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Abstract. In [24], Koliha proved that T ∈ L(X) (X is a complex Banach space) is generalized Drazin
invertible operator iff there exists an operator S commuting with T such that STS = S and σ(T2S−T) ⊂ {0} iff
0 < acc σ(T). Later, in [14, 34] the authors extended the class of generalized Drazin invertible operators and
they also extended the class of pseudo-Fredholm operators introduced by Mbekhta [27] and other classes
of semi-Fredholm operators. As a continuation of these works, we introduce and study the class of 1z-
invertible (resp., 1z-Kato) operators which generalizes the class of generalized Drazin invertible operators
(resp., the class of generalized Kato-meromorphic operators introduced by Živković-Zlatanović and Duggal
in [35]). Among other results, we prove that T is 1z-invertible iff T is 1z-Kato with p̃(T) = q̃(T) < ∞ iff there
exists a commuting operator S with T such that STS = S and acc σ(T2S − T) ⊂ {0} iff 0 < acc (acc σ(T)).
As application and using the concept of the Weak SVEP introduced at the end of this paper, we give new
characterizations of Browder-type theorems.

1. Introduction

Let T ∈ L(X), where L(X) is the Banach algebra of bounded linear operators acting on an infinite
dimensional complex Banach space (X, ∥.∥). Throughout this paper T∗, α(T) and β(T) means respectively,
the dual of T, the dimension of the kernel N(T) and the codimension of the range R(T). The ascent and
the descent of T are defined by p(T) = inf{n ∈ N : N(Tn) = N(Tn+1)} (with inf∅ = ∞) and q(T) = inf{n ∈
N : R(Tn) = R(Tn+1)}. A subspace M of X is T-invariant if T(M) ⊂ M and the restriction of T on M is
denoted by TM. (M,N) ∈ Red(T) if M, N are closed T-invariant subspaces and X = M ⊕ N (M ⊕ N means
that M ∩ N = {0}). Let n ∈ N, denote by T[n] = TR(Tn) and by mT = inf{n ∈ N : inf{α(T[n]), β(T[n])} < ∞}
the essential degree of T. According to [10, 28], T is called upper semi-B-Fredholm (resp., lower semi-B-
Fredholm) if the essential ascent pe(T) = inf{n ∈ N : α(T[n]) < ∞} < ∞ and R(Tpe(T)+1) is closed (resp.,
the essential descent qe(T) = inf{n ∈ N : β(T[n]) < ∞} < ∞ and R(Tqe(T)) is closed). If T is an upper or a
lower (resp., upper and lower) semi-B-Fredholm, then T is called semi-B-Fredholm (resp., B-Fredholm) and
its index is defined by ind(T) = α(T[mT]) − β(T[mT]). T is said to be an upper semi-B-Weyl (resp., lower
semi-B-Weyl, B-Weyl, left Drazin invertible, right Drazin invertible, Drazin invertible) if T is an upper semi-
B-Fredholm with ind(T) ≤ 0 (resp., T is a lower semi-B-Fredholm with ind(T) ≥ 0, T is a B-Fredholm with
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ind(T) = 0, T is an upper semi-B-Fredholm and p(T[mT]) < ∞, T is a lower semi-B-Fredholm and q(T[mT]) < ∞,
p(T[mT]) = q(T[mT]) < ∞). If T is upper semi-B-Fredholm (resp., lower semi-B-Fredholm, semi-B-Fredholm,
B-Fredholm, upper semi-B-Weyl, lower semi-B-Weyl, B-Weyl, left Drazin invertible, right Drazin invertible,
Drazin invertible) with essential degree mT = 0, then T is said to be an upper semi-Fredholm (resp., lower
semi-Fredholm, semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, upper semi-Browder,
lower semi-Browder, Browder) operator. T is said to be bounded below if T is upper semi-Fredholm with
α(T) = 0.

The degree of stable iteration of T is defined by dis(T) = inf∆(T),where

∆(T) = {m ∈N : α(T[m]) = α(T[r]), ∀r ∈N r ≥ m}.

T is said to be semi-regular if R(T) is closed and dis(T) = 0, and is said to be quasi-Fredholm if there exists
n ∈ N such that R(Tn) is closed and T[n] is semi-regular, see [25, 27]. Note that every semi-B-Fredholm
operator is quasi-Fredholm [10, Proposition 2.5].

According to [1], T is said to have the SVEP at λ ∈ C if for every open neighborhood Uλ of λ, f ≡ 0 is
the only analytic solution of the equation (T − µI) f (µ) = 0 ∀µ ∈ Uλ. T is said to have the SVEP on A ⊂ C
if T has the SVEP at every λ ∈ A, and is said to have the SVEP if it has the SVEP on C. It is easily seen that
T ⊕ S has the SVEP at λ if and only if T and S have the SVEP at λ, see [1, Theorem 2.15]. Moreover,

p(T − λI) < ∞ =⇒ T has the SVEP at λ (A)

q(T − λI) < ∞ =⇒ T∗ has the SVEP at λ, (B)

and these implications become equivalences if T − λI has topological uniform descent [1, Theorem 2.97,
Theorem 2.98]. For definitions and properties of operators which have topological uniform descent, see
[18].

Definition 1.1. [1] (i) The local spectrum of T at x ∈ X is the set defined by

σT(x) :=
{
λ ∈ C : for all open neighborhood Uλ of λ and analytic function
f : Uλ −→ X there exists µ ∈ Uλ such that (T − µI) f (µ) , x.

}
(ii) If F is a complex closed subset, then the local spectral subspace of T associated to F is defined by

XT(F) = {x ∈ X : σT(x) ⊂ F}.

A Banach space operator S is said to be nilpotent of degree d if Sd = 0 and Sd−1 , 0 [with the degree of
the null operator takes 0 if it acts on the space {0} and takes 1 otherwise]. S is a quasi-nilpotent (resp., Riesz,
meromorphic) operator if S−λI is invertible (resp., Browder, Drazin invertible) for all non-zero complex λ.
Note that S is nilpotent =⇒ S is quasi-nilpotent =⇒ S is Riesz =⇒ S is meromorphic. Denote by K (T) the
analytic core of T (see [27]):

K (T) = {x ∈ X : ∃ϵ > 0,∃(un)n ⊂ X such that x = u0,Tun+1 = un and ∥un∥ ≤ ϵ
n
∥x∥ ∀n ∈N},

and byH0(T) the quasi-nilpotent part of T : H0(T) = {x ∈ X : lim
n→∞

∥Tnx∥
1
n = 0}.

In [23, Theorem 4, 1958], Kato proved that if T is a semi-Fredholm operator, then T is of Kato-type of
degree d, that is there exists (M,N) ∈ Red(T) such that:

(i) TM is semi-regular.
(ii) TN is nilpotent of degree d.

Later, these operators are characterized by Labrousse [25, 1980] in the case of Hilbert space. The important
results obtained by Kato and Labrousse opened the field to many researchers to work in this direction
[7, 11, 14, 16, 27, 33–35]. In particular, Berkani [7] showed that T is B-Fredholm (resp., B-Weyl) if and only if
there exists (M,N) ∈ Red(T) such that TM is Fredholm (resp., Weyl) and TN is nilpotent. On the other hand,
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it is well known [16] that T is Drazin invertible if and only if there exists (M,N) ∈ Red(T) such that TM is
invertible and TN is nilpotent.
If the condition (ii) “TN is nilpotent” mentioned in the Kato’s decomposition is replaced by “TN is quasi-
nilpotent” (resp., “TN is Riesz”, “TN is meromorphic”), we find the pseudo-Fredholm [27] (resp., generalized
Kato-Riesz [34], generalized Kato-meromorphic [35]) decomposition. By the same argument the pseudo
B-Fredholm [32, 33] (resp., generalized Drazin-Riesz Fredholm [11, 34], generalized Drazin-meromorphic
Fredholm [35]) decomposition are obtained by substituting in the B-Fredholm decomposition the condition
“TN is nilpotent” by “TN is quasi-nilpotent” (resp., “TN is Riesz”, “TN is meromorphic”). Similarly, the
Drazin decomposition has been generalized [24, 34, 35].

We summarize in the following definition several known decompositions.

Definition 1.2. [5, 7, 10–12, 14, 27, 33–35] T is said to be
(i) of Kato-type of order d [resp., quasi upper semi-B-Fredholm, quasi lower semi-B-Fredholm, quasi B-Fredholm,
quasi upper semi-B-Weyl, quasi lower semi-B-Weyl, quasi semi-B-Weyl] if there exists (M,N) ∈ Red(T) such that
TM is semi-regular [resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl,
Weyl] and TN is nilpotent of degree d.We write (M,N) ∈ KD(T) if it is a Kato-type decomposition.
(ii) Pseudo-Fredholm [resp., upper pseudo semi-B-Fredholm, lower pseudo semi-B-Fredholm, pseudo B-Fredholm,
upper pseudo semi-B-Weyl, lower pseudo semi-B-Weyl, pseudo B-Weyl, left generalized Drazin invertible, right gen-
eralized Drazin invertible, generalized Drazin invertible] if there exists (M,N) ∈ Red(T) such that TM is semi-regular
[resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded
below, surjective, invertible] and TN is quasi-nilpotent. We write (M,N) ∈ GKD(T) if it is a pseudo-Fredholm type
decomposition.
(iii) Generalized Kato-Riesz [resp., generalized Drazin-Riesz upper semi-Fredholm, generalized Drazin-Riesz lower
semi-Fredholm, generalized Drazin-Riesz Fredholm, generalized Drazin-Riesz upper semi-Weyl, generalized Drazin-
Riesz lower semi-Weyl, generalized Drazin-Riesz Weyl, generalized Drazin-Riesz bounded below, generalized Drazin-
Riesz surjective, generalized Drazin-Riesz invertible] if there exists (M,N) ∈ Red(T) such that TM is semi-regular
[resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded
below, surjective, invertible] and TN is Riesz.
(iv) Generalized Kato-meromorphic [resp., generalized Drazin-meromorphic upper semi-Fredholm, generalized Drazin-
meromorphic lower semi-Fredholm, generalized Drazin-meromorphic Fredholm, generalized Drazin-meromorphic
upper semi-Weyl, generalized Drazin-meromorphic lower semi-Weyl, generalized Drazin-meromorphic Weyl, general-
ized Drazin-meromorphic bounded below, generalized Drazin-meromorphic surjective, generalized Drazin-meromorphic
invertible] if there exists (M,N) ∈ Red(T) such that TM is semi-regular [resp., upper semi-Fredholm, lower semi-
Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded below, surjective, invertible] and TN is
meromorphic.

As a continuation of the studies mentioned above, we define new classes of operators: one of them
named 1z-Kato which generalizes the class of generalized Kato-meromorphic operators. We prove that
the 1z-Kato spectrum σ1zK(T) is compact and acc σp f (T) ⊂ σ1zK(T). Moreover, we show that if T is 1z-Kato,
then α(TM), β(TM), p(TM) and q(TM) are independent of the choice of the decomposition (M,N) ∈ 1zKD(T).
An other class named 1z-invertible which generalizes the class of generalized Drazin invertible operators
introduced by Koliha. As a characterization of 1z-invertible operator, we prove that T is 1z-invertible iff
0 < acc (acc σ(T)) iff there exists a Drazin invertible operator S such that TS = ST, STS = S and T2S − T is
zeroloid. These characterizations are analogous to those proved by Koliha [24] which established that T
is generalized Drazin invertible operator iff 0 < acc σ(T) iff there exists an operator S such that TS = ST,
STS = S and T2S − T is quasi-nilpotent. As application, using the new spectra studied in the present work
and the concept of the Weak SVEP introduced at the end of this paper, we give new characterizations of
Browder-type theorems.
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The next list summarizes some notations and symbols that we will need later.

r(T) : the spectral radius of T
iso A : isolated points of a complex subset A
acc A : accumulation points of a complex subset A
A : the closure of a complex subset A
AC : the complementary of a complex subset A
B(λ, ϵ) : the open ball of radius ϵ centered at λ
D(λ, ϵ) : the closed ball of radius ϵ centered at λ
(B) : the class of operators satisfying Browder’s theorem (T ∈ (B) if σw(T) = σb(T))
(Be) : the class of operators satisfying essential Browder’s theorem [4] (T ∈ (Be) if σe(T) = σb(T))
(aB) : the class of operators satisfying a-Browder’s theorem (T ∈ (aB) if σuw(T) = σub(T))

σ(T): spectrum of T σp f (T): pseudo-Fredholm spectrum of T
σa(T): approximate points spectrum of T σpb f (T): pseudo B-Fredholm spectrum of T
σs(T): surjective spectrum of T σupb f (T): upper pseudo semi-B-Fredholm spectrum of T
σse(T): semi-regular spectrum of T σlpb f (T): lower pseudo semi-B-Fredholm spectrum of T
σe(T): essential spectrum of T σpbw(T): pseudo B-Weyl spectrum of T
σu f (T): upper semi-Fredholm spectrum of T σupbw(T): upper pseudo semi-B-Weyl spectrum of T
σl f (T): lower semi-Fredholm spectrum of T σlpbw(T): lower pseudo semi-B-Weyl spectrum of T
σw(T): Weyl spectrum of T σ1d(T): generalized Drazin invertible spectrum of T
σuw(T): upper semi-Weyl spectrum of T σl1d(T): left generalized Drazin invertible spectrum of T
σlw(T): lower semi-Weyl spectrum of T σr1d(T): right generalized Drazin invertible spectrum of T
σb(T): Browder spectrum of T σd(T): Drazin spectrum of T
σb f (T): B-Fredholm spectrum of T σbw(T): B-Weyl spectrum of T

2. The 1z-Kato decomposition

We begin this section by the following definition of zeroloid operators.

Definition 2.1. We say that T ∈ L(X) is a zeroloid operator if acc σ(T) ⊂ {0}.

The next remark summarizes some properties of zeroloid operators.

Remark 2.2. (i) A zeroloid operator has at most a countable spectrum.
(ii) Since acc σ(T) ⊂ σd(T) for every T ∈ L(X), then every meromorphic operator is zeroloid. But the operator I + Q
shows that the converse is not true, where I is the identity operator and Q is the quasi-nilpotent operator defined on
the Hilbert space ℓ2(N) by Q(x1, x2, . . . ) = (0, x1,

x2
2 , . . . ).

(iii) T is zeroloid if and only if Tn is zeroloid for every integer n ≥ 1.
(iv) Let (T,S) ∈ L(X) × L(Y), then T ⊕ S is zeroloid if and only if T and S are zeroloid.
(v) Here and elsewhere denote by comm(T) = {S ∈ L(X) : TS = ST}. So if Q ∈ comm(T) is a quasi-nilpotent or a
power finite rank operator, then T is zeroloid if and only if T +Q is zeroloid.

According to [4], the p-ascent p̃(T) and the p-descent q̃(T) of a pseudo-Fredholm operator T ∈ L(X) are
defined respectively, by p̃(T) = p(TM) and q̃(T) = q(TM), where M is any subspace which complemented by
a subspace N such that (M,N) ∈ GKD(T).

Proposition 2.3. If T ∈ L(X) is a pseudo-Fredholm operator, then the following statements are equivalent:
(a) p̃(T) < ∞;
(b) T has the SVEP at 0;
(c)H0(T) ∩K (T) = {0};
(d)H0(T) is closed.
dually, the following are equivalent:
(e) q̃(T) < ∞;
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(f) T∗ has the SVEP at 0;
(g)H0(T) +K (T) = X.

Proof. (a)⇐⇒ (b) Let (M,N) ∈ GKD(T), then TM is semi-regular and TN is quasi-nilpotent. As p(TM) = p̃(T)
then by the implication (A) above, we deduce that p̃(T) < ∞ if and only if TM has the SVEP at 0. Hence
p̃(T) < ∞ if and only if T has the SVEP at 0. The equivalence (e)⇐⇒ (f) goes similarly. The equivalences (b)
⇐⇒ (c), (c)⇐⇒ (d) and (f)⇐⇒ (g) are proved in [1, Theorem 2.79, Theorem 2.80].

Lemma 2.4. For T ∈ L(X), the following statements are equivalent:
(i) T is zeroloid;
(ii) σ∗(T) ⊂ {0}, where σ∗ ∈ {σp f , σupb f , σlpb f , σupbw, σlpbw, σl1d, σr1d, σpb f , σpbw}.

Proof. (i) =⇒ (ii) Obvious, since σ1d(T) = acc σ(T).
(ii)=⇒ (i) If σ∗(T) ⊂ {0}, thenC\{0} ⊂ Ω,whereΩ is the component of (σp f (T))C. Suppose that there exists λ ∈
acc σ(T)\ {0}, then λ < σ∗(T) and hence p̃(T−λI) = ∞ or q̃(T−λI) = ∞, but this is impossible. Indeed, assume
that p̃(T−λI) = ∞, as T−λI is pseudo-Fredholm, from Proposition 2.3 we haveH0(T−λI)∩K (T−λI) , {0}.
And from [12, Corollary 4.3], we obtainH0(T − λI) ∩ K (T − λI) = H0(T − µI) ∩ K (T − µI) for every µ ∈ Ω.
This implies that p̃(T −µI) = ∞ for all µ ∈ Ω \ {0} [otherwiseH0(T −µI) becomes closed for some µ ∈ Ω \ {0}
and thenH0(T − λI) ∩ K (T − λI) = {0}, which is impossible] and this is contradiction. Thus q̃(T − λI) = ∞,
but this leads (by the same argument) to a contradiction. Hence T is zeroloid.

Proposition 2.5. T ∈ L(X) is zeroloid if and only if TM and T∗M⊥ are zeroloid, where M is any closed T-invariant
subspace.

Proof. If T is zeroloid, then its resolvent (σ(T))C is connected. From [15, Proposition 2.10], we obtain that
σ(T) = σ(TM) ∪ σ(T∗M⊥ ). Thus TM and T∗M⊥ are zeroloid. Conversely, if TM and T∗M⊥ are zeroloid, then T is
zeroloid, since the inclusion σ(T) ⊂ σ(TM) ∪ σ(T∗M⊥ ) is always true.

Definition 2.6. Let T ∈ L(X). A pair of subspaces (M,N) ∈ Red(T) is a generalized Kato zeroloid decomposition
associated to T [(M,N) ∈ 1zKD(T) for brevity] if TM is semi-regular and TN is zeroloid. If such a pair exists, we say
that T is a 1z-Kato operator.

Example 2.7. (i) Every zeroloid operator and every semi-regular operator are 1z-Kato.
(ii) Every generalized Kato-meromorphic operator is 1z-Kato. But the converse is not true, see Example 4.13 below.

Our next result gives a punctured neighborhood theorem for 1z-Kato operators. Recall that the reduced
minimal modulus γ(T) of an operator T is defined by γ(T) := inf

x<N(T)

∥Tx∥
d(x,N(T)) ,where d(x,N(T)) is the distance

between x andN(T).

Theorem 2.8. Let T ∈ L(X) be a 1z-Kato operator. For every (M,N) ∈ 1zKD(T), there exists ϵ > 0 such that for all
λ ∈ B(0, ϵ) \ {0} we have
(i) T − λI is pseudo-Fredholm.
(ii) α(TM) = dimN(T − λI) ∩K (T − λI) ≤ α(T − λI).
(iii) β(TM) = codim [R(T − λI) +H0(T − λI)] ≤ β(T − λI).

Proof. Let ϵ = γ(TM) > 0 and let λ ∈ B(0, ϵ) \ {0}. From [18, Theorem 4.7], TM − λI is semi-regular, α(TM) =
α(TM − λI) and β(TM) = β(TM − λI). As TN is zeroloid then from [4], TN − λI is pseudo-Fredholm with
N(TN − λI) ∩ K (TN − λI) = {0} and N = R(TN − λI) + H0(TN − λI). Hence T − λI is pseudo-Fredholm,
α(TM) = dimN(T − λI) ∩K (T − λI) and β(TM) = codim [R(T − λI) +H0(T − λI)].

Since every pseudo-Fredholm operator is 1z-Kato, from Theorem 2.8 we immediately obtain the following
corollary. Hereafter, we denote by σ1zK(T) = {λ ∈ C : T − λI is not 1z-Kato operator} the 1z-Kato spectrum.

Corollary 2.9. The 1z-Kato spectrum σ1zK(T) of an operator T ∈ L(X) is compact.
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Proposition 2.10. If T ∈ L(X) is a 1z-Kato operator, then α(TM), β(TM), p(TM) and q(TM) are independent of the
choice of the generalized Kato zeroloid decomposition (M,N) ∈ 1zKD(T).

Proof. Let (M1,N1), (M2,N2) ∈ 1zKD(T) and let n ≥ 1. It is easily seen that Tn is also a 1z-Kato operator and
(M1,N1), (M2,N2) ∈ 1zKD(Tn).We put ϵn = min{γ(Tn

M1
), γ(Tn

M2
)}. If λ ∈ B(0, ϵn) \ {0}, then by Theorem 2.8 we

obtain α(Tn
M1

) = α(Tn
M2

) = dimN(Tn
−λI)∩K (Tn

−λI) and β(Tn
M1

) = β(Tn
M2

) = codim [R(Tn
−λI)+H0(Tn

−λI)].
Hence p(TM1 ) = p(TM2 ) and q(TM1 ) = q(TM2 ).

Let T ∈ L(X) be a 1z-Kato operator. Following Proposition 2.10, we denote by α̃(T) = α(TM), β̃(T) = β(TM),
p̃(T) = p(TM) and q̃(T) = q(TM), where (M,N) ∈ 1zKD(T) be arbitrary. If in addition, TM is semi-Fredholm,
then for every (M′

,N′

) ∈ 1zKD(T) the operator TM′ is also semi-Fredholm and ind(TM) = ind(TM′ ) (this
result will be extended in Lemma 3.4).

The next lemma extends [30, Theorem A.16]. In the sequel, for T ∈ L(X) and (M,N) ∈ Red(T),we define
the operator T(M,N) ∈ L(X) by T(M,N) = TPM + PN,where PM is the projection operator on X onto M.

Lemma 2.11. Let T ∈ L(X) and let (M,N) ∈ Red(T). The following assertions are equivalent:
(i) R(TM) is closed;
(ii) R(T∗N⊥ ) is closed;
(iii) R(T∗N⊥ ) ⊕M⊥ is closed in the weak-*-topology σ(X∗,X) on X∗.

Proof. As (M,N) ∈ Red(T) then (PN)∗ = PM⊥ and (TPM)∗ = T∗PN⊥ . So (T(M,N))∗ = (TPM+PN)∗ = T∗PN⊥ +PM⊥ =
T∗(N⊥,M⊥). Thus R(T(M,N)) = R(TM)⊕N and R((T(M,N))∗) = R(T∗N⊥ )⊕M⊥.Moreover, R(TM) is closed if and only
if R(T(M,N)) is closed. By applying [30, Theorem A.16] to the operator T(M,N), the proof is complete.

From this Lemma and some known classical properties of pseudo-Fredholm and quasi-Fredholm operators,
we immediately obtain:

Corollary 2.12. Let T ∈ L(X). The following statements hold:
(i) If T is pseudo-Fredholm, then R(T∗) +H0(T∗) is closed in σ(X∗,X).
(ii) If T is a Hilbert space quasi-Fredholm operator of degree d, then R(T∗) +N(Td∗) is closed in σ(X∗,X).

The following lemma extends some well known results in spectral theory, as relation between nullity,
deficiency and some other spectral quantities of a given operator T and its dual T∗.

Lemma 2.13. Let T ∈ L(X) and let (M,N) ∈ Red(T). The following statements hold:
(i) TM is semi-regular if and only if T∗N⊥ is semi-regular.
(ii) If R(TM) is closed, then α(TM) = β(T∗N⊥ ), β(TM) = α(T∗N⊥ ), p(TM) = q(T∗N⊥ ) and q(TM) = p(T∗N⊥ ).
(iii)σa(TM) = σs(T∗N⊥ ), σs(TM) = σa(T∗N⊥ ), σ∗(TM) = σ∗(T∗N⊥ ) and r(TM) = r(T∗N⊥ ),whereσ∗ ∈ {σ, σse, σe, σs f , σb f , σd, σb}.
Moreover, if TM is semi-Fredholm, then ind(TM) = −ind(T∗N⊥ ).

Proof. (i) We have N(T(M,N)) = N(TM) and (T(M,N))n = Tn
(M,N) for every n ∈ N. It is easy to see that TM is

semi-regular if and only if T(M,N) is semi-regular. As (T(M,N))∗ = T∗(N⊥,M⊥) then TM is semi-regular if and only
if T∗N⊥ is semi-regular.
(ii) We haveN((T(M,N))n) = N(Tn

M) and R((T(M,N))n) = R(Tn
M) ⊕N for every n ∈N. As R(T(M,N)) = R(TM) ⊕N

is closed then α(TM) = α(T(M,N)) = β(T∗(N⊥,M⊥)) = β(T
∗

N⊥ ). The other equalities go similarly.
(iii) As (TM ⊕ 0N)∗ = (TPM)∗ = T∗PN⊥ = T∗N⊥ ⊕ 0M⊥ , then σ∗(TM) ∪ σ∗(0N) = σ∗(TM ⊕ 0N) = σ∗(T∗N⊥ ⊕ 0M⊥ ) =
σ∗(T∗N⊥ ) ∪ σ∗(0M⊥ ). We know that σ∗(S) = ∅ for every nilpotent operator S with σ∗ ∈ {σb f , σd}. Furthermore,
the first and the second points imply that 0 ∈ σ∗(TM) if and only if 0 ∈ σ∗(T∗N⊥ ), where σ∗ ∈ {σ, σse, σe, σs f , σb}.
So σ∗(TM) = σ∗(T∗N⊥ ) and r(TM) = r(T∗N⊥ ). The proof of the other equalities spectra is obvious, see Lemma
2.11. Moreover, if TM is semi-Fredholm, then T∗N⊥ is also semi-Fredholm and ind(TM) = −ind(T∗N⊥ ).

Corollary 2.14. Let T ∈ L(X) and let (M,N) ∈ Red(T). Then (M,N) ∈ 1zKD(T) if and only if (N⊥,M⊥) ∈ 1zKD(T∗).
In particular, if T is 1z-Kato, then T∗ is 1z-Kato.
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Proposition 2.15. If T ∈ L(X) is 1z-Kato, then
(a) There exist S,R ∈ L(X) such that:

(i) T = S + R, RT = TR = 0, S is quasi-Fredholm of degree d ≤ 1 and R is zeroloid.
(ii)N(S) +N(R) = X and R(S) ⊕ R(R) is closed.

(b) There exist S,R ∈ L(X) such that SR = RS = (S + R) − I = T, S is semi-regular and R is zeroloid.

Proof. (a) Let (M,N) ∈ 1zKD(T). The operators S = TPM and R = TPN respond to the statement (a). Indeed,
as TN is zeroloid and acc σ(R) = acc σ(TN) then R is zeroloid. Suppose that M < {{0},X} (the other case is
trivial) and let n ∈ N ≥ 1, then N(Sn) = N ⊕ N(Tn

M) and R(S) = R(TM) is closed. As TM is semi-regular, it
follows that N(Sn) + R(S) = N +N(Tn

M) + R(TM) = N +N(TM) + R(TM) = N(S) + R(S). Consequently, S is
quasi-Fredholm of degree d ≤ 1.Moreover,N(S) +N(R) = X and R(S) ⊕ R(R) = R(TM) ⊕ R(TN) is closed.
(b) Let (M,N) ∈ 1zKD(T). If we take S = T(M,N) and R = T(N,M), then SR = RS = (S+R)− I = T, S = TM ⊕ IN is
semi-regular and R = IM ⊕ TN is zeroloid.

In the case of Hilbert space operator T, the next proposition shows that the statement (a) of Proposition 2.15
is equivalent to say that T is 1z-Kato.

Proposition 2.16. If H is a Hilbert space, then T ∈ L(H) is 1z-Kato if and only if there exist S,R ∈ L(H) such that
T = S + R and
(i) RT = TR = 0, S is quasi-Fredholm of degree dis(S) ≤ 1, R is a zeroloid operator;
(ii)N(S) +N(R) = H and R(S) ⊕ R(R) is closed.

Proof. Assume that S is quasi-Fredholm of degree 1 (the case of S semi-regular is obvious), then from the
proof of [27, Theorem 2.2], there exists (M,N) ∈ GKD(S) such that TM = SM and TN = RN. As R is zeroloid
then Proposition 2.5 entails that TN is zeroloid. Thus T is 1z-Kato. For the converse, see Proposition 2.15.

3. 1z-Fredholm operators

Definition 3.1. T ∈ L(X) is said to be an upper semi-1z-Fredholm (resp., lower semi-1z-Fredholm, 1z-Fredholm)
operator if there exists (M,N) ∈ Red(T) such that TM is an upper semi-Fredholm (resp., lower semi-Fredholm,
Fredholm) operator and TN is zeroloid. T is said a semi-1z-Fredholm if it is an upper or a lower semi-1z-Fredholm.

Every zeroloid operator is 1z-Fredholm. Every generalized Drazin-meromorphic semi-Fredholm is a semi-
1z-Fredholm, and we show by Example 4.13 that the converse is generally not true.

The next proposition gives some relations between semi-1z-Fredholm and 1z-Kato operators.

Proposition 3.2. Let T ∈ L(X). The following statements are equivalent:
(i) T is semi-1z-Fredholm [resp., upper semi-1z-Fredholm, lower semi-1z-Fredholm, 1z-Fredholm];
(ii) T is 1z-Kato and min {α̃(T), β̃(T)} < ∞ [resp., T is 1z-Kato and α̃(T) < ∞, T is 1z-Kato and β̃(T) < ∞, T is 1z-Kato
and max {α̃(T), β̃(T)} < ∞];
(iii) T is 1z-Kato and 0 < acc σspb f (T) [resp., T is 1z-Kato and 0 < acc σupb f (T), T is 1z-Kato and 0 < acc σlpb f (T), T is
1z-Kato and 0 < acc σpb f (T)], where σspb f (T) := σupb f (T) ∪ σlpb f (T).

Proof. (i) ⇐⇒ (ii) Assume that T is semi-1z-Fredholm, then there exists (A,B) ∈ Red(T) such that TA is
semi-Fredholm and TB is zeroloid. From [5, Corollary 3.7], there exists (M,N) ∈ 1zKD(T) such that TM is
semi-Fredholm. Thus T is 1z-Kato operator and min {α̃(T), β̃(T)} = min {α(TM), β(TM)} < ∞. The converse is
obvious. The other equivalence cases go similarly.
(ii)⇐⇒ (iii) Is a consequence of Theorem 2.8.

Corollary 3.3. T ∈ L(X) is 1z-Fredholm if and only if T is an upper and a lower semi-1z-Fredholm.

The following lemma will allow us to define the index for semi-1z-Fredholm operators.

Lemma 3.4. Let T ∈ L(X). If there exist two pair of closed T-invariant subspaces (M,N) and (M′

,N′

) such that
M ⊕N =M′

⊕N′ is closed, TM and TM′ are semi-Fredholm, TN and TN′ are zeroloid, then ind(TM) = ind(TM′ ).
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Proof. As TM and TM′ are semi-Fredholm operators then from the punctured neighborhood theorem for
semi-Fredholm operators, there exists ϵ > 0 such that B(0, ϵ) ⊂ σs f (TM)C

∩σs f (TM′ )C, ind(TM −λI) = ind(TM)
and ind(TM′ − λI) = ind(TM′ ) for every λ ∈ B(0, ϵ). From [4, Remark 2.4] and the fact that TN and TN′ are
zeroloid, we conclude that B0 := B(0, ϵ)\{0} ⊂ σs f (TM)C

∩σs f (TM′ )C
∩σ1d(TN)C

∩σ1d(TN′ )C
⊂ σspb f (TM⊕N)C. Let

λ ∈ B0, then (T − λI)M⊕N is pseudo semi-B-Fredholm and ind((T − λI)M⊕N) = ind(TM − λI) + ind(TN − λI) =
ind(TM′ − λI) + ind(TN′ − λI). Thus ind(TM) = ind(TM′ ).

Definition 3.5. Let T ∈ L(X) be a semi-1z-Fredholm. We define its index ind(T) as the index of TM, where M is a
closed T-invariant subspace which has a complementary closed T-invariant subspace N such that TM is semi-Fredholm
and TN is zeroloid. From Lemma 3.4, the index of T is independent of the choice of the pair (M,N) appearing in
Definition 3.1 of T as a semi-1z-Fredholm. In addition, we have from Proposition 3.2, ind(T) = α̃(T) − β̃(T).

We say that T ∈ L(X) is an upper semi-1z-Weyl (resp., lower semi-1z-Weyl, 1z-Weyl) operator if T is an
upper semi-1z-Fredholm (resp., lower semi-1z-Fredholm, 1z-Fredholm) with ind(T) ≤ 0 (resp., ind(T) ≥ 0,
ind(T) = 0).

Remark 3.6. (i) Every zeroloid operator T is 1z-Fredholm with α̃(T) = β̃(T) = ind(T) = 0.A pseudo semi-B-Fredholm
is semi-1z-Fredholm and its usual index coincides with its index as a semi-1z-Fredholm.
(ii) T is 1z-Fredholm if and only if T is semi-1z-Fredholm with an integer index. And T is 1z-Weyl if and only if T is
upper and lower semi-1z-Weyl.

Proposition 3.7. If T ∈ L(X) and S ∈ L(Y) are semi-1z-Fredholm, then
(i) Tn is semi-1z-Fredholm and ind(Tn) = n.ind(T) for every integer n ≥ 1.
(ii) T ⊕ S is semi-1z-Fredholm and ind(T ⊕ S) = ind(T) + ind(S).

Proof. (i) As T is semi-1z-Fredholm, then there exists (M,N) ∈ Red(T) such that TM is semi-Fredholm and
TN is zeroloid. So (M,N) ∈ Red(Tn), Tn

M is semi-Fredholm and Tn
N is zeroloid. Thus ind(Tn) = ind(Tn

M) =
n.ind(TM) = n.ind(T).
(ii) Since T ∈ L(X) and S ∈ L(Y) are semi-1z-Fredholm, then there exist (M1,N1) ∈ Red(T) and (M2,N2) ∈
Red(S) such that TM1 and TM2 are semi-Fredholm, TN1 and TN2 are zeroloid. Hence TM1⊕M2 is semi-Fredholm
and TN1⊕N2 is zeroloid. Moreover, (M1 ⊕M2,N1 ⊕N2) ∈ Red(T ⊕ S). Hence ind(T ⊕ S) = ind((T ⊕ S)M1⊕M2 ) =
ind(TM1 ) + ind(SM2 ) = ind(T) + ind(S).

Denote by σu1z f (T), σl1z f (T), σs1z f (T), σ1z f (T), σu1zw(T), σl1zw(T), σs1zw(T) and σ1zw(T) respectively, the upper
semi-1z-Fredholm spectrum, the lower semi-1z-Fredholm spectrum, the semi-1z-Fredholm, the 1z-Fredholm
spectrum, the upper semi-1z-Weyl spectrum, the lower semi-1z-Weyl spectrum, the semi-1z-Weyl spectrum
and the 1z-Weyl spectrum of T.

Corollary 3.8. For every T ∈ L(X), we have σ1z f (T) = σu1z f (T) ∪ σl1z f (T) and σ1zw(T) = σu1zw(T) ∪ σl1zw(T).

Proposition 3.9. Let T ∈ L(X) be a semi-B-Fredholm operator which is semi-1z-Fredholm. Then T is quasi semi-B-
Fredholm and its index as a semi-B-Fredholm coincides with its index as a semi-1z-Fredholm.

Proof. Let (M,N) ∈ Red(T) such that TM is semi-Fredholm and TN is zeroloid. Since T is semi-B-Fredholm
then TN is Drazin invertible. So there exists (A,B) ∈ Red(TN) such that TA is invertible and TB is nilpotent.
It is easy to get that M ⊕ A is closed, so that TM⊕A is semi-Fredholm. Consequently, T = TM⊕A ⊕ TB is
quasi semi-B-Fredholm. Furthermore, the punctured neighborhood theorem for semi-Fredholm operators
implies that ind(TM) = ind(T[mT]).

From [29, Theorem 7] and the previous proposition, we obtain the following corollary.

Corollary 3.10. Every B-Fredholm operator T ∈ L(X) is 1z-Fredholm and its usual index coincides with its index as
a 1z-Fredholm operator.

Proposition 3.11. If T ∈ L(X) is a semi-1z-Fredholm operator, then T∗ is semi-1z-Fredholm, α̃(T) = β̃(T∗), β̃(T) =
α̃(T∗) and ind(T) = −ind(T∗).
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Proof. See Lemma 2.13.

Our next definition gives a new class of operators that extends the class of semi-Browder operators.

Definition 3.12. We say that T ∈ L(X) is an upper semi-1z-Browder (resp., lower semi-1z-Browder, 1z-Browder) if
T is a direct sum of an upper semi-Browder (resp., lower semi-Browder, Browder) operator and a zeroloid operator.

Proposition 3.13. Let T ∈ L(X). The following statements are equivalent:
(i) T is an upper semi-1z-Browder [resp., lower semi-1z-Browder, 1z-Browder];
(ii) T is an upper 1z-Weyl and T has the SVEP at 0 [resp., T is a lower semi-1z-Weyl and T∗ has the SVEP at 0, T is
1z-Weyl and T or T∗ has the SVEP at 0];
(iii) T is an upper semi-1z-Fredholm and T has the SVEP at 0 [resp., T is a lower semi-1z-Fredholm and T∗ has the
SVEP at 0, T is 1z-Fredholm and T ⊕ T∗ has the SVEP at 0].

Proof. (i)⇐⇒ (ii) Suppose that T is 1z-Browder, then there exists (M,N) ∈ 1zKD(T) such that TM is Browder.
So TM, (TM)∗, TN and (TN)∗ have the SVEP at 0. Thus T and T∗ have the SVEP at 0. Conversely, if T is 1z-Weyl
and T or T∗ has the SVEP at 0, then there exists (M,N) ∈ 1zKD(T) such that TM is Weyl and TM or (TM)∗

has the SVEP at 0. So max{α̃(T), β̃(T)} < ∞ and min{p̃(T), q̃(T)} < ∞. This implies from [1, Lemma 1.22] that
max{p̃(T), q̃(T)} < ∞ and then TM is Browder. Therefore T is 1z-Browder. The other equivalence cases go
similarly.
(i)⇐⇒ (iii) Suppose that T is 1z-Fredholm and T ⊕ T∗ has the SVEP at 0. Let (M,N) ∈ 1zKD(T) such that TM
is Fredholm and TN is zeroloid. Hence TM ⊕ (TM)∗ has the SVEP at 0. From the implications (A) and (B)
mentioned in the introduction, we deduce that TM is Browder and then T is 1z-Browder. The converse is
clear and the other equivalence cases go similarly.

The proofs of the following results are obvious and are left to the reader.

Proposition 3.14. If T ∈ L(X) is semi-1z-Fredholm, then there exists ϵ > 0 such that B0 := B(0, ϵ)\{0} ⊂ (σspb f (T))C

and ind(T) = ind(T − λI) for every λ ∈ B0.

Corollary 3.15. For every T ∈ L(X), the following assertions hold:
(i) σu1z f (T), σl1z f (T), σs1z f (T), σ1z f (T), σu1zw(T), σl1zw(T), σs1zw(T) and σ1zw(T) are compact.
(ii) If Ω is a component of (σu1z f (T))C or (σl1z f (T))C, then the index ind(T − λI) is constant as λ ranges over Ω.

Corollary 3.16. Let T ∈ L(X). The following statements are equivalent:
(i) T is semi-1z-Weyl [resp., upper semi-1z-Weyl, lower semi-1z-Weyl, 1z-Weyl];
(ii) T is 1z-Kato and 0 < acc σspbw(T) [resp., T is 1z-Kato and 0 < acc σupbw(T), T is 1z-Kato and 0 < acc σlpbw(T), T is
1z-Kato and 0 < acc σpbw(T)], where σspbw(T) := σupbw(T) ∪ σlpbw(T).

4. 1z-invertible operators

Recall [1] that T ∈ L(X) is said to be Drazin invertible if there exists an operator S ∈ L(X) which commutes
with T with STS = S and TnST = Tn for some integer n ∈ N. The index of a Drazin invertible operator T is
defined by i(T) = min{n ∈N : ∃S ∈ L(X) such that ST = TS,STS = S and TnST = Tn

}.

Proposition 4.1. Let T ∈ L(X). If p(T) < ∞ (resp., q(T) < ∞) then p(T) = dis(T) (resp., q(T) = dis(T)). Moreover,
if T is Drazin invertible, then i(T) = dis(T).

Proof. Suppose that p(T) < ∞, then N(T[n]) = {0} for every n ≥ p(T). This implies that N(T[d]) = {0}, where
d := dis(T). Thus p(T) ≤ d, and as we always have d ≤ min{p(T), q(T)} then p(T) = d. If q(T) < ∞, then
X = R(T) + N(Tn) for every n ≥ q(T). Since R(T) + N(Td) = R(T) + N(Tm) for every integer m ≥ d, then
X = R(T) +N(Td). Hence T[d] is surjective and consequently q(T) = d. If in addition T is Drazin invertible,
then the proof of the equality desired is an immediate consequence of [1, Theorem 1.134].

Definition 4.2. We say that T is quasi left Drazin invertible (resp., quasi right Drazin invertible) if there exists
(M,N) ∈ KD(T) such that TM is bounded below (resp., surjective).
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Proposition 4.3. Let T ∈ L(X). The following hold:
(i) T is Drazin invertible if and only if T is quasi left and quasi right Drazin invertible.
(ii) If T is quasi left Drazin invertible, then T is left Drazin invertible.
(iii) If T is quasi right Drazin invertible, then T is right Drazin invertible.
Furthermore, the converses of (ii) and (iii) are true in the case of Hilbert space.

Proof. (i) Assume that T is Drazin invertible, then n := p(T) = q(T) < ∞. It is well known that (R(Tn),N(Tn)) ∈
Red(T), TR(Tn) is invertible and TN(Tn) is nilpotent. So T is quasi left and quasi right Drazin invertible.
Conversely, if T is quasi left and quasi right Drazin invertible, then α̃(T) = β̃(T) = 0. Therefore α(TM) =
α̃(T) = β̃(T) = β(TM) = 0 for every (M,N) ∈ KD(T). Thus T is Drazin invertible.
(ii) Let (M,N) ∈ Red(T) such that TM is bounded below and TN is nilpotent of degree d. As a bounded
below operator is semi-regular, we deduce from [5, Theorem 2.21] that d = dis(T). Clearly, R(Tn) is closed
and T[n] = (TM)[n] is bounded below for every integer n ≥ d. Hence T is left Drazin invertible. Conversely,
assume that T is left Drazin invertible Hilbert space operator. Then T is upper semi-B-Fredholm, which
entails from [10, Theorem 2.6] and [5, Corollary 3.7] that there exists (M,N) ∈ KD(T) such that TM is upper
semi-Browder. Using [4, Lemma 2.17], we conclude that TM is bounded below and then T is quasi left
Drazin invertible.
(iii) Goes similarly with (ii).

Proposition 4.4. T ∈ L(X) is an upper semi-Browder [resp., lower semi-Browder] if and only if T is a quasi left
Drazin invertible [resp., quasi right Drazin invertible] and dim N < ∞ for every (or for some) (M,N) ∈ KD(T).

Proof. If T is an upper semi-Browder, then T is upper semi-Fredholm. From [5, Corollary 3.7], there exists
(M,N) ∈ KD(T) with TM is upper semi-Browder. It follows from [4, Lemma 2.17] that TM is bounded below.
Let (A,B) ∈ KD(T) be arbitrary. Since a nilpotent operator S ∈ L(Y) is semi-Fredholm iff dim Y < ∞, then
dim B < ∞. The converse is obvious and the other case goes similarly.

Definition 4.5. T ∈ L(X) is said to be left 1z-invertible (resp., right 1z-invertible) if there exists (M,N) ∈ 1zKD(T)
such that TM is bounded below (resp., surjective). T is called 1z-invertible if it is left and right 1z-invertible.

Remark 4.6. (i) It is clear that T is 1z-invertible if and only if there exists (M,N) ∈ 1zKD(T) such that TM is
invertible.
(ii) Every generalized Drazin-meromorphic invertible operator is 1z-invertible.

We prove in the following result that the class of 1z-invertible operators preserves some properties of
Drazin invertibility [16, 24].

Theorem 4.7. Let T ∈ L(X). The following statements are equivalent:
(i) T is 1z-invertible;
(ii) T is 1z-Browder;
(iii) There exists (M,N) ∈ 1zKD(T) such that TM is Drazin invertible;
(iv) There exists a Drazin invertible operator S ∈ L(X) such that TS = ST, STS = S and T2S − T is zeroloid. A such
S is called a 1z-inverse of T;
(v) There exists a bounded projection P on X which commutes with T, T + P is generalized Drazin invertible and TP
is zeroloid;
(vi) There exists a bounded projection P on X commuting with T such that there exist U,V ∈ L(X) which satisfy
P = TU = VT and T(I − P) is zeroloid;
(vii) T is 1z-Kato and p̃(T) = q̃(T) < ∞.

Proof. The equivalences (i)⇐⇒ (ii) and (i)⇐⇒ (iii) are immediate consequences of Propositions 4.3 and 4.4.
(i)⇐⇒ (iv) Assume that T is 1z-invertible and let (M,N) ∈ 1zKD(T) such that TM is invertible. The operator
S = (TM)−1

⊕ 0N is Drazin invertible. Moreover, TS = ST = IM ⊕ 0N, STS = S and T2S − T = 0M ⊕ (−TN).
As TN is zeroloid then T2S − T is also zeroloid. Conversely, suppose that there exists a Drazin invertible
operator S such that TS = ST, STS = S and T2S−T is zeroloid. Then TS is a projection. If we take M = R(TS)
and N = N(TS), then (M,N) ∈ Red(T) ∩ Red(S). We have TM is one-to-one. Indeed, x ∈ N(TM) implies
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that x = TSy and Tx = 0, so x = (TS)2y = STx = 0. Since R(TM) = M then TM is invertible. Let us to
show that S = (TM)−1

⊕ 0N. We have SN = 0N, since S = STS. Let x = TSy ∈ M, as Sy = STSy ∈ M then
Sx = Sy = (TM)−1TMSy = (TM)−1x. Hence S = (TM)−1

⊕ 0N and T2S − T = 0M ⊕ (−TN). Thus TN is zeroloid
and then T is 1z-invertible.
(i) ⇐⇒ (v) Suppose that there exists a bounded projection P on X which commutes with T, T + P is
generalized Drazin invertible and TP is zeroloid. Then (A,B) := (N(P),R(P)) ∈ Red(T), TA = (T + P)A is
generalized Drazin invertible and TB = (TP)B is zeroloid. Thus there exists (C,D) ∈ Red(TA) such that TC is
invertible and TD is quasi-nilpotent. Hence (C,D ⊕ B) ∈ 1zKD(T) and then T is 1z-invertible. Conversely,
let (M,N) ∈ 1zKD(T) such that TM is invertible. Clearly, P := 0M ⊕ IN is a projection and TP = PT.
Furthermore, TP = 0M ⊕ TN is zeroloid and T + P = TM ⊕ (T + I)N is generalized Drazin invertible, since
−1 < acc σ(TN) = σ1d(TN).
(vi) =⇒ (i) Suppose that there exists a bounded projection P on X commuting with T such that there
exist U,V ∈ L(X) which satisfy P = TU = VT and T(I − P) is zeroloid. In addition, we assume that
U,V ∈ comm(T) (for the general case, one can see the proof of the implication (v) =⇒ (vi) of [35, Theorem
2.4]). Then IM ⊕ 0N = TMUM ⊕ TNUN = VMTM ⊕ VNTN, where (M,N) := (R(P),N(P)) ∈ Red(T), and thus
TMUM = VMTM = IM and TNUN = VNTN = 0N. Hence TM is invertible. Moreover, TN is zeroloid, since
T(I − P) = 0M ⊕ TN is zeroloid. Consequently, T is 1z-invertible.
(iv) =⇒ (vi) and (i)⇐⇒ (vii) are clear.

The next two theorems are analogous to the previous one.

Theorem 4.8. Let T ∈ L(X). The following statements are equivalent:
(i) T is left 1z-invertible;
(ii) T is upper semi-1z-Browder;
(iii) There exists (M,N) ∈ 1zKD(T) such that TM is quasi left Drazin invertible;
(iv) T is 1z-Kato and p̃(T) = 0;
(v) T is 1z-Kato and 0 < acc σl1d(T).

Theorem 4.9. Let T ∈ L(X). The following statements are equivalent:
(i) T is right 1z-invertible;
(ii) T is lower semi-1z-Browder;
(iii) There exists (M,N) ∈ 1zKD(T) such that TM is quasi right Drazin invertible;
(iv) T is 1z-Kato and q̃(T) = 0;
(v) T is 1z-Kato and 0 < acc σr1d(T).

Corollary 4.10. If T ∈ L(X) is 1z-invertible and S is a 1z-inverse of T, then TST is the Drazin inverse of S and
p(S) = q(S) = dis(S) ≤ 1.

Proof. Obvious.

Hereafter, σl1zd(T), σr1zd(T) and σ1zd(T) are respectively, the left 1z-invertible spectrum, the right 1z-invertible
spectrum and the 1z-invertible spectrum of T.

Theorem 4.11. For every T ∈ L(X) we have σ1zd(T) = acc (acc σ(T)).

Proof. Let µ < acc (acc σ(T)).Without loss of generality we assume that µ = 0 [note that acc acc σ(T − αI) =
acc (acc σ(T)) − α, for every complex α]. If 0 < acc σ(T), then T is generalized Drazin invertible and in
particular 1z-invertible. If 0 ∈ acc σ(T) then 0 ∈ acc (iso σ(T)).We distinguish two cases:
Case 1: acc (iso σ(T)) , {0}. It follows that ϵ := inf

λ∈acc (iso σ(T))\{0}
|λ| > 0.Moreover, the sets F2 := D(0, ϵ2 )∩ iso σ(T)

and F1 := ((acc σ(T)) \ {0}) ∪ (iso σ(T) \ F2) are closed and disjoint. Indeed, F1 ∩ F2 = F2 ∩ [(acc σ(T)) \ {0}] ⊂
[acc (iso σ(T)) \ {0}] ∩ D(0, ϵ2 ) = ∅. As 0 < acc (acc σ(T)) then (acc σ(T)) \ {0} is closed. Let us to show that
C := (iso σ(T) \ F2) is closed. If λ ∈ acc C (the case of acc C = ∅ is obvious), then λ ∈ iso σ(T). Let (λn)n ⊂ C be
a non stationary sequence that converges to λ, it follows that λ , 0.We have λ < F2. Otherwise, λ ∈ D(0, ϵ2 )
and then λ < acc (iso σ(T). So λ ∈ iso σ(T) and this is a contradiction. Therefore C is closed and then F1 is
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closed. As σ(T) = F1 ∪ F2 then there exists (M,N) ∈ Red(T) such that σ(TM) = F1 and σ(TN) = F2. So TM is
invertible and 0 ∈ acc σ(TN). Let v ∈ F2, then v < acc σ(TN) \ {0}, since F1∩F2 = F2∩ (acc σ(T) \ {0}) = ∅.Hence
acc σ(TN) = {0} and T is 1z-invertible.
Case 2: acc (iso σ(T)) = {0}. Then F2 := D(0, 1)∩ iso σ(T) and F1 := ((acc σ(T)) \ {0})∪ (iso σ(T) \ F2) are closed
disjoint subsets and give the desired result. For this, if λ ∈ C, where C := iso σ(T) \ F2, then there exists
a sequence (λn) ⊂ C that converges to λ. As acc (iso σ(T)) = {0} and λ(, 0) ∈ iso σ(T) then λ ∈ iso σ(T).
Therefore (λn)n is stationary and so λ ∈ C. Thus F1 is closed and hence there exists (M,N) ∈ Red(T) such
that σ(TM) = F1 and σ(TN) = F2. Conclusion, T is 1z-invertible.
Conversely, if T is 1z-invertible, then T = T1 ⊕ T2, where T1 is invertible and T2 is zeroloid. And then there
exists ϵ > 0 such that B(0, ϵ) \ {0} ⊂ (σ(T1))C

∩ (acc σ(T2))C
⊂ (acc σ(T))C. Thus 0 < acc (acc σ(T)).

From the previous theorem and some well known results in perturbation theory, we obtain the following
corollary.

Corollary 4.12. Let T ∈ L(X). The following statements hold:
(i) σl1zd(T), σr1z f (T) and σ1zd(T) are compact.
(ii) σ1zd(T) = σ1zd(T∗).
(iii) If S ∈ L(Y), then T ⊕ S is 1z-invertible if and only if T and S are 1z-invertible.
(iv) T is 1z-invertible if and only if Tn is 1z-invertible for some (equivalently for every) integer n ≥ 1.
(v) If Q ∈ comm(T) is quasi-nilpotent, then σ1zd(T) = σ1zd(T +Q).
(vi) If F ∈ F0(X) ∩ comm(T), then σ1zd(T) = σ1zd(T + F), where F0(X) is the set of all power finite rank operators.

Example 4.13. Let T ∈ L(X) be the operator such that σ(T) = σd(T) = { 1
n }. Then T is 1z-invertible and not

generalized Drazin-meromorphic invertible, since 0 ∈ acc σd(T) (see [35, Theorem 5]). Note also that T is not
generalized Kato-meromorphic. Otherwise, we get α̃(T) = β̃(T) = 0, since T is 1z-invertible. Hence T is generalized
Drazin-meromorphic invertible and this is a contradiction.

Proposition 4.14. Let T ∈ L(X). The following statements are equivalent:
(i) 0 ∈ iso (acc σ(T)) (i.e. T is 1z-invertible and not generalized Drazin invertible);
(ii) T = T1 ⊕ T2, where T1 is invertible and acc σ(T2) = {0};
(iii) T is 1z-Kato and there exists a non stationary sequence of isolated points of σ(T) that converges to 0.

Proof. (i) =⇒ (ii) Follows directly from the proof of Theorem 4.11. Note here that acc σ(TN) = {0} for every
(M,N) ∈ 1zKD(T).
(ii) =⇒ (iii) As T = T1 ⊕ T2, T1 is invertible and acc σ(T2) = {0}, then 0 ∈ iso (acc σ(T)) and there exists a non
stationary sequence (λn)n ⊂ iso σ(T2) that converges to 0. Thus T is 1z-invertible and there exists N ∈ N
such that λn ∈ σ(T) \ acc σ(T) = iso σ(T) for all n ≥ N.
(iii) =⇒ (i) Assume that T = T1 ⊕ T2, T1 is semi-regular, T2 is zeroloid and there exists a non stationary
sequence (λn)n of isolated point of σ(T) that converges to 0. Hence 0 ∈ acc σ(T) and T ⊕ T∗ has the SVEP at
0. This entails that T is 1z-invertible and then 0 ∈ iso (acc σ(T)).

Recall that σ ⊂ σ(T) is called a spectral set (called also isolated part) of T if σ and σ(T) \σ are closed, see [17].
Let T be a 1z-invertible operator which is not generalized Drazin invertible. From Proposition 4.14, we
conclude that there exists a non-zero strictly decreasing sequence (λn)n ⊂ iso σ(T) that converges to 0
such that σ := {λn : n ∈N} is a spectral set of T. If Pσ is the spectral projection associated to σ, then
(Mσ,Nσ) := (N(Pσ),R(Pσ)) ∈ 1zKD(T), σ(TNσ ) = σ and σ(TMσ ) = σ(T) \ σ. Thus T + rPσ = TMσ ⊕ (T + rI)Nσ is
invertible for every |r| > |λ0| and then the operator TD

σ := (T + rPσ)−1(I − Pσ) = (TMσ )
−1
⊕ 0Nσ is a 1z-inverse

of T and depends only on σ. Note that Pσ = I − TTD
σ ∈ comm2(T) := {S ∈ comm(L) : L ∈ comm(T)}, so that

(Mσ,Nσ) ∈ Red(S) for every operator S ∈ comm(T) and TD
σ ∈ comm2(T).Note also that T+Pσ is generalized

Drazin invertible and TPσ is zeroloid.

Lemma 4.15. Let T ∈ L(X) be a 1z-invertible operator and (M,N) ∈ 1zKD(T) such that TM invertible and
σ(TM) ∩ σ(TN) = ∅. Then σ(TN) \ {0} ⊂ iso σ(T) and for every S ∈ comm(T) we have (M,N) ∈ Red(S).
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Proof. If T is generalized Drazin invertible, then 0 < acc σ(T) and so acc σ(TN) = ∅, hence σ(TN) is a finite set
of isolated points of σ(T). Let Pσ be the spectral projection associated to σ = σ(TN). From [17, Proposition
2.4] and the fact that Pσ ∈ comm2(T) we deuce that (M,N) = (N(Pσ),R(Pσ)) ∈ Red(S) for every S ∈ comm(T).
If T is not generalized Drazin invertible, then there exists a strictly decreasing sequence (λn)n of isolated
point of σ(T) that converges to 0 and such that σ(TN) = {λn : n ∈N}. Thus σ(TN) \ {0} ⊂ iso σ(T). Let P be the
spectral projection associated to the spectral set σ(TN), then (M,N) = (N(P),R(P)) and so (M,N) ∈ Red(S)
for every S ∈ comm(T).

Remark 4.16. It is not difficult to see that the following assertions are aquivalent:
(i) ∃(M,N) ∈ Red(S) such that TM is invertible for every S ∈ comm(T);
(ii) ∃L ∈ comm2(T) such that L = L2T.

Theorem 4.17. Let T ∈ L(X). The following statements are equivalent:
(i) T is 1z-invertible;
(ii) 0 < acc(acc σ(T));
(iii) There exists (M,N) ∈ 1zKD(T) such that TM invertible and σ(TM) ∩ σ(TN) = ∅;
(iv) There exists a spectral set σ of T such that 0 < σ(T) \ σ and σ \ {0} ⊂ iso σ(T);
(v) There exists a bounded projection P ∈ comm2(T) such that T + P is generalized Drazin invertible and TP is
zeroloid.

Proof. For the equivalence (i)⇐⇒ (ii), see Theorem 4.11. For the equivalences (i)⇐⇒ (iii) and (i)⇐⇒ (v),
see Theorem 4.7 and the paragraph preceding Lemma 4.15 (the case of T is generalized Drazin invertible
is clear). The proof of the equivalence (iii) ⇐⇒ (iv) is a consequence of Lemma 4.15 and the spectral
decomposition theorem.

Proposition 4.18. For every 1z-invertible operator T ∈ L(X), the following statements hold:
(i) Let (M,N), (M′

,N′

) ∈ 1zKD(T) such that TM, TM′ are invertible and σ(TM) ∩ σ(TN) = σ(TM′ ) ∩ σ(TN′ ) = ∅. If
(TM)−1

⊕ 0N = (TM′ )−1
⊕ 0N′ , then (M,N) = (M′

,N′

).
(ii) Let σ, σ′ two spectral sets of T such that 0 < σ(T) \ (σ∩ σ

′

) and (σ∪ σ
′

) \ {0} ⊂ iso σ(T). If (T + rPσ)−1(I − Pσ) =
(T + r′Pσ′ )−1(I − Pσ′ ), where Pσ is the spectral projection of T associated to σ, |r| > max

λ∈σ
|λ| and |r′ | > max

λ∈σ′
|λ|, then

σ = σ
′

.

Proof. (i) From the proof of Lemma 4.15, we have (M,N) = (N(Pσ),R(Pσ)) and (M′

,N′

) = (N(Pσ′ ),R(Pσ′ )),
where σ = σ(TN) and σ

′

= σ(TN′ ).As (TM)−1
⊕0N = (TM′ )−1

⊕0N′ then σ(TM) = σ(TM′ ) and thus σ(TN) = σ(TN′ ).
This proves that (M,N) = (M′

,N′

).
(ii) Follows from (i).

The previous Proposition 4.18 gives a sense to the next remark.

Remark 4.19. If T ∈ L(X) is 1z-invertible, then
(i) For every (M,N) ∈ 1zKD(T) such that TM is invertible and σ(TM) ∩ σ(TN) = ∅, the 1z-inverse operator TD

(M,N) :=
(TM)−1

⊕ 0N ∈ comm2(T), and we call TD
(M,N) the 1z-inverse of T associated to (M,N).

(ii) If σ is a spectral set of T such that 0 < σ(T)\σ and σ\ {0} ⊂ iso σ(T), then the operator TD
σ := (T+ rPσ)−1(I−Pσ) ∈

comm2(T) is a 1z-inverse of T, where |r| > max
λ∈σ
|λ|, and we call TD

σ the 1z-inverse of T associated to σ.

Note that if T ∈ L(X) is generalized Drazin invertible which is not invertible, then by [24, Lemma 2.4]
and Proposition 4.18 we conclude that the Drazin inverse of T is exactly the 1z-inverse of T associated to
σ = {0}, in other words TD = TD

{0}.

Proposition 4.20. Let T,S ∈ L(X) two commuting 1z-invertible. If σ and σ′ are spectral sets of T and S, respectively
such that 0 < (σ(T) \ σ) ∪ (σ(S) \ σ

′

), σ \ {0} ⊂ iso σ(T) and σ′ \ {0} ⊂ iso σ(S), then T,S,TD
σ ,SD

σ′
are mutually

commutative.
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Proof. As TS = ST then the previous remark entails that TD
σ = (T + rPσ)−1(I − Pσ) ∈ comm(SD

σ′
), and

analogously for other operators.

The following proposition describe the relation between the 1z-inverse of a 1z-invertible operator T associ-
ated to (M,N) and the 1z-inverse of T associated to a spectral set σ. It’s proof is clear.

Proposition 4.21. If T ∈ L(X) is 1z-invertible and (M,N) ∈ 1zKD(T) such that TM is invertible and σ(TM)∩σ(TN) =
∅, then TD

(M,N) = TD
σ , where σ = σ(TN). In other words TD

σ(TN) = (TM)−1
⊕ 0N.

Our next theorem gives a generalization of [24, Theorem 4.4] in the case of the complex Banach algebra
L(X). Denote by Hol(T) the set of all analytic functions defined on an open neighborhood of σ(T).

Theorem 4.22. If 0 ∈ σ(T) \ acc(acc σ(T)), then for every spectral set σ such that 0 ∈ σ and σ \ {0} ⊂ iso σ(T) we
have

TD
σ = fσ(T),

where fσ ∈ Hol(T) defined by fσ = 0 in a neighborhood of σ and fσ(λ) = λ−1 in a neighborhood of σ(T) \ σ.Moreover
σ(TD

σ ) = {0} ∪ {λ−1 : λ ∈ σ(T) \ σ}.

Proof. Let Ω1 and Ω2 two disjoint open sets such that σ ⊂ Ω1 and σ(T) \ σ ⊂ Ω2 (for the construction of Ω1
and Ω2, see the paragraph below) and let 1 ∈ Hol(T) be the function defined by

1(λ) =
{

1 if λ ∈ Ω1
0 if λ ∈ Ω2

It is clear that Pσ = 1(T) and as TD
σ = (T + rPσ)−1(I − Pσ) (where |r| > max

λ∈σ
|λ| be arbitrary), then the function

fσ(λ) = (λ + r1(λ))−1(1 − 1(λ)) has the required property. Moreover, we have σ(TD
σ ) = fσ(σ(T)) = {0} ∪ {λ−1 :

λ ∈ σ(T) \ σ}.

According to [17], if σ is a spectral set of T then there exist two disjoint open setsΩ1 andΩ2 such that σ ⊂ Ω1

and σ(T) \ σ ⊂ Ω2. Choose a Cauchy domains S1 and S2 such that σ ⊂ S1, σ(T) \ σ ⊂ S2, S1 ⊂ Ω1 and S2 ⊂ Ω2.
It follows that the spectral projection corresponding to σ is

Pσ =
1

2iπ

∫
∂S1

(λI − T)−1dλ.

Moreover, if 0 ∈ σ and σ \ {0} ⊂ iso σ(T), then from Theorem 4.22 we conclude that

TD
σ =

1
2iπ

∫
∂S2

λ−1(λI − T)−1dλ.

5. Weak SVEP and applications

As a continuation of some results proved in [19, 22], we begain this part by the next theorem which gives
a new characterization of some Browder’s type theorems in terms of spectra introduced and studied in the
preceding parts.

Theorem 5.1. For T ∈ L(X), we have
(i) T ∈ (B) if and only if σ1zw(T) = σ1zd(T).
(ii) T ∈ (Be) if and only if σ1z f (T) = σ1zd(T).
(iii) T ∈ (aB) if and only if σu1zw(T) = σl1zd(T).
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Proof. (i) Ifλ < σ1zw(T), then from Corollary 3.16 we have λ < acc σpbw(T) [note that acc σpbw(T − λI) =
acc (σpbw(T)) − λ]. Since T ∈ (B) then [22, Theorem 2.6] or [19, Theorem 2.8] implies that λ < acc σ1d(T), and
this implies from Theorem 4.11 that λ < σ1zd(T). As the inclusion σ1zw(T) ⊂ σ1zd(T) is always true, it follows
that σ1zw(T) = σ1zd(T). Conversely, let λ < σw(T), then λ < σ1zw(T) = σ1zd(T). On the other hand, [5, Corollary
3.7] implies that there exists (M,N) ∈ Red(T) such that TM−λI is semi-regular and TN−λI is nilpotent. Since
T − λI is 1z-invertible then p(TM − λI) = p̃(T − λI) = q̃(T − λI) = q(TM − λI) = 0, and so TM − λI is invertible.
Hence T − λI is Browder and consequently T ∈ (B). Using [22, Corollary 2.10] or [19, Corollary 2.14], the
point (ii) goes similarly with (i). And Using [22, Theorem 2.7], we obtain analogously the point (iii).

Definition 5.2. Let A be a subset of C. We say that T ∈ L(X) has the Weak SVEP on A (T has the WA-SVEP for
brevity) if there exists a subset B ⊂ A such that T has the SVEP on B and T∗ has the SVEP on A\B. If T has the
WC-SVEP, then T is said to have the Weak SVEP (T has the W-SVEP for brevity).

Remark 5.3. (i) Let A be a subset of C. Then T ∈ L(X) has the WA-SVEP if and only if for every λ ∈ A, at least T or
T∗ has the SVEP at λ.
(ii) If T or T∗ has the SVEP, then T has the W-SVEP. But the converse is not generally true. For this, the left shift
operator L ∈ L(ℓ2(N)) defined by L(x1, x2, . . . ) = (x2, x3, . . . ) has the W-SVEP, but it does not have the SVEP.
(iii) The operator L ⊕ L∗ does not have the W-SVEP.

The next theorem gives a sufficient condition for an operator T ∈ L(X) to have the W-SVEP.

Theorem 5.4. Let T ∈ L(X). If

XT(∅) × XT∗ (∅) ⊂ {(x, 0) : x ∈ X}
⋃
{(0, f ) : f ∈ X∗},

then T has the W-SVEP.

Proof. Let λ ∈ C and let V,W ⊂ C two open neighborhood of λ. Let f : V −→ X and 1 : W −→ X∗ two
analytic functions such that (T − µI) f (µ) = 0 and (T∗ − vI)1(v) = 0 for every (µ, v) ∈ V × W. If we take
U = V ∩W, then [1, Theorem 2.9] implies that σT( f (µ)) = σT(0) = ∅ = σT∗ (0) = σT∗ (1(µ)) for every µ ∈ U.
Hence ( f (µ), 1(v)) ∈ XT(∅)×XT∗ (∅) for every µ, v ∈ U.We discuss two cases. The first, there exists µ ∈ U such
that 1(µ) , 0. As ( f (v), 1(µ)) ∈ XT(∅) × XT∗ (∅) for every v ∈ U then by hypotheses f ≡ 0 on U. The identity
theorem for analytic functions entails that T has the SVEP at λ. The second, 1(µ) = 0 for every µ ∈ U. In the
same way, we prove that T∗ has the SVEP at λ. Hence T has the W-SVEP.

Question: Similarly to [1, Theorem 2.14] which characterizes the SVEP of T ∈ L(X) in terms of its local
spectral subspace XT(∅),we ask if the converse of Theorem 5.4 is true?

The next proposition characterizes the classes (B) and (aB) in terms of the Weak SVEP.

Proposition 5.5. If T ∈ L(X), then
(a) For σ∗ ∈ {σw, σbw, σ1zw}, the following statements are equivalent:

(i) T ∈ (B);
(ii) T has the Weak SVEP on σ∗(T)C;
(iii) For all λ < σ∗(T), T ⊕ T∗ has the SVEP at λ;
(iv) For all λ < σ∗(T), T has the SVEP at λ;
(v) For all λ < σ∗(T), T∗ has the SVEP at λ.

(b) For σ∗ ∈ {σe, σb f , σ1z f }, the following statements are equivalent:
(i) T ∈ (Be);
(ii) For all λ < σ∗(T), T ⊕ T∗ has the SVEP at λ.

(c) For σ∗ ∈ {σuw, σubw, σu1zw}, the following statements are equivalent:
(i) T ∈ (aB);
(ii)] T has the Weak SVEP on σ∗(T)C;
(iii) For all λ < σ∗(T), T has the SVEP at λ.
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Proof. (a) For σ∗ = σ1zw, we have only to show (ii) =⇒ (i), and the other implications are clair. Let
λ < σ1zw(T), then there exists (M,N) ∈ Red(T) such that TM − λI is Weyl and TN − λI is zeroloid. Hence
T or T∗ has the SVEP at λ is equivalent to say that TM or (TM)∗ has the SVEP at λ, and this is equivalent
to min {p(TM − λI), q(TM − λI)} < ∞. Therefore TM − λI is Browder and then λ < σ1zd(T). From Theorem
5.1, it follows that T ∈ (B). For σ∗ ∈ {σw, σbw}, the proof of (ii) =⇒ (i) is similar, and the other implications
are already done in [1]. The assertions (b) and (c) go similarly with (a). Note that some implications of
assertions (b) and (c) are already done in [1, 6, 19, 22].

We end this part by the next result which extends [1, Theorem 5.6].

Theorem 5.6. If the 1z-Weyl spectrum of T ∈ L(X) has empty interior that is, int σ1zw(T) = ∅, then the following
statements are equivalent:
(i) T ∈ (B);
(ii) T ∈ (Be);
(iii) T ∈ (aB);
(iv) T has the SVEP;
(v) T∗ has the SVEP;
(vi) T ⊕ T∗ has the SVEP;
(vii) T has the W-SVEP.

Proof. (i) =⇒ (vi) As T ∈ (B) then by Proposition 5.5, T⊕T∗ has the SVEP on σ1zw(T)C. Let λ ∈ σ1zw(T),U ⊂ C
be an open neighborhood of λ and f : U −→ X be an analytic function which satisfies (µI − T) f (µ) = 0, for
every µ ∈ U. The hypothesis int σ1zw(T) = ∅ implies that there exists γ ∈ U ∩ (σ1zw(T))C. Hence f ≡ 0 on U,
since T has the SVEP at γ. It then follows that T has the SVEP at λ. Analogously we prove that T∗ has the
SVEP at λ, and consequently T⊕T∗ has the SVEP. It is clear that the statement (vi) implies without condition
on T all other statements. Furthermore, all statements imply (i). This completes the proof.
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