following proposition describe the relation between the g_{z}-inverse of a g_{z}-invertible operator T associated to (M, N) and the g_{z}-inverse of T associated to a spectral set σ. It's proof is clear.

Proposition 4.21. If $T \in L(X)$ is g_{z}-invertible and $(M, N) \in g_{z} K D(T)$ such that T_{M} is invertible and $\sigma\left(T_{M}\right) \cap \sigma\left(T_{N}\right)=$ \emptyset, then $T_{(M, N)}^{D}=T_{\sigma}^{D}$, where $\sigma=\sigma\left(T_{N}\right)$. In other words $T_{\sigma\left(T_{N}\right)}^{D}=\left(T_{M}\right)^{-1} \oplus 0_{N}$.

Our next theorem gives a generalization of [24, Theorem 4.4] in the case of the complex Banach algebra $L(X)$. Denote by $\operatorname{Hol}(T)$ the set of all analytic functions defined on an open neighborhood of $\sigma(T)$.

Theorem 4.22. If $0 \in \sigma(T) \backslash \operatorname{acc}(\operatorname{acc} \sigma(T))$, then for every spectral set σ such that $0 \in \sigma$ and $\sigma \backslash\{0\} \subset$ iso $\sigma(T)$ we have

$$
T_{\sigma}^{D}=f_{\sigma}(T),
$$

where $f_{\sigma} \in \operatorname{Hol}(T)$ defined by $f_{\sigma}=0$ in a neighborhood of σ and $f_{\sigma}(\lambda)=\lambda^{-1}$ in a neighborhood of $\sigma(T) \backslash \sigma$. Moreover $\sigma\left(T_{\sigma}^{D}\right)=\{0\} \cup\left\{\lambda^{-1}: \lambda \in \sigma(T) \backslash \sigma\right\}$.

Proof. Let Ω_{1} and Ω_{2} two disjoint open sets such that $\sigma \subset \Omega_{1}$ and $\sigma(T) \backslash \sigma \subset \Omega_{2}$ (for the construction of Ω_{1} and Ω_{2}, see the paragraph below) and let $g \in \operatorname{Hol}(T)$ be the function defined by

$$
g(\lambda)= \begin{cases}1 & \text { if } \lambda \in \Omega_{1} \\ 0 & \text { if } \lambda \in \Omega_{2}\end{cases}
$$

It is clear that $P_{\sigma}=g(T)$ and as $T_{\sigma}^{D}=\left(T+r P_{\sigma}\right)^{-1}\left(I-P_{\sigma}\right)$ (where $|r|>\max _{\lambda \in \sigma}|\lambda|$ be arbitrary), then the function $f_{\sigma}(\lambda)=(\lambda+r g(\lambda))^{-1}(1-g(\lambda))$ has the required property. Moreover, we have $\sigma\left(T_{\sigma}^{D}\right)=f_{\sigma}(\sigma(T))=\{0\} \cup\left\{\lambda^{-1}\right.$: $\lambda \in \sigma(T) \backslash \sigma\}$.

According to [17], if σ is a spectral set of T then there exist two disjoint open sets Ω_{1} and Ω_{2} such that $\sigma \subset \Omega_{1}$ and $\sigma(T) \backslash \sigma \subset \Omega_{2}$. Choose a Cauchy domains S_{1} and S_{2} such that $\sigma \subset S_{1}, \sigma(T) \backslash \sigma \subset S_{2}, \overline{S_{1}} \subset \Omega_{1}$ and $\overline{S_{2}} \subset \Omega_{2}$. It follows that the spectral projection corresponding to σ is

$$
P_{\sigma}=\frac{1}{2 i \pi} \int_{\partial S_{1}}(\lambda I-T)^{-1} d \lambda
$$

Moreover, if $0 \in \sigma$ and $\sigma \backslash\{0\} \subset$ iso $\sigma(T)$, then from Theorem 4.22 we conclude that

$$
T_{\sigma}^{D}=\frac{1}{2 i \pi} \int_{\partial S_{2}} \lambda^{-1}(\lambda I-T)^{-1} d \lambda
$$

5. Weak SVEP and applications

As a continuation of some results proved in [19, 22], we begain this part by the next theorem which gives a new characterization of some Browder's type theorems in terms of spectra introduced and studied in the preceding parts.

Theorem 5.1. For $T \in L(X)$, we have
(i) $T \in(B)$ if and only if $\sigma_{g_{z} w}(T)=\sigma_{g_{z}}(T)$.
(ii) $T \in\left(B_{e}\right)$ if and only if $\sigma_{g_{z}}(T)=\sigma_{g_{z} d}(T)$.
(iii) $T \in(a B)$ if and only if $\sigma_{u g_{z} w}(T)=\sigma_{l g_{z} d}(T)$.

Proof. (i) If $\lambda \notin \sigma_{g_{z} w}(T)$, then from Corollary 3.16 we have $\lambda \notin \operatorname{acc} \sigma_{p b w}(T)$ [note that $\operatorname{acc} \sigma_{p b w}(T-\lambda I)=$ $\left.\operatorname{acc}\left(\sigma_{p b w}(T)\right)-\lambda\right]$. Since $T \in(B)$ then [22, Theorem 2.6] or [19, Theorem 2.8] implies that $\lambda \notin \operatorname{acc} \sigma_{g d}(T)$, and this implies from Theorem 4.11 that $\lambda \notin \sigma_{g_{z} d}(T)$. As the inclusion $\sigma_{g_{z} w}(T) \subset \sigma_{g_{z} d}(T)$ is always true, it follows that $\sigma_{g_{z} w}(T)=\sigma_{g_{z} d}(T)$. Conversely, let $\lambda \notin \sigma_{w}(T)$, then $\lambda \notin \sigma_{g_{z} w}(T)=\sigma_{g_{z} d}(T)$. On the other hand, [5, Corollary 3.7] implies that there exists $(M, N) \in \operatorname{Red}(T)$ such that $T_{M}-\lambda I$ is semi-regular and $T_{N}-\lambda I$ is nilpotent. Since $T-\lambda I$ is g_{z}-invertible then $p\left(T_{M}-\lambda I\right)=\tilde{p}(T-\lambda I)=\tilde{q}(T-\lambda I)=q\left(T_{M}-\lambda I\right)=0$, and so $T_{M}-\lambda I$ is invertible. Hence $T-\lambda I$ is Browder and consequently $T \in(B)$. Using [22, Corollary 2.10] or [19, Corollary 2.14], the point (ii) goes similarly with (i). And Using [22, Theorem 2.7], we obtain analogously the point (iii).

Definition 5.2. Let A be a subset of \mathbb{C}. We say that $T \in L(X)$ has the Weak SVEP on A (T has the $W_{A}-S V E P$ for brevity) if there exists a subset $B \subset A$ such that T has the SVEP on B and T^{*} has the SVEP on $A \backslash B$. If T has the $W_{\mathbb{C}}-S V E P$, then T is said to have the Weak SVEP (T has the W-SVEP for brevity).

Remark 5.3. (i) Let A be a subset of \mathbb{C}. Then $T \in L(X)$ has the $W_{A}-S V E P$ if and only if for every $\lambda \in A$, at least T or T^{*} has the SVEP at λ.
(ii) If T or T^{*} has the SVEP, then T has the W-SVEP. But the converse is not generally true. For this, the left shift operator $L \in L\left(\ell^{2}(\mathbb{N})\right)$ defined by $L\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$ has the W-SVEP, but it does not have the SVEP.
(iii) The operator $L \oplus L^{*}$ does not have the W-SVEP.

The next theorem gives a sufficient condition for an operator $T \in L(X)$ to have the W-SVEP.
Theorem 5.4. Let $T \in L(X)$. If

$$
X_{T}(\emptyset) \times X_{T^{*}}(\emptyset) \subset\{(x, 0): x \in X\} \bigcup\left\{(0, f): f \in X^{*}\right\}
$$

then T has the W-SVEP.
Proof. Let $\lambda \in \mathbb{C}$ and let $V, W \subset \mathbb{C}$ two open neighborhood of λ. Let $f: V \longrightarrow X$ and $g: W \longrightarrow X^{*}$ two analytic functions such that $(T-\mu I) f(\mu)=0$ and $\left(T^{*}-v I\right) g(v)=0$ for every $(\mu, v) \in V \times W$. If we take $U=V \cap W$, then [1, Theorem 2.9] implies that $\sigma_{T}(f(\mu))=\sigma_{T}(0)=\emptyset=\sigma_{T^{*}}(0)=\sigma_{T^{*}}(g(\mu))$ for every $\mu \in U$. Hence $(f(\mu), g(v)) \in X_{T}(\emptyset) \times X_{T^{*}}(\emptyset)$ for every $\mu, v \in U$. We discuss two cases. The first, there exists $\mu \in U$ such that $g(\mu) \neq 0$. As $(f(v), g(\mu)) \in X_{T}(\emptyset) \times X_{T^{*}}(\emptyset)$ for every $v \in U$ then by hypotheses $f \equiv 0$ on U. The identity theorem for analytic functions entails that T has the SVEP at λ. The second, $g(\mu)=0$ for every $\mu \in U$. In the same way, we prove that T^{*} has the SVEP at λ. Hence T has the W-SVEP.

Question: Similarly to [1, Theorem 2.14] which characterizes the SVEP of $T \in L(X)$ in terms of its local spectral subspace $X_{T}(\emptyset)$, we ask if the converse of Theorem 5.4 is true?

The next proposition characterizes the classes (B) and $(a B)$ in terms of the Weak SVEP.
Proposition 5.5. If $T \in L(X)$, then
(a) For $\sigma_{*} \in\left\{\sigma_{w}, \sigma_{b w}, \sigma_{g_{z} w}\right\}$, the following statements are equivalent:
(i) $T \in(B)$;
(ii) T has the Weak SVEP on $\sigma_{*}(T)^{C}$;
(iii) For all $\lambda \notin \sigma_{*}(T), T \oplus T^{*}$ has the SVEP at λ;
(iv) For all $\lambda \notin \sigma_{*}(T)$, T has the SVEP at λ;
(v) For all $\lambda \notin \sigma_{*}(T), T^{*}$ has the SVEP at λ.
(b) For $\sigma_{*} \in\left\{\sigma_{e}, \sigma_{b f}, \sigma_{g_{z} f}\right\}$, the following statements are equivalent:
(i) $T \in\left(B_{e}\right)$;
(ii) For all $\lambda \notin \sigma_{*}(T), T \oplus T^{*}$ has the SVEP at λ.
(c) For $\sigma_{*} \in\left\{\sigma_{u z v}, \sigma_{u b w}, \sigma_{u g_{z} w}\right\}$, the following statements are equivalent:
(i) $T \in(a B)$;
(ii)] T has the Weak SVEP on $\sigma_{*}(T)^{\text {C }}$;
(iii) For all $\lambda \notin \sigma_{*}(T), T$ has the SVEP at λ.

Proof. (a) For $\sigma_{*}=\sigma_{g_{z} w}$, we have only to show (ii) \Longrightarrow (i), and the other implications are clair. Let $\lambda \notin \sigma_{g_{z} w}(T)$, then there exists $(M, N) \in \operatorname{Red}(T)$ such that $T_{M}-\lambda I$ is Weyl and $T_{N}-\lambda I$ is zeroloid. Hence T or T^{*} has the SVEP at λ is equivalent to say that T_{M} or $\left(T_{M}\right)^{*}$ has the SVEP at λ, and this is equivalent to $\min \left\{p\left(T_{M}-\lambda I\right), q\left(T_{M}-\lambda I\right)\right\}<\infty$. Therefore $T_{M}-\lambda I$ is Browder and then $\lambda \notin \sigma_{g_{z} d}(T)$. From Theorem 5.1, it follows that $T \in(B)$. For $\sigma_{*} \in\left\{\sigma_{w}, \sigma_{b w}\right\}$, the proof of (ii) \Longrightarrow (i) is similar, and the other implications are already done in [1]. The assertions (b) and (c) go similarly with (a). Note that some implications of assertions (b) and (c) are already done in [1, 6, 19, 22].

We end this part by the next result which extends [1, Theorem 5.6].
Theorem 5.6. If the g_{z}-Weyl spectrum of $T \in L(X)$ has empty interior that is, int $\sigma_{g_{z} w}(T)=\emptyset$, then the following statements are equivalent:
(i) $T \in(B)$;
(ii) $T \in\left(B_{e}\right)$;
(iii) $T \in(a B)$;
(iv) T has the SVEP;
(v) T* has the SVEP;
(vi) $T \oplus T^{*}$ has the SVEP;
(vii) T has the W-SVEP.

Proof. (i) $\Longrightarrow(v i)$ As $T \in(B)$ then by Proposition $5.5, T \oplus T^{*}$ has the SVEP on $\sigma_{g_{z} w}(T)^{\mathrm{C}}$. Let $\lambda \in \sigma_{g_{z} w}(T), U \subset \mathbb{C}$ be an open neighborhood of λ and $f: U \longrightarrow X$ be an analytic function which satisfies $(\mu I-T) f(\mu)=0$, for every $\mu \in U$. The hypothesis int $\sigma_{g_{z} w}(T)=\emptyset$ implies that there exists $\gamma \in U \cap\left(\sigma_{g_{z} w}(T)\right)^{C}$. Hence $f \equiv 0$ on U, since T has the SVEP at γ. It then follows that T has the SVEP at λ. Analogously we prove that T^{*} has the SVEP at λ, and consequently $T \oplus T^{*}$ has the SVEP. It is clear that the statement (vi) implies without condition on T all other statements. Furthermore, all statements imply (i). This completes the proof.

References

[1] P. Aiena, Fredholm and Local Spectral Theory II with Application to Weyl-type Theorems, Springer Lecture Notes of Math no. 2235, 2018.
[2] M. Amouch, M. Karmouni and A. Tajmouati, Spectra originated from Fredholm theory and Browder's theorem, Commun. Korean Math. Soc. 33 (2018) 853-869.
[3] Z. Aznay, H. Zariouh, The Berkani's property and a note on some recent results, Linear and Multilinear Algebra, doi: 10.1080/03081087.2021.1939254, (2021).
[4] Z. Aznay, A. Ouahab, H. Zariouh, On the index of pseudo B-Fredholm operators, Monatsh. Math., doi: 10.1007/s00605- 022-01798-8,(2022).
[5] Z. Aznay, A. Ouahab, H. Zariouh, Generalization of Kato's decomposition, Linear Algebra Appl ., to appear (2023).
[6] Z. Aznay, H. Zariouh, On the class of $\left(W_{e}\right)$-operators, Rend. Circ. Mat. Palermo, doi: 10.1007/s12215-022-00737-8, (2022).
[7] M. Berkani, On a class of quasi-Fredholm operators, Integr. Equ. and Oper. Theory, 34 (1999) 244-249.
[8] M. Berkani and N. Castro, Unbounded B-Fredholm operators on Hilbert spaces, Proc. Edinb. Math. Soc. 51 (2008) 285-296.
[9] M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged), 69 (2003) 359-376.
[10] M. Berkani and M. Sarih, On semi-B-Fredholm operators, Glasgow Math. J. 43 (2001) 457-465.
[11] E. Boasso, Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges, Math. Proc. Royal Irish Academy, 115A (2015) 1-15.
[12] W. Bouamama, Opérateurs Pseudo Fredholm dans les espaces de Banach, Rend. Circ. Mat. Parelmo, 53 (2004) 313-324.
[13] J. J. Buoni, R. Harte, T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977) 309-314.
[14] M. D. Cvetković, S. Č. Živković-Zlatanović, Generalized Kato decomposition and essential spectra, Complex Anal. Oper. Theory, 11 (2017) 1425-1449.
[15] S. V. Djordjević, B. P. Duggal, Drazin invertibility of the diagonal of an operator, Linear and Multilinear Algebra, 60 (2012) 65-71.
[16] M. P. Drazin, Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514.
[17] I. Gohberg, S. Goldberg, M. A. Kaashoek, Classes of linear operators, Vol. I, Birkhäuser, 1990.
[18] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan, 34 (1982) 317-337.
[19] A. Gupta, A. Kumar, A new characterization of generalized Browder's theorem and a Cline's formula for generalized Drazinmeromorphic inverses, Filomat 33 (2019) 6335-6345.
[20] K. Hocine, M. Benharrat, B. Messirdi, Left and right generalized Drazin invertible operators, Linear and Multilinear Algebra, 63 (2015) 1635-1648.
[21] M. A. Kaashoek, Ascent, descent, nullity and defect, a note on a paper by A. E. Taylor, Math. Annalen, 172 (1967) 105-115.
[22] M. Karmouni, A. Tajmouati, A new characterization of Browder's theorem, Filomat 32 (2018) 4865-4873.
[23] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958) 261-322.
[24] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996) 367-381.
[25] J. P. Labrousse, Les opérateurs quasi-Fredholm: Une généralisation des opérateurs semi Fredholm, Rend. Circ. Mat. Palermo, 29 (1980) 161-258.
[26] K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
[27] M. Mbekhta, Opérateurs pseudo-Fredholm I: Résolvant généralisé, J. Operator Theory, 24 (1990) 255-276.
[28] M. Mbekhta, V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996) 129-147.
[29] V. Müller, On the Kato-decomposition of quasi-Fredholm and B-Fredholm operators, Vienna, Preprint ESI 1013, (2001).
[30] V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Birkhäuser Verlag, Basel-Boston-Berlin, 2nd Edition, 2007.
[31] P. W. Poon, The stability radius of a quasi-Fredholm operator, Proc. Amer. Math. Soc. 126 (1998) 1071-1080.
[32] A. Tajmouati, M. Karmouni, M. Abkari, Pseudo semi-B-Fredholm and generalized Drazin invertible operators through Localized SVEP, Italian Journal of pure and applied mathematics, 37 (2017) 301-314.
[33] H. Zariouh, H. Zguitti, On pseudo B-Weyl operators and generalized Drazin invertible for operator matrices, Linear and Multilinear Algebra, 64 (2016) 1245-1257.
[34] S. Č. Živković-Zlatanović, M. D. Cvetković, Generalized Kato-Riesz decomposition and generalized Drazin-Riesz invertible operators, Linear and Multilinear Algebra, 65 (2017) 1171-1193.
[35] S. Č. Živković-Zlatanović, B. P. Duggal, Generalized Kato-meromorphic decomposition, generalized Drazin-meromorphic invertible operators and single-valued extension property, Banach J. Math. Anal. 14 (2020) 894-914.

[^0]: 2020 Mathematics Subject Classification. Primary 47A10, 47A11, 47A15, 47A25, 47A53, 47A55
 Keywords. g_{z}-Kato decomposition, g_{z}-invertible operator, Weak SVEP
 Received: 11 March 2022; Accepted: 06 June 2022
 Communicated by Dragan S. Djordjević
 Email addresses: aznay.zakariae@ump.ac.ma (Zakariae Aznay), ouahab05@yahoo.fr (Abdelmalek Ouahab), h.zariouh@yahoo.fr (Hassan Zariouh)

