Filomat 37:7 (2023), 2087–2103 https://doi.org/10.2298/FIL2307087A



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# On the *g*<sub>z</sub>-Kato decomposition and generalization of Koliha Drazin invertibility

## Zakariae Aznay<sup>a</sup>, Abdelmalek Ouahab<sup>a</sup>, Hassan Zariouh<sup>b</sup>

<sup>a</sup> Laboratory (L.A.N.O), Department of Mathematics, Faculty of Science, Mohammed I University, Oujda 60000 Morocco. <sup>b</sup>Department of Mathematics (CRMEFO), and laboratory (L.A.N.O), Faculty of Science, Mohammed I University, Oujda 60000 Morocco.

**Abstract.** In [24], Koliha proved that  $T \in L(X)$  (*X* is a complex Banach space) is generalized Drazin invertible operator iff there exists an operator *S* commuting with *T* such that STS = S and  $\sigma(T^2S - T) \subset \{0\}$  iff  $0 \notin \operatorname{acc} \sigma(T)$ . Later, in [14, 34] the authors extended the class of generalized Drazin invertible operators and they also extended the class of pseudo-Fredholm operators introduced by Mbekhta [27] and other classes of semi-Fredholm operators. As a continuation of these works, we introduce and study the class of  $g_z$ -invertible (resp.,  $g_z$ -Kato) operators which generalizes the class of generalized Drazin invertible operators (resp., the class of generalized Kato-meromorphic operators introduced by Živković-Zlatanović and Duggal in [35]). Among other results, we prove that *T* is  $g_z$ -invertible iff *T* is  $g_z$ -Kato with  $\tilde{p}(T) = \tilde{q}(T) < \infty$  iff there exists a commuting operator *S* with *T* such that STS = S and  $\operatorname{acc} \sigma(T^2S - T) \subset \{0\}$  iff  $0 \notin \operatorname{acc} (\operatorname{acc} \sigma(T))$ . As application and using the concept of the Weak SVEP introduced at the end of this paper, we give new characterizations of Browder-type theorems.

#### 1. Introduction

Let  $T \in L(X)$ , where L(X) is the Banach algebra of bounded linear operators acting on an infinite dimensional complex Banach space  $(X, \|.\|)$ . Throughout this paper  $T^*$ ,  $\alpha(T)$  and  $\beta(T)$  means respectively, the dual of T, the dimension of the kernel N(T) and the codimension of the range  $\mathcal{R}(T)$ . The ascent and the descent of T are defined by  $p(T) = \inf\{n \in \mathbb{N} : \mathcal{N}(T^n) = \mathcal{N}(T^{n+1})\}$  (with  $\inf\emptyset = \infty$ ) and  $q(T) = \inf\{n \in \mathbb{N} : \mathcal{R}(T^n) = \mathcal{R}(T^{n+1})\}$ . A subspace M of X is T-invariant if  $T(M) \subset M$  and the restriction of T on M is denoted by  $T_M$ .  $(M, N) \in \operatorname{Red}(T)$  if M, N are closed T-invariant subspaces and  $X = M \oplus N$  ( $M \oplus N$  means that  $M \cap N = \{0\}$ ). Let  $n \in \mathbb{N}$ , denote by  $T_{[n]} = T_{\mathcal{R}(T^n)}$  and by  $m_T = \inf\{n \in \mathbb{N} : \inf\{\alpha(T_{[n]}), \beta(T_{[n]})\} < \infty\}$ the *essential degree* of T. According to [10, 28], T is called upper semi-B-Fredholm (resp., lower semi-B-Fredholm) if the *essential ascent*  $p_e(T) = \inf\{n \in \mathbb{N} : \alpha(T_{[n]}) < \infty\} < \infty$  and  $\mathcal{R}(T^{p_e(T)+1})$  is closed (resp., the *essential descent*  $q_e(T) = \inf\{n \in \mathbb{N} : \beta(T_{[n]}) < \infty\} < \infty$  and  $\mathcal{R}(T^{q_e(T)})$  is closed). If T is an upper or a lower (resp., upper and lower) semi-B-Fredholm, then T is called *semi-B-Fredholm* (resp., *B-Fredholm*) and its index is defined by  $\operatorname{ind}(T) = \alpha(T_{[m_T]}) - \beta(T_{[m_T]})$ . T is said to be an upper semi-B-Weyl (resp., lower semi-B-Weyl, B-Weyl, left Drazin invertible, right Drazin invertible, Drazin invertible) if T is an upper semi-B-Fredholm with  $\operatorname{ind}(T) \leq 0$  (resp., T is a lower semi-B-Fredholm with  $\operatorname{ind}(T) \geq 0$ , T is a B-Fredholm with

<sup>2020</sup> Mathematics Subject Classification. Primary 47A10, 47A11, 47A15, 47A25, 47A53, 47A55

Keywords.  $g_z$ -Kato decomposition,  $g_z$ -invertible operator, Weak SVEP

Received: 11 March 2022; Accepted: 06 June 2022

Communicated by Dragan S. Djordjević

Email addresses: aznay.zakariae@ump.ac.ma (Zakariae Aznay), ouahab05@yahoo.fr (Abdelmalek Ouahab),

h.zariouh@yahoo.fr (Hassan Zariouh)

ind(T) = 0, T is an upper semi-B-Fredholm and  $p(T_{[m_T]}) < \infty$ , T is a lower semi-B-Fredholm and  $q(T_{[m_T]}) < \infty$ ,  $p(T_{[m_T]}) = q(T_{[m_T]}) < \infty$ ). If T is upper semi-B-Fredholm (resp., lower semi-B-Fredholm, semi-B-Fredholm, B-Fredholm, upper semi-B-Weyl, lower semi-B-Weyl, left Drazin invertible, right Drazin invertible, Drazin invertible) with essential degree  $m_T = 0$ , then T is said to be an upper semi-Fredholm (resp., lower semi-Fredholm, semi-Fredholm, resp., lower semi-Fredholm, semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, upper semi-Browder, lower semi-Browder, Browder) operator. T is said to be bounded below if T is upper semi-Fredholm with  $\alpha(T) = 0$ .

The degree of stable iteration of *T* is defined by  $dis(T) = inf \Delta(T)$ , where

$$\Delta(T) = \{ m \in \mathbb{N} : \alpha(T_{[m]}) = \alpha(T_{[r]}), \forall r \in \mathbb{N} \ r \ge m \}.$$

*T* is said to be semi-regular if  $\mathcal{R}(T)$  is closed and dis(*T*) = 0, and is said to be quasi-Fredholm if there exists  $n \in \mathbb{N}$  such that  $\mathcal{R}(T^n)$  is closed and  $T_{[n]}$  is semi-regular, see [25, 27]. Note that every semi-B-Fredholm operator is quasi-Fredholm [10, Proposition 2.5].

According to [1], *T* is said to have the SVEP at  $\lambda \in \mathbb{C}$  if for every open neighborhood  $U_{\lambda}$  of  $\lambda$ ,  $f \equiv 0$  is the only analytic solution of the equation  $(T - \mu I)f(\mu) = 0 \quad \forall \mu \in U_{\lambda}$ . *T* is said to have the SVEP on  $A \subset \mathbb{C}$  if *T* has the SVEP at every  $\lambda \in A$ , and is said to have the SVEP if it has the SVEP on  $\mathbb{C}$ . It is easily seen that  $T \oplus S$  has the SVEP at  $\lambda$  if and only if *T* and *S* have the SVEP at  $\lambda$ , see [1, Theorem 2.15]. Moreover,

$$p(T - \lambda I) < \infty \implies T$$
 has the SVEP at  $\lambda$  (*A*)  
 $a(T - \lambda I) < \infty \implies T^*$  has the SVEP at  $\lambda$ , (*B*)

and these implications become equivalences if  $T - \lambda I$  has topological uniform descent [1, Theorem 2.97, Theorem 2.98]. For definitions and properties of operators which have topological uniform descent, see [18].

**Definition 1.1.** [1] (*i*) The local spectrum of T at  $x \in X$  is the set defined by

$$\sigma_T(x) := \left\{ \begin{array}{l} \lambda \in \mathbb{C} : \text{ for all open neighborhood } U_\lambda \text{ of } \lambda \text{ and analytic function} \\ f : U_\lambda \longrightarrow X \text{ there exists } \mu \in U_\lambda \text{ such that } (T - \mu I) f(\mu) \neq x. \end{array} \right\}$$

(ii) If F is a complex closed subset, then the local spectral subspace of T associated to F is defined by

$$X_T(F) = \{ x \in X : \sigma_T(x) \subset F \}.$$

A Banach space operator *S* is said to be nilpotent of degree *d* if  $S^d = 0$  and  $S^{d-1} \neq 0$  [with the degree of the null operator takes 0 if it acts on the space {0} and takes 1 otherwise]. *S* is a quasi-nilpotent (resp., Riesz, meromorphic) operator if  $S - \lambda I$  is invertible (resp., Browder, Drazin invertible) for all non-zero complex  $\lambda$ . Note that *S* is nilpotent  $\Longrightarrow$  *S* is quasi-nilpotent  $\Longrightarrow$  *S* is Riesz  $\Longrightarrow$  *S* is meromorphic. Denote by  $\mathcal{K}(T)$  the analytic core of *T* (see [27]):

$$\mathcal{K}(T) = \{x \in X : \exists \epsilon > 0, \exists (u_n)_n \subset X \text{ such that } x = u_0, Tu_{n+1} = u_n \text{ and } \|u_n\| \le \epsilon^n \|x\| \ \forall n \in \mathbb{N}\},\$$

and by  $\mathcal{H}_0(T)$  the quasi-nilpotent part of T:  $\mathcal{H}_0(T) = \{x \in X : \lim_{n \to \infty} ||T^n x||^{\frac{1}{n}} = 0\}.$ 

In [23, Theorem 4, 1958], Kato proved that if *T* is a semi-Fredholm operator, then *T* is of Kato-type of degree *d*, that is there exists  $(M, N) \in \text{Red}(T)$  such that:

- (i)  $T_M$  is semi-regular.
- (ii)  $T_N$  is nilpotent of degree d.

Later, these operators are characterized by Labrousse [25, 1980] in the case of Hilbert space. The important results obtained by Kato and Labrousse opened the field to many researchers to work in this direction [7, 11, 14, 16, 27, 33–35]. In particular, Berkani [7] showed that *T* is B-Fredholm (resp., B-Weyl) if and only if there exists (*M*, *N*)  $\in$  Red(*T*) such that *T*<sub>M</sub> is Fredholm (resp., Weyl) and *T*<sub>N</sub> is nilpotent. On the other hand,

it is well known [16] that *T* is Drazin invertible if and only if there exists  $(M, N) \in \text{Red}(T)$  such that  $T_M$  is invertible and  $T_N$  is nilpotent.

If the condition (ii) " $T_N$  is nilpotent" mentioned in the Kato's decomposition is replaced by " $T_N$  is quasinilpotent" (resp., " $T_N$  is Riesz", " $T_N$  is meromorphic"), we find the pseudo-Fredholm [27] (resp., generalized Kato-Riesz [34], generalized Kato-meromorphic [35]) decomposition. By the same argument the pseudo B-Fredholm [32, 33] (resp., generalized Drazin-Riesz Fredholm [11, 34], generalized Drazin-meromorphic Fredholm [35]) decomposition are obtained by substituting in the B-Fredholm decomposition the condition " $T_N$  is nilpotent" by " $T_N$  is quasi-nilpotent" (resp., " $T_N$  is Riesz", " $T_N$  is meromorphic"). Similarly, the Drazin decomposition has been generalized [24, 34, 35].

We summarize in the following definition several known decompositions.

#### **Definition 1.2.** [5, 7, 10–12, 14, 27, 33–35] T is said to be

(i) of Kato-type of order d [resp., quasi upper semi-B-Fredholm, quasi lower semi-B-Fredholm, quasi B-Fredholm, quasi upper semi-B-Weyl, quasi lower semi-B-Weyl, quasi semi-B-Weyl] if there exists  $(M, N) \in \text{Red}(T)$  such that  $T_M$  is semi-regular [resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl] and  $T_N$  is nilpotent of degree d. We write  $(M, N) \in KD(T)$  if it is a Kato-type decomposition.

(ii) Pseudo-Fredholm [resp., upper pseudo semi-B-Fredholm, lower pseudo semi-B-Fredholm, pseudo B-Fredholm, upper pseudo semi-B-Weyl, lower pseudo semi-B-Weyl, pseudo B-Weyl, left generalized Drazin invertible, right generalized Drazin invertible, generalized Drazin invertible] if there exists  $(M, N) \in \text{Red}(T)$  such that  $T_M$  is semi-regular [resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded below, surjective, invertible] and  $T_N$  is quasi-nilpotent. We write  $(M, N) \in GKD(T)$  if it is a pseudo-Fredholm type decomposition.

(iii) Generalized Kato-Riesz [resp., generalized Drazin-Riesz upper semi-Fredholm, generalized Drazin-Riesz lower semi-Fredholm, generalized Drazin-Riesz Fredholm, generalized Drazin-Riesz upper semi-Weyl, generalized Drazin-Riesz lower semi-Weyl, generalized Drazin-Riesz Weyl, generalized Drazin-Riesz bounded below, generalized Drazin-Riesz surjective, generalized Drazin-Riesz invertible] if there exists  $(M, N) \in \text{Red}(T)$  such that  $T_M$  is semi-regular [resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded below, surjective, invertible] and  $T_N$  is Riesz.

(iv) Generalized Kato-meromorphic [resp., generalized Drazin-meromorphic upper semi-Fredholm, generalized Drazinmeromorphic lower semi-Fredholm, generalized Drazin-meromorphic Fredholm, generalized Drazin-meromorphic upper semi-Weyl, generalized Drazin-meromorphic lower semi-Weyl, generalized Drazin-meromorphic Weyl, generalized Drazin-meromorphic bounded below, generalized Drazin-meromorphic surjective, generalized Drazin-meromorphic invertible] if there exists (M, N)  $\in$  Red(T) such that  $T_M$  is semi-regular [resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded below, surjective, invertible] and  $T_N$  is meromorphic.

As a continuation of the studies mentioned above, we define new classes of operators: one of them named  $g_z$ -Kato which generalizes the class of generalized Kato-meromorphic operators. We prove that the  $g_z$ -Kato spectrum  $\sigma_{g_zK}(T)$  is compact and acc  $\sigma_{pf}(T) \subset \sigma_{g_zK}(T)$ . Moreover, we show that if T is  $g_z$ -Kato, then  $\alpha(T_M)$ ,  $\beta(T_M)$ ,  $p(T_M)$  and  $q(T_M)$  are independent of the choice of the decomposition  $(M, N) \in g_z KD(T)$ . An other class named  $g_z$ -invertible which generalizes the class of generalized Drazin invertible operators introduced by Koliha. As a characterization of  $g_z$ -invertible operator S such that TS = ST, STS = S and  $T^2S - T$  is zeroloid. These characterizations are analogous to those proved by Koliha [24] which established that T is generalized Drazin invertible operator iff  $0 \notin acc \sigma(T)$  iff there exists an operator S such that TS = ST, STS = S and  $T^2S - T$  is zeroloid. These characterizations are analogous to those proved by Koliha [24] which established that T is generalized Drazin invertible operator iff  $0 \notin acc \sigma(T)$  iff there exists an operator S such that TS = ST, STS = S and  $T^2S - T$  is quasi-nilpotent. As application, using the new spectra studied in the present work and the concept of the Weak SVEP introduced at the end of this paper, we give new characterizations of Browder-type theorems.

The next list summarizes some notations and symbols that we will need later.

| r(T) : the spectral radius of $T$                                                                                                 |                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| iso <i>A</i> : isolated points of a complex subset <i>A</i>                                                                       |                                                                               |
| $\operatorname{acc} A$ : accumulation points of a complex subset A                                                                |                                                                               |
| $\overline{A}$ : the closure of a complex subset A                                                                                |                                                                               |
| $A^{C}$ : the complementary of a complex subset A                                                                                 |                                                                               |
| $B(\lambda,\epsilon)$ : the open ball of radius $\epsilon$ centered at $\lambda$                                                  |                                                                               |
| $D(\lambda,\epsilon)$ : the closed ball of radius $\epsilon$ centered at $\lambda$                                                |                                                                               |
| (B) : the class of operators satisfying Browder's theorem $(T \in (B) \text{ if } \sigma_w(T) = \sigma_h(T))$                     |                                                                               |
| $(B_e)$ : the class of operators satisfying essential Browder's theorem [4] $(T \in (B_e) \text{ if } \sigma_e(T) = \sigma_b(T))$ |                                                                               |
| ( <i>aB</i> ) : the class of operators satisfying a                                                                               | -Browder's theorem $(T \in (aB) \text{ if } \sigma_{ur}(T) = \sigma_{ub}(T))$ |
| (,                                                                                                                                |                                                                               |
| $\sigma(T)$ : spectrum of T                                                                                                       | $\sigma_{pf}(T)$ : pseudo-Fredholm spectrum of T                              |
| $\sigma_a(T)$ : approximate points spectrum of T                                                                                  | $\sigma_{pbf}(T)$ : pseudo B-Fredholm spectrum of T                           |
| $\sigma_s(T)$ : surjective spectrum of T                                                                                          | $\sigma_{upbf}(T)$ : upper pseudo semi-B-Fredholm spectrum of T               |
| $\sigma_{se}(T)$ : semi-regular spectrum of T                                                                                     | $\sigma_{lpbf}(T)$ : lower pseudo semi-B-Fredholm spectrum of T               |
| $\sigma_e(T)$ : essential spectrum of T                                                                                           | $\sigma_{pbw}(T)$ : pseudo B-Weyl spectrum of T                               |
| $\sigma_{uf}(T)$ : upper semi-Fredholm spectrum of $T$                                                                            | $\sigma_{upbw}(T)$ : upper pseudo semi-B-Weyl spectrum of T                   |
| $\sigma_{lf}(T)$ : lower semi-Fredholm spectrum of T                                                                              | $\sigma_{lpbw}(T)$ : lower pseudo semi-B-Weyl spectrum of T                   |
| $\sigma_w(T)$ : Weyl spectrum of T                                                                                                | $\sigma_{gd}(T)$ : generalized Drazin invertible spectrum of T                |
| $\sigma_{uw}(T)$ : upper semi-Weyl spectrum of T                                                                                  | $\sigma_{lgd}(T)$ : left generalized Drazin invertible spectrum of T          |
| $\sigma_{lw}(T)$ : lower semi-Weyl spectrum of T                                                                                  | $\sigma_{rgd}(T)$ : right generalized Drazin invertible spectrum of T         |
| $\sigma_b(T)$ : Browder spectrum of T                                                                                             | $\sigma_d(T)$ : Drazin spectrum of T                                          |
| $\sigma_{hf}(T)$ : B-Fredholm spectrum of T                                                                                       | $\sigma_{hw}(T)$ : B-Weyl spectrum of T                                       |

## 2. The $g_z$ -Kato decomposition

We begin this section by the following definition of zeroloid operators.

**Definition 2.1.** We say that  $T \in L(X)$  is a zeroloid operator if  $acc \sigma(T) \subset \{0\}$ .

The next remark summarizes some properties of zeroloid operators.

**Remark 2.2.** (*i*) A zeroloid operator has at most a countable spectrum. (*ii*) Since  $acc \sigma(T) \subset \sigma_d(T)$  for every  $T \in L(X)$ , then every meromorphic operator is zeroloid. But the operator I + Q shows that the converse is not true, where I is the identity operator and Q is the quasi-nilpotent operator defined on the Hilbert space  $\ell^2(\mathbb{N})$  by  $Q(x_1, x_2, ...) = (0, x_1, \frac{x_2}{2}, ...)$ .

(iii) *T* is zeroloid if and only if  $T^n$  is zeroloid for every integer  $n \ge 1$ .

(iv) Let  $(T, S) \in L(X) \times L(Y)$ , then  $T \oplus S$  is zeroloid if and only if T and S are zeroloid.

(v) Here and elsewhere denote by  $comm(T) = \{S \in L(X) : TS = ST\}$ . So if  $Q \in comm(T)$  is a quasi-nilpotent or a power finite rank operator, then T is zeroloid if and only if T + Q is zeroloid.

According to [4], the p-ascent  $\tilde{p}(T)$  and the p-descent  $\tilde{q}(T)$  of a pseudo-Fredholm operator  $T \in L(X)$  are defined respectively, by  $\tilde{p}(T) = p(T_M)$  and  $\tilde{q}(T) = q(T_M)$ , where M is any subspace which complemented by a subspace N such that  $(M, N) \in GKD(T)$ .

**Proposition 2.3.** *If*  $T \in L(X)$  *is a pseudo-Fredholm operator, then the following statements are equivalent:* 

(a)  $\tilde{p}(T) < \infty$ ; (b) T has the SVEP at 0; (c)  $\mathcal{H}_0(T) \cap \mathcal{K}(T) = \{0\}$ ; (d)  $\mathcal{H}_0(T)$  is closed. dually, the following are equivalent: (e)  $\tilde{q}(T) < \infty$ ; (f)  $T^*$  has the SVEP at 0; (g)  $\mathcal{H}_0(T) + \mathcal{K}(T) = X.$ 

*Proof.* (a)  $\iff$  (b) Let  $(M, N) \in GKD(T)$ , then  $T_M$  is semi-regular and  $T_N$  is quasi-nilpotent. As  $p(T_M) = \tilde{p}(T)$  then by the implication (A) above, we deduce that  $\tilde{p}(T) < \infty$  if and only if  $T_M$  has the SVEP at 0. Hence  $\tilde{p}(T) < \infty$  if and only if *T* has the SVEP at 0. The equivalence (e)  $\iff$  (f) goes similarly. The equivalences (b)  $\iff$  (c), (c)  $\iff$  (d) and (f)  $\iff$  (g) are proved in [1, Theorem 2.79, Theorem 2.80].  $\Box$ 

**Lemma 2.4.** For  $T \in L(X)$ , the following statements are equivalent: (*i*) *T* is zeroloid; (*ii*)  $\sigma_*(T) \subset \{0\}$ , where  $\sigma_* \in \{\sigma_{pf}, \sigma_{upbf}, \sigma_{lpbf}, \sigma_{upbw}, \sigma_{lpbw}, \sigma_{lqd}, \sigma_{rqd}, \sigma_{pbf}, \sigma_{pbw}\}$ .

*Proof.* (i)  $\implies$  (ii) Obvious, since  $\sigma_{qd}(T) = \operatorname{acc} \sigma(T)$ .

(ii)  $\Longrightarrow$  (i) If  $\sigma_*(T) \subset \{0\}$ , then  $\mathbb{C} \setminus \{0\} \subset \Omega$ , where  $\Omega$  is the component of  $(\sigma_{pf}(T))^{\mathbb{C}}$ . Suppose that there exists  $\lambda \in$ acc  $\sigma(T) \setminus \{0\}$ , then  $\lambda \notin \sigma_*(T)$  and hence  $\tilde{p}(T - \lambda I) = \infty$  or  $\tilde{q}(T - \lambda I) = \infty$ , but this is impossible. Indeed, assume that  $\tilde{p}(T - \lambda I) = \infty$ , as  $T - \lambda I$  is pseudo-Fredholm, from Proposition 2.3 we have  $\mathcal{H}_0(T - \lambda I) \cap \mathcal{K}(T - \lambda I) \neq \{0\}$ . And from [12, Corollary 4.3], we obtain  $\overline{\mathcal{H}_0(T - \lambda I)} \cap \mathcal{K}(T - \lambda I) = \overline{\mathcal{H}_0(T - \mu I)} \cap \mathcal{K}(T - \mu I)$  for every  $\mu \in \Omega$ . This implies that  $\tilde{p}(T - \mu I) = \infty$  for all  $\mu \in \Omega \setminus \{0\}$  [otherwise  $\mathcal{H}_0(T - \mu I)$  becomes closed for some  $\mu \in \Omega \setminus \{0\}$  and then  $\overline{\mathcal{H}_0(T - \lambda I)} \cap \mathcal{K}(T - \lambda I) = \{0\}$ , which is impossible] and this is contradiction. Thus  $\tilde{q}(T - \lambda I) = \infty$ , but this leads (by the same argument) to a contradiction. Hence *T* is zeroloid.  $\Box$ 

**Proposition 2.5.**  $T \in L(X)$  is zeroloid if and only if  $T_M$  and  $T^*_{M^{\perp}}$  are zeroloid, where M is any closed T-invariant subspace.

*Proof.* If *T* is zeroloid, then its resolvent  $(\sigma(T))^C$  is connected. From [15, Proposition 2.10], we obtain that  $\sigma(T) = \sigma(T_M) \cup \sigma(T^*_{M^{\perp}})$ . Thus  $T_M$  and  $T^*_{M^{\perp}}$  are zeroloid. Conversely, if  $T_M$  and  $T^*_{M^{\perp}}$  are zeroloid, then *T* is zeroloid, since the inclusion  $\sigma(T) \subset \sigma(T_M) \cup \sigma(T^*_{M^{\perp}})$  is always true.  $\Box$ 

**Definition 2.6.** Let  $T \in L(X)$ . A pair of subspaces  $(M, N) \in Red(T)$  is a generalized Kato zeroloid decomposition associated to  $T[(M, N) \in g_z KD(T)$  for brevity] if  $T_M$  is semi-regular and  $T_N$  is zeroloid. If such a pair exists, we say that T is a  $g_z$ -Kato operator.

**Example 2.7.** (*i*) Every zeroloid operator and every semi-regular operator are  $g_z$ -Kato. (*ii*) Every generalized Kato-meromorphic operator is  $g_z$ -Kato. But the converse is not true, see Example 4.13 below.

Our next result gives a punctured neighborhood theorem for  $g_z$ -Kato operators. Recall that the reduced minimal modulus  $\gamma(T)$  of an operator T is defined by  $\gamma(T) := \inf_{x \notin \mathcal{N}(T)} \frac{\|Tx\|}{d(x,\mathcal{N}(T))}$ , where  $d(x,\mathcal{N}(T))$  is the distance between x and  $\mathcal{N}(T)$ .

**Theorem 2.8.** Let  $T \in L(X)$  be a  $g_z$ -Kato operator. For every  $(M, N) \in g_z KD(T)$ , there exists  $\epsilon > 0$  such that for all  $\lambda \in B(0, \epsilon) \setminus \{0\}$  we have (i)  $T - \lambda I$  is pseudo-Fredholm. (ii)  $\alpha(T_M) = \dim \mathcal{N}(T - \lambda I) \cap \mathcal{K}(T - \lambda I) \le \alpha(T - \lambda I)$ . (iii)  $\beta(T_M) = \operatorname{codim} [\mathcal{R}(T - \lambda I) + \mathcal{H}_0(T - \lambda I)] \le \beta(T - \lambda I)$ .

*Proof.* Let  $\epsilon = \gamma(T_M) > 0$  and let  $\lambda \in B(0, \epsilon) \setminus \{0\}$ . From [18, Theorem 4.7],  $T_M - \lambda I$  is semi-regular,  $\alpha(T_M) = \alpha(T_M - \lambda I)$  and  $\beta(T_M) = \beta(T_M - \lambda I)$ . As  $T_N$  is zeroloid then from [4],  $T_N - \lambda I$  is pseudo-Fredholm with  $\mathcal{N}(T_N - \lambda I) \cap \mathcal{K}(T_N - \lambda I) = \{0\}$  and  $N = \mathcal{R}(T_N - \lambda I) + \mathcal{H}_0(T_N - \lambda I)$ . Hence  $T - \lambda I$  is pseudo-Fredholm,  $\alpha(T_M) = \dim \mathcal{N}(T - \lambda I) \cap \mathcal{K}(T - \lambda I)$  and  $\beta(T_M) = \operatorname{codim} [\mathcal{R}(T - \lambda I) + \mathcal{H}_0(T - \lambda I)]$ .  $\Box$ 

Since every pseudo-Fredholm operator is  $g_z$ -Kato, from Theorem 2.8 we immediately obtain the following corollary. Hereafter, we denote by  $\sigma_{q_z K}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not } g_z\text{-Kato operator}\}$  the  $g_z$ -Kato spectrum.

**Corollary 2.9.** The  $g_z$ -Kato spectrum  $\sigma_{q_zK}(T)$  of an operator  $T \in L(X)$  is compact.

**Proposition 2.10.** If  $T \in L(X)$  is a  $q_z$ -Kato operator, then  $\alpha(T_M)$ ,  $\beta(T_M)$ ,  $p(T_M)$  and  $q(T_M)$  are independent of the choice of the generalized Kato zeroloid decomposition  $(M, N) \in g_z KD(T)$ .

*Proof.* Let  $(M_1, N_1), (M_2, N_2) \in q_z KD(T)$  and let  $n \ge 1$ . It is easily seen that  $T^n$  is also a  $q_z$ -Kato operator and  $(M_1, N_1), (M_2, N_2) \in g_z KD(T^n)$ . We put  $\epsilon_n = \min\{\gamma(T_{M_1}^n), \gamma(T_{M_2}^n)\}$ . If  $\lambda \in B(0, \epsilon_n) \setminus \{0\}$ , then by Theorem 2.8 we obtain  $\alpha(T_{M_1}^n) = \alpha(T_{M_2}^n) = \dim \mathcal{N}(T^n - \lambda I) \cap \mathcal{K}(T^n - \lambda I)$  and  $\beta(T_{M_1}^n) = \beta(T_{M_2}^n) = \operatorname{codim} [\mathcal{R}(T^n - \lambda I) + \mathcal{H}_0(T^n - \lambda I)].$ Hence  $p(T_{M_1}) = p(T_{M_2})$  and  $q(T_{M_1}) = q(T_{M_2})$ .

Let  $T \in L(X)$  be a  $g_z$ -Kato operator. Following Proposition 2.10, we denote by  $\tilde{\alpha}(T) = \alpha(T_M)$ ,  $\tilde{\beta}(T) = \beta(T_M)$ ,  $\tilde{p}(T) = p(T_M)$  and  $\tilde{q}(T) = q(T_M)$ , where  $(M, N) \in g_z KD(T)$  be arbitrary. If in addition,  $T_M$  is semi-Fredholm, then for every  $(M', N') \in g_z KD(T)$  the operator  $T_{M'}$  is also semi-Fredholm and  $ind(T_M) = ind(T_{M'})$  (this result will be extended in Lemma 3.4).

The next lemma extends [30, Theorem A.16]. In the sequel, for  $T \in L(X)$  and  $(M, N) \in \text{Red}(T)$ , we define the operator  $T_{(M,N)} \in L(X)$  by  $T_{(M,N)} = TP_M + P_N$ , where  $P_M$  is the projection operator on X onto M.

**Lemma 2.11.** Let  $T \in L(X)$  and let  $(M, N) \in Red(T)$ . The following assertions are equivalent: (i)  $\mathcal{R}(T_M)$  is closed; (ii)  $\mathcal{R}(T^*_{N^{\perp}})$  is closed; (iii)  $\mathcal{R}(T^*_{N^{\perp}}) \oplus M^{\perp}$  is closed in the weak-\*-topology  $\sigma(X^*, X)$  on  $X^*$ .

*Proof.* As  $(M, N) \in \text{Red}(T)$  then  $(P_N)^* = P_{M^{\perp}}$  and  $(TP_M)^* = T^*P_{N^{\perp}}$ . So  $(T_{(M,N)})^* = (TP_M + P_N)^* = T^*P_{N^{\perp}} + P_{M^{\perp}} = T^*P_{M^{\perp}}$  $T^*_{(N^{\perp},M^{\perp})}$ . Thus  $\mathcal{R}(T_{(M,N)}) = \mathcal{R}(T_M) \oplus N$  and  $\mathcal{R}((T_{(M,N)})^*) = \mathcal{R}(T^*_{N^{\perp}}) \oplus M^{\perp}$ . Moreover,  $\mathcal{R}(T_M)$  is closed if and only if  $\mathcal{R}(T_{(M,N)})$  is closed. By applying [30, Theorem A.16] to the operator  $T_{(M,N)}$ , the proof is complete.

From this Lemma and some known classical properties of pseudo-Fredholm and quasi-Fredholm operators, we immediately obtain:

**Corollary 2.12.** Let  $T \in L(X)$ . The following statements hold: (i) If T is pseudo-Fredholm, then  $\mathcal{R}(T^*) + \mathcal{H}_0(T^*)$  is closed in  $\sigma(X^*, X)$ . (ii) If T is a Hilbert space quasi-Fredholm operator of degree d, then  $\mathcal{R}(T^*) + \mathcal{N}(T^{d*})$  is closed in  $\sigma(X^*, X)$ .

The following lemma extends some well known results in spectral theory, as relation between nullity, deficiency and some other spectral quantities of a given operator T and its dual  $T^*$ .

**Lemma 2.13.** Let  $T \in L(X)$  and let  $(M, N) \in Red(T)$ . The following statements hold: *(i)*  $T_M$  *is semi-regular if and only if*  $T^*_{N^{\perp}}$  *is semi-regular.* (ii) If  $\mathcal{R}(T_M)$  is closed, then  $\alpha(T_M) = \beta(T_{N^{\perp}}^*)$ ,  $\beta(T_M) = \alpha(T_{N^{\perp}}^*)$ ,  $p(T_M) = q(T_{N^{\perp}}^*)$  and  $q(T_M) = p(T_{N^{\perp}}^*)$ . (iii)  $\sigma_a(T_M) = \sigma_s(T_{N^{\perp}}^*)$ ,  $\sigma_s(T_M) = \sigma_a(T_{N^{\perp}}^*)$ ,  $\sigma_s(T_M) = \sigma_s(T_{N^{\perp}}^*)$  and  $r(T_M) = r(T_{N^{\perp}}^*)$ , where  $\sigma_s \in \{\sigma, \sigma_{se}, \sigma_e, \sigma_{sf}, \sigma_{bf}, \sigma_d, \sigma_b\}$ . Moreover, if  $T_M$  is semi-Fredholm, then  $ind(T_M) = -ind(T_{N^{\perp}}^*)$ .

*Proof.* (i) We have  $\mathcal{N}(T_{(M,N)}) = \mathcal{N}(T_M)$  and  $(T_{(M,N)})^n = T_{(M,N)}^n$  for every  $n \in \mathbb{N}$ . It is easy to see that  $T_M$  is semi-regular if and only if  $T_{(M,N)}$  is semi-regular. As  $(T_{(M,N)})^* = T^*_{(N^{\perp},M^{\perp})}$  then  $T_M$  is semi-regular if and only if  $T_{M^+}^*$  is semi-regular.

(ii) We have  $\mathcal{N}((T_{(M,N)})^n) = \mathcal{N}(T_M^n)$  and  $\mathcal{R}((T_{(M,N)})^n) = \mathcal{R}(T_M^n) \oplus N$  for every  $n \in \mathbb{N}$ . As  $\mathcal{R}(T_{(M,N)}) = \mathcal{R}(T_M) \oplus N$ 

is closed then  $\alpha(T_M) = \alpha(T_{(M,N)}) = \beta(T^*_{(N^{\perp},M^{\perp})}) = \beta(T^*_{N^{\perp}})$ . The other equalities go similarly. (iii) As  $(T_M \oplus 0_N)^* = (TP_M)^* = T^*P_{N^{\perp}} = T^*_{N^{\perp}} \oplus 0_{M^{\perp}}$ , then  $\sigma_*(T_M) \cup \sigma_*(0_N) = \sigma_*(T_M \oplus 0_N) = \sigma_*(T^*_{N^{\perp}} \oplus 0_{M^{\perp}}) = \sigma_*(T^*_{N^{\perp}}) \cup \sigma_*(0_{M^{\perp}})$ . We know that  $\sigma_*(S) = \emptyset$  for every nilpotent operator S with  $\sigma_* \in \{\sigma_{bf}, \sigma_d\}$ . Furthermore, the first and the second points imply that  $0 \in \sigma_*(T_M)$  if and only if  $0 \in \sigma_*(T_{N^{\perp}}^*)$ , where  $\sigma_* \in \{\sigma, \sigma_{se}, \sigma_{e}, \sigma_{sf}, \sigma_b\}$ . So  $\sigma_*(T_M) = \sigma_*(T_{N^{\perp}}^*)$  and  $r(T_M) = r(T_{N^{\perp}}^*)$ . The proof of the other equalities spectra is obvious, see Lemma 2.11. Moreover, if  $T_M$  is semi-Fredholm, then  $T_{N^{\perp}}^*$  is also semi-Fredholm and  $ind(T_M) = -ind(T_{N^{\perp}}^*)$ .

**Corollary 2.14.** Let  $T \in L(X)$  and let  $(M, N) \in Red(T)$ . Then  $(M, N) \in g_z KD(T)$  if and only if  $(N^{\perp}, M^{\perp}) \in g_z KD(T^*)$ . In particular, if T is  $q_z$ -Kato, then T<sup>\*</sup> is  $q_z$ -Kato.

**Proposition 2.15.** *If*  $T \in L(X)$  *is*  $g_z$ *-Kato, then* 

(a) There exist  $S, R \in L(X)$  such that:

(*i*) T = S + R, RT = TR = 0, S is quasi-Fredholm of degree  $d \le 1$  and R is zeroloid.

(*ii*)  $\mathcal{N}(S) + \mathcal{N}(R) = X$  and  $\mathcal{R}(S) \oplus \overline{\mathcal{R}(R)}$  is closed.

(b) There exist  $S, R \in L(X)$  such that SR = RS = (S + R) - I = T, S is semi-regular and R is zeroloid.

*Proof.* (a) Let  $(M, N) \in g_z KD(T)$ . The operators  $S = TP_M$  and  $R = TP_N$  respond to the statement (a). Indeed, as  $T_N$  is zeroloid and  $\operatorname{acc} \sigma(R) = \operatorname{acc} \sigma(T_N)$  then R is zeroloid. Suppose that  $M \notin \{\{0\}, X\}$  (the other case is trivial) and let  $n \in \mathbb{N} \ge 1$ , then  $\mathcal{N}(S^n) = \mathcal{N} \oplus \mathcal{N}(T^n_M)$  and  $\mathcal{R}(S) = \mathcal{R}(T_M)$  is closed. As  $T_M$  is semi-regular, it follows that  $\mathcal{N}(S^n) + \mathcal{R}(S) = N + \mathcal{N}(T^n_M) + \mathcal{R}(T_M) = N + \mathcal{N}(T_M) + \mathcal{R}(T_M) = \mathcal{N}(S) + \mathcal{R}(S)$ . Consequently, S is quasi-Fredholm of degree  $d \le 1$ . Moreover,  $\mathcal{N}(S) + \mathcal{N}(R) = X$  and  $\mathcal{R}(S) \oplus \overline{\mathcal{R}(R)} = \mathcal{R}(T_M) \oplus \overline{\mathcal{R}(T_N)}$  is closed. (b) Let  $(M, N) \in g_z KD(T)$ . If we take  $S = T_{(M,N)}$  and  $R = T_{(N,M)}$ , then SR = RS = (S + R) - I = T,  $S = T_M \oplus I_N$  is semi-regular and  $R = I_M \oplus T_N$  is zeroloid.  $\Box$ 

In the case of Hilbert space operator *T*, the next proposition shows that the statement (*a*) of Proposition 2.15 is equivalent to say that *T* is  $g_z$ -Kato.

**Proposition 2.16.** If *H* is a Hilbert space, then  $T \in L(H)$  is  $g_z$ -Kato if and only if there exist  $S, R \in L(H)$  such that T = S + R and

(*i*) RT = TR = 0, S is quasi-Fredholm of degree  $dis(S) \le 1$ , R is a zeroloid operator; (*ii*)  $\mathcal{N}(S) + \mathcal{N}(R) = H$  and  $\mathcal{R}(S) \oplus \overline{\mathcal{R}(R)}$  is closed.

*Proof.* Assume that *S* is quasi-Fredholm of degree 1 (the case of *S* semi-regular is obvious), then from the proof of [27, Theorem 2.2], there exists  $(M, N) \in GKD(S)$  such that  $T_M = S_M$  and  $T_N = R_N$ . As *R* is zeroloid then Proposition 2.5 entails that  $T_N$  is zeroloid. Thus *T* is  $g_z$ -Kato. For the converse, see Proposition 2.15.

## 3. $g_z$ -Fredholm operators

**Definition 3.1.**  $T \in L(X)$  is said to be an upper semi- $g_z$ -Fredholm (resp., lower semi- $g_z$ -Fredholm,  $g_z$ -Fredholm) operator if there exists  $(M, N) \in Red(T)$  such that  $T_M$  is an upper semi-Fredholm (resp., lower semi-Fredholm, Fredholm) operator and  $T_N$  is zeroloid. T is said a semi- $g_z$ -Fredholm if it is an upper or a lower semi- $g_z$ -Fredholm.

Every zeroloid operator is  $g_z$ -Fredholm. Every generalized Drazin-meromorphic semi-Fredholm is a semi $g_z$ -Fredholm, and we show by Example 4.13 that the converse is generally not true.

The next proposition gives some relations between semi- $g_z$ -Fredholm and  $g_z$ -Kato operators.

**Proposition 3.2.** Let  $T \in L(X)$ . The following statements are equivalent:

(i) T is semi- $g_z$ -Fredholm [resp., upper semi- $g_z$ -Fredholm, lower semi- $g_z$ -Fredholm,  $g_z$ -Fredholm];

(ii) T is  $g_z$ -Kato and min { $\tilde{\alpha}(T)$ ,  $\tilde{\beta}(T)$ } <  $\infty$  [resp., T is  $g_z$ -Kato and  $\tilde{\alpha}(T) < \infty$ , T is  $g_z$ -Kato and  $\tilde{\beta}(T) < \infty$ , T is  $g_z$ -Kato and max { $\tilde{\alpha}(T)$ ,  $\tilde{\beta}(T)$ } <  $\infty$ ];

(iii) *T* is  $g_z$ -Kato and  $0 \notin acc \sigma_{spbf}(T)$  [resp., *T* is  $g_z$ -Kato and  $0 \notin acc \sigma_{upbf}(T)$ , *T* is  $g_z$ -Kato and  $0 \notin acc \sigma_{lpbf}(T)$ , *T* is  $g_z$ -Kato and  $0 \notin acc \sigma_{lpbf}(T)$ , *T* is  $g_z$ -Kato and  $0 \notin acc \sigma_{lpbf}(T)$ .

*Proof.* (*i*)  $\iff$  (*ii*) Assume that *T* is semi-*g*<sub>z</sub>-Fredholm, then there exists  $(A, B) \in \text{Red}(T)$  such that  $T_A$  is semi-Fredholm and  $T_B$  is zeroloid. From [5, Corollary 3.7], there exists  $(M, N) \in g_z KD(T)$  such that  $T_M$  is semi-Fredholm. Thus *T* is  $g_z$ -Kato operator and min { $\tilde{\alpha}(T), \tilde{\beta}(T)$ } = min { $\alpha(T_M), \beta(T_M)$ } <  $\infty$ . The converse is obvious. The other equivalence cases go similarly.

 $(ii) \iff (iii)$  Is a consequence of Theorem 2.8.  $\Box$ 

**Corollary 3.3.**  $T \in L(X)$  is  $g_z$ -Fredholm if and only if T is an upper and a lower semi- $g_z$ -Fredholm.

The following lemma will allow us to define the index for semi- $g_z$ -Fredholm operators.

**Lemma 3.4.** Let  $T \in L(X)$ . If there exist two pair of closed T-invariant subspaces (M, N) and (M', N') such that  $M \oplus N = M' \oplus N'$  is closed,  $T_M$  and  $T_{M'}$  are semi-Fredholm,  $T_N$  and  $T_{N'}$  are zeroloid, then  $ind(T_M) = ind(T_{M'})$ .

*Proof.* As  $T_M$  and  $T_{M'}$  are semi-Fredholm operators then from the punctured neighborhood theorem for semi-Fredholm operators, there exists  $\epsilon > 0$  such that  $B(0, \epsilon) \subset \sigma_{sf}(T_M)^C \cap \sigma_{sf}(T_{M'})^C$ ,  $\operatorname{ind}(T_M - \lambda I) = \operatorname{ind}(T_M)$  and  $\operatorname{ind}(T_{M'} - \lambda I) = \operatorname{ind}(T_{M'})$  for every  $\lambda \in B(0, \epsilon)$ . From [4, Remark 2.4] and the fact that  $T_N$  and  $T_{N'}$  are zeroloid, we conclude that  $B_0 := B(0, \epsilon) \setminus \{0\} \subset \sigma_{sf}(T_M)^C \cap \sigma_{sf}(T_M)^C \cap \sigma_{gd}(T_N)^C \subset \sigma_{spbf}(T_{M \oplus N})^C$ . Let  $\lambda \in B_0$ , then  $(T - \lambda I)_{M \oplus N}$  is pseudo semi-B-Fredholm and  $\operatorname{ind}((T - \lambda I)_{M \oplus N}) = \operatorname{ind}(T_M - \lambda I) + \operatorname{ind}(T_N - \lambda I) = \operatorname{ind}(T_{M'} - \lambda I)$ . Thus  $\operatorname{ind}(T_M) = \operatorname{ind}(T_{M'})$ .  $\Box$ 

**Definition 3.5.** Let  $T \in L(X)$  be a semi- $g_z$ -Fredholm. We define its index ind(T) as the index of  $T_M$ , where M is a closed T-invariant subspace N such that  $T_M$  is semi-Fredholm and  $T_N$  is zeroloid. From Lemma 3.4, the index of T is independent of the choice of the pair (M, N) appearing in Definition 3.1 of T as a semi- $g_z$ -Fredholm. In addition, we have from Proposition 3.2, ind(T) =  $\tilde{\alpha}(T) - \tilde{\beta}(T)$ .

We say that  $T \in L(X)$  is an upper semi- $g_z$ -Weyl (resp., lower semi- $g_z$ -Weyl,  $g_z$ -Weyl) operator if T is an upper semi- $g_z$ -Fredholm (resp., lower semi- $g_z$ -Fredholm,  $g_z$ -Fredholm) with  $ind(T) \le 0$  (resp.,  $ind(T) \ge 0$ , ind(T) = 0).

**Remark 3.6.** (*i*) Every zeroloid operator T is  $g_z$ -Fredholm with  $\tilde{\alpha}(T) = \tilde{\beta}(T) = ind(T) = 0$ . A pseudo semi-B-Fredholm is semi- $g_z$ -Fredholm and its usual index coincides with its index as a semi- $g_z$ -Fredholm. (*ii*) T is  $g_z$ -Fredholm if and only if T is semi- $g_z$ -Fredholm with an integer index. And T is  $g_z$ -Weyl if and only if T is upper and lower semi- $g_z$ -Weyl.

**Proposition 3.7.** If  $T \in L(X)$  and  $S \in L(Y)$  are semi- $g_z$ -Fredholm, then (i)  $T^n$  is semi- $g_z$ -Fredholm and  $ind(T^n) = n.ind(T)$  for every integer  $n \ge 1$ . (ii)  $T \oplus S$  is semi- $g_z$ -Fredholm and  $ind(T \oplus S) = ind(T) + ind(S)$ .

*Proof.* (i) As *T* is semi- $g_z$ -Fredholm, then there exists  $(M, N) \in \text{Red}(T)$  such that  $T_M$  is semi-Fredholm and  $T_N$  is zeroloid. So  $(M, N) \in \text{Red}(T^n)$ ,  $T_M^n$  is semi-Fredholm and  $T_N^n$  is zeroloid. Thus  $\text{ind}(T^n) = \text{ind}(T_M^n) = n.\text{ind}(T)$ .

(ii) Since  $T \in L(X)$  and  $S \in L(Y)$  are semi- $g_z$ -Fredholm, then there exist  $(M_1, N_1) \in \text{Red}(T)$  and  $(M_2, N_2) \in Red(S)$  such that  $T_{M_1}$  and  $T_{M_2}$  are semi-Fredholm,  $T_{N_1}$  and  $T_{N_2}$  are zeroloid. Hence  $T_{M_1 \oplus M_2}$  is semi-Fredholm and  $T_{N_1 \oplus N_2}$  is zeroloid. Moreover,  $(M_1 \oplus M_2, N_1 \oplus N_2) \in Red(T \oplus S)$ . Hence  $\operatorname{ind}(T \oplus S) = \operatorname{ind}((T \oplus S)_{M_1 \oplus M_2}) = \operatorname{ind}(T_{M_1}) + \operatorname{ind}(S_{M_2}) = \operatorname{ind}(T) + \operatorname{ind}(S)$ .  $\Box$ 

Denote by  $\sigma_{ug_zf}(T)$ ,  $\sigma_{lg_zf}(T)$ ,  $\sigma_{sg_zf}(T)$ ,  $\sigma_{g_zf}(T)$ ,  $\sigma_{ug_zw}(T)$ ,  $\sigma_{lg_zw}(T)$ ,  $\sigma_{sg_zw}(T)$  and  $\sigma_{g_zw}(T)$  respectively, the upper semi- $g_z$ -Fredholm spectrum, the lower semi- $g_z$ -Fredholm spectrum, the semi- $g_z$ -Fredholm, the  $g_z$ -Fredholm spectrum, the semi- $g_z$ -Weyl spectrum and the  $g_z$ -Weyl spectrum of T.

**Corollary 3.8.** For every  $T \in L(X)$ , we have  $\sigma_{q_z f}(T) = \sigma_{uq_z f}(T) \cup \sigma_{lq_z f}(T)$  and  $\sigma_{q_z w}(T) = \sigma_{uq_z w}(T) \cup \sigma_{lq_z w}(T)$ .

**Proposition 3.9.** Let  $T \in L(X)$  be a semi-B-Fredholm operator which is semi- $g_z$ -Fredholm. Then T is quasi semi-B-Fredholm and its index as a semi-B-Fredholm coincides with its index as a semi- $g_z$ -Fredholm.

*Proof.* Let  $(M, N) \in \text{Red}(T)$  such that  $T_M$  is semi-Fredholm and  $T_N$  is zeroloid. Since T is semi-B-Fredholm then  $T_N$  is Drazin invertible. So there exists  $(A, B) \in \text{Red}(T_N)$  such that  $T_A$  is invertible and  $T_B$  is nilpotent. It is easy to get that  $M \oplus A$  is closed, so that  $T_{M \oplus A}$  is semi-Fredholm. Consequently,  $T = T_{M \oplus A} \oplus T_B$  is quasi semi-B-Fredholm. Furthermore, the punctured neighborhood theorem for semi-Fredholm operators implies that  $\text{ind}(T_M) = \text{ind}(T_{[m_T]})$ .  $\Box$ 

From [29, Theorem 7] and the previous proposition, we obtain the following corollary.

**Corollary 3.10.** Every B-Fredholm operator  $T \in L(X)$  is  $g_z$ -Fredholm and its usual index coincides with its index as a  $g_z$ -Fredholm operator.

**Proposition 3.11.** If  $T \in L(X)$  is a semi- $g_z$ -Fredholm operator, then  $T^*$  is semi- $g_z$ -Fredholm,  $\tilde{\alpha}(T) = \tilde{\beta}(T^*)$ ,  $\tilde{\beta}(T) = \tilde{\alpha}(T^*)$  and  $ind(T) = -ind(T^*)$ .

Proof. See Lemma 2.13.

Our next definition gives a new class of operators that extends the class of semi-Browder operators.

**Definition 3.12.** We say that  $T \in L(X)$  is an upper semi- $g_z$ -Browder (resp., lower semi- $g_z$ -Browder,  $g_z$ -Browder) if T is a direct sum of an upper semi-Browder (resp., lower semi-Browder, Browder) operator and a zeroloid operator.

**Proposition 3.13.** *Let*  $T \in L(X)$ *. The following statements are equivalent:* 

(*i*) *T* is an upper semi- $g_z$ -Browder [resp., lower semi- $g_z$ -Browder,  $g_z$ -Browder];

(ii) *T* is an upper  $g_z$ -Weyl and *T* has the SVEP at 0 [resp., *T* is a lower semi- $g_z$ -Weyl and *T*<sup>\*</sup> has the SVEP at 0, *T* is  $g_z$ -Weyl and *T* or *T*<sup>\*</sup> has the SVEP at 0];

(iii) *T* is an upper semi- $g_z$ -Fredholm and *T* has the SVEP at 0 [resp., *T* is a lower semi- $g_z$ -Fredholm and *T*<sup>\*</sup> has the SVEP at 0, *T* is  $g_z$ -Fredholm and  $T \oplus T^*$  has the SVEP at 0].

*Proof.* (i)  $\iff$  (ii) Suppose that *T* is  $g_z$ -Browder, then there exists  $(M, N) \in g_z KD(T)$  such that  $T_M$  is Browder. So  $T_M$ ,  $(T_M)^*$ ,  $T_N$  and  $(T_N)^*$  have the SVEP at 0. Thus *T* and  $T^*$  have the SVEP at 0. Conversely, if *T* is  $g_z$ -Weyl and *T* or  $T^*$  has the SVEP at 0, then there exists  $(M, N) \in g_z KD(T)$  such that  $T_M$  is Weyl and  $T_M$  or  $(T_M)^*$  has the SVEP at 0. So max{ $\tilde{\alpha}(T), \tilde{\beta}(T)$ } <  $\infty$  and min{ $\tilde{p}(T), \tilde{q}(T)$ } <  $\infty$ . This implies from [1, Lemma 1.22] that max{ $\tilde{p}(T), \tilde{q}(T)$ } <  $\infty$  and then  $T_M$  is Browder. Therefore *T* is  $g_z$ -Browder. The other equivalence cases go similarly.

(i)  $\iff$  (iii) Suppose that T is  $g_z$ -Fredholm and  $T \oplus T^*$  has the SVEP at 0. Let  $(M, N) \in g_z KD(T)$  such that  $T_M$  is Fredholm and  $T_N$  is zeroloid. Hence  $T_M \oplus (T_M)^*$  has the SVEP at 0. From the implications (A) and (B) mentioned in the introduction, we deduce that  $T_M$  is Browder and then T is  $g_z$ -Browder. The converse is clear and the other equivalence cases go similarly.  $\Box$ 

The proofs of the following results are obvious and are left to the reader.

**Proposition 3.14.** If  $T \in L(X)$  is semi- $g_z$ -Fredholm, then there exists  $\epsilon > 0$  such that  $B_0 := B(0, \epsilon) \setminus \{0\} \subset (\sigma_{spbf}(T))^C$ and  $ind(T) = ind(T - \lambda I)$  for every  $\lambda \in B_0$ .

**Corollary 3.15.** For every  $T \in L(X)$ , the following assertions hold: (i)  $\sigma_{ug_{z}f}(T)$ ,  $\sigma_{lg_{z}f}(T)$ ,  $\sigma_{sg_{z}f}(T)$ ,  $\sigma_{g_{z}f}(T)$ ,  $\sigma_{ug_{z}w}(T)$ ,  $\sigma_{lg_{z}w}(T)$ ,  $\sigma_{sg_{z}w}(T)$  and  $\sigma_{g_{z}w}(T)$  are compact. (ii) If  $\Omega$  is a component of  $(\sigma_{ug_{z}f}(T))^{C}$  or  $(\sigma_{lg_{z}f}(T))^{C}$ , then the index  $ind(T - \lambda I)$  is constant as  $\lambda$  ranges over  $\Omega$ .

**Corollary 3.16.** Let  $T \in L(X)$ . The following statements are equivalent: (*i*) *T* is semi- $g_z$ -Weyl [resp., upper semi- $g_z$ -Weyl, lower semi- $g_z$ -Weyl,  $g_z$ -Weyl]; (*ii*) *T* is  $g_z$ -Kato and  $0 \notin acc \sigma_{spbw}(T)$  [resp., *T* is  $g_z$ -Kato and  $0 \notin acc \sigma_{upbw}(T)$ , *T* is  $g_z$ -Kato and  $0 \notin acc \sigma_{lpbw}(T)$ ], where  $\sigma_{spbw}(T) := \sigma_{upbw}(T) \cup \sigma_{lpbw}(T)$ .

## 4. $g_z$ -invertible operators

Recall [1] that  $T \in L(X)$  is said to be Drazin invertible if there exists an operator  $S \in L(X)$  which commutes with T with STS = S and  $T^nST = T^n$  for some integer  $n \in \mathbb{N}$ . The index of a Drazin invertible operator T is defined by  $i(T) = \min\{n \in \mathbb{N} : \exists S \in L(X) \text{ such that } ST = TS, STS = S \text{ and } T^nST = T^n\}.$ 

**Proposition 4.1.** Let  $T \in L(X)$ . If  $p(T) < \infty$  (resp.,  $q(T) < \infty$ ) then p(T) = dis(T) (resp., q(T) = dis(T)). Moreover, if T is Drazin invertible, then i(T) = dis(T).

*Proof.* Suppose that  $p(T) < \infty$ , then  $\mathcal{N}(T_{[n]}) = \{0\}$  for every  $n \ge p(T)$ . This implies that  $\mathcal{N}(T_{[d]}) = \{0\}$ , where  $d := \operatorname{dis}(T)$ . Thus  $p(T) \le d$ , and as we always have  $d \le \min\{p(T), q(T)\}$  then p(T) = d. If  $q(T) < \infty$ , then  $X = \mathcal{R}(T) + \mathcal{N}(T^n)$  for every  $n \ge q(T)$ . Since  $\mathcal{R}(T) + \mathcal{N}(T^d) = \mathcal{R}(T) + \mathcal{N}(T^m)$  for every integer  $m \ge d$ , then  $X = \mathcal{R}(T) + \mathcal{N}(T^d)$ . Hence  $T_{[d]}$  is surjective and consequently q(T) = d. If in addition T is Drazin invertible, then the proof of the equality desired is an immediate consequence of [1, Theorem 1.134].  $\Box$ 

**Definition 4.2.** We say that *T* is quasi left Drazin invertible (resp., quasi right Drazin invertible) if there exists  $(M, N) \in KD(T)$  such that  $T_M$  is bounded below (resp., surjective).

**Proposition 4.3.** Let  $T \in L(X)$ . The following hold:

(i) T is Drazin invertible if and only if T is quasi left and quasi right Drazin invertible.
(ii) If T is quasi left Drazin invertible, then T is left Drazin invertible.
(iii) If T is quasi right Drazin invertible, then T is right Drazin invertible.
Furthermore, the converses of (ii) and (iii) are true in the case of Hilbert space.

*Proof.* (i) Assume that *T* is Drazin invertible, then  $n := p(T) = q(T) < \infty$ . It is well known that  $(\mathcal{R}(T^n), \mathcal{N}(T^n)) \in \text{Red}(T)$ ,  $T_{\mathcal{R}(T^n)}$  is invertible and  $T_{\mathcal{N}(T^n)}$  is nilpotent. So *T* is quasi left and quasi right Drazin invertible. Conversely, if *T* is quasi left and quasi right Drazin invertible, then  $\tilde{\alpha}(T) = \tilde{\beta}(T) = 0$ . Therefore  $\alpha(T_M) = \tilde{\alpha}(T) = \tilde{\beta}(T) = \beta(T_M) = 0$  for every  $(M, N) \in KD(T)$ . Thus *T* is Drazin invertible.

(ii) Let  $(M, N) \in \text{Red}(T)$  such that  $T_M$  is bounded below and  $T_N$  is nilpotent of degree d. As a bounded below operator is semi-regular, we deduce from [5, Theorem 2.21] that d = dis(T). Clearly,  $\mathcal{R}(T^n)$  is closed and  $T_{[n]} = (T_M)_{[n]}$  is bounded below for every integer  $n \ge d$ . Hence T is left Drazin invertible. Conversely, assume that T is left Drazin invertible Hilbert space operator. Then T is upper semi-B-Fredholm, which entails from [10, Theorem 2.6] and [5, Corollary 3.7] that there exists  $(M, N) \in KD(T)$  such that  $T_M$  is upper semi-Browder. Using [4, Lemma 2.17], we conclude that  $T_M$  is bounded below and then T is quasi left Drazin invertible.

(iii) Goes similarly with (ii).  $\Box$ 

**Proposition 4.4.**  $T \in L(X)$  is an upper semi-Browder [resp., lower semi-Browder] if and only if T is a quasi left Drazin invertible [resp., quasi right Drazin invertible] and dim  $N < \infty$  for every (or for some)  $(M, N) \in KD(T)$ .

*Proof.* If *T* is an upper semi-Browder, then *T* is upper semi-Fredholm. From [5, Corollary 3.7], there exists  $(M, N) \in KD(T)$  with  $T_M$  is upper semi-Browder. It follows from [4, Lemma 2.17] that  $T_M$  is bounded below. Let  $(A, B) \in KD(T)$  be arbitrary. Since a nilpotent operator  $S \in L(Y)$  is semi-Fredholm iff dim  $Y < \infty$ , then dim  $B < \infty$ . The converse is obvious and the other case goes similarly.  $\Box$ 

**Definition 4.5.**  $T \in L(X)$  is said to be left  $g_z$ -invertible (resp., right  $g_z$ -invertible) if there exists  $(M, N) \in g_z KD(T)$  such that  $T_M$  is bounded below (resp., surjective). T is called  $g_z$ -invertible if it is left and right  $g_z$ -invertible.

**Remark 4.6.** (i) It is clear that T is  $g_z$ -invertible if and only if there exists  $(M, N) \in g_z KD(T)$  such that  $T_M$  is invertible.

(ii) Every generalized Drazin-meromorphic invertible operator is  $g_z$ -invertible.

We prove in the following result that the class of  $g_z$ -invertible operators preserves some properties of Drazin invertibility [16, 24].

**Theorem 4.7.** Let  $T \in L(X)$ . The following statements are equivalent:

(i) T is  $g_z$ -invertible;

(*ii*) T is  $g_z$ -Browder;

(iii) There exists  $(M, N) \in g_z KD(T)$  such that  $T_M$  is Drazin invertible;

(iv) There exists a Drazin invertible operator  $S \in L(X)$  such that TS = ST, STS = S and  $T^2S - T$  is zeroloid. A such *S* is called a  $q_z$ -inverse of *T*;

(v) There exists a bounded projection P on X which commutes with T, T + P is generalized Drazin invertible and TP is zeroloid;

(vi) There exists a bounded projection P on X commuting with T such that there exist  $U, V \in L(X)$  which satisfy P = TU = VT and T(I - P) is zeroloid;

(vii) T is  $g_z$ -Kato and  $\tilde{p}(T) = \tilde{q}(T) < \infty$ .

*Proof.* The equivalences (i)  $\iff$  (ii) and (i)  $\iff$  (iii) are immediate consequences of Propositions 4.3 and 4.4. (i)  $\iff$  (iv) Assume that *T* is  $g_z$ -invertible and let  $(M, N) \in g_z KD(T)$  such that  $T_M$  is invertible. The operator  $S = (T_M)^{-1} \oplus 0_N$  is Drazin invertible. Moreover,  $TS = ST = I_M \oplus 0_N$ , STS = S and  $T^2S - T = 0_M \oplus (-T_N)$ . As  $T_N$  is zeroloid then  $T^2S - T$  is also zeroloid. Conversely, suppose that there exists a Drazin invertible operator *S* such that TS = ST, STS = S and  $T^2S - T$  is zeroloid. Then *TS* is a projection. If we take  $M = \mathcal{R}(TS)$ and  $N = \mathcal{N}(TS)$ , then  $(M, N) \in \text{Red}(T) \cap \text{Red}(S)$ . We have  $T_M$  is one-to-one. Indeed,  $x \in \mathcal{N}(T_M)$  implies that x = TSy and Tx = 0, so  $x = (TS)^2 y = STx = 0$ . Since  $\mathcal{R}(T_M) = M$  then  $T_M$  is invertible. Let us to show that  $S = (T_M)^{-1} \oplus 0_N$ . We have  $S_N = 0_N$ , since S = STS. Let  $x = TSy \in M$ , as  $Sy = STSy \in M$  then  $Sx = Sy = (T_M)^{-1}T_MSy = (T_M)^{-1}x$ . Hence  $S = (T_M)^{-1} \oplus 0_N$  and  $T^2S - T = 0_M \oplus (-T_N)$ . Thus  $T_N$  is zeroloid and then T is  $q_z$ -invertible.

(i)  $\iff$  (v) Suppose that there exists a bounded projection *P* on *X* which commutes with *T*, *T* + *P* is generalized Drazin invertible and *TP* is zeroloid. Then  $(A, B) := (\mathcal{N}(P), \mathcal{R}(P)) \in \text{Red}(T), T_A = (T + P)_A$  is generalized Drazin invertible and  $T_B = (TP)_B$  is zeroloid. Thus there exists  $(C, D) \in \text{Red}(T_A)$  such that  $T_C$  is invertible and  $T_D$  is quasi-nilpotent. Hence  $(C, D \oplus B) \in g_z KD(T)$  and then *T* is  $g_z$ -invertible. Conversely, let  $(M, N) \in g_z KD(T)$  such that  $T_M$  is invertible. Clearly,  $P := 0_M \oplus I_N$  is a projection and TP = PT. Furthermore,  $TP = 0_M \oplus T_N$  is zeroloid and  $T + P = T_M \oplus (T + I)_N$  is generalized Drazin invertible, since  $-1 \notin \text{acc } \sigma(T_N) = \sigma_{qd}(T_N)$ .

(vi)  $\Longrightarrow$  (i) Suppose that there exists a bounded projection *P* on *X* commuting with *T* such that there exist  $U, V \in L(X)$  which satisfy P = TU = VT and T(I - P) is zeroloid. In addition, we assume that  $U, V \in \text{comm}(T)$  (for the general case, one can see the proof of the implication (v)  $\Longrightarrow$  (vi) of [35, Theorem 2.4]). Then  $I_M \oplus 0_N = T_M U_M \oplus T_N U_N = V_M T_M \oplus V_N T_N$ , where  $(M, N) := (\mathcal{R}(P), \mathcal{N}(P)) \in \text{Red}(T)$ , and thus  $T_M U_M = V_M T_M = I_M$  and  $T_N U_N = V_N T_N = 0_N$ . Hence  $T_M$  is invertible. Moreover,  $T_N$  is zeroloid, since  $T(I - P) = 0_M \oplus T_N$  is zeroloid. Consequently, *T* is  $g_z$ -invertible.

The next two theorems are analogous to the previous one.

**Theorem 4.8.** Let  $T \in L(X)$ . The following statements are equivalent: (i) T is left  $g_z$ -invertible; (ii) T is upper semi- $g_z$ -Browder; (iii) There exists  $(M, N) \in g_z KD(T)$  such that  $T_M$  is quasi left Drazin invertible; (iv) T is  $g_z$ -Kato and  $\tilde{p}(T) = 0$ ; (v) T is  $g_z$ -Kato and  $0 \notin acc \sigma_{lgd}(T)$ .

**Theorem 4.9.** Let  $T \in L(X)$ . The following statements are equivalent: (i) T is right  $g_z$ -invertible; (ii) T is lower semi- $g_z$ -Browder; (iii) There exists  $(M, N) \in g_z KD(T)$  such that  $T_M$  is quasi right Drazin invertible; (iv) T is  $g_z$ -Kato and  $\tilde{q}(T) = 0$ ; (v) T is  $g_z$ -Kato and  $0 \notin acc \sigma_{rgd}(T)$ .

**Corollary 4.10.** If  $T \in L(X)$  is  $g_z$ -invertible and S is a  $g_z$ -inverse of T, then TST is the Drazin inverse of S and  $p(S) = q(S) = dis(S) \le 1$ .

Proof. Obvious.

Hereafter,  $\sigma_{lg_zd}(T)$ ,  $\sigma_{rg_zd}(T)$  and  $\sigma_{g_zd}(T)$  are respectively, the left  $g_z$ -invertible spectrum, the right  $g_z$ -invertible spectrum of T.

**Theorem 4.11.** For every  $T \in L(X)$  we have  $\sigma_{g_zd}(T) = acc (acc \sigma(T))$ .

*Proof.* Let  $\mu \notin \operatorname{acc} (\operatorname{acc} \sigma(T))$ . Without loss of generality we assume that  $\mu = 0$  [note that  $\operatorname{acc} \operatorname{acc} \sigma(T - \alpha I) = \operatorname{acc} (\operatorname{acc} \sigma(T)) - \alpha$ , for every complex  $\alpha$ ]. If  $0 \notin \operatorname{acc} \sigma(T)$ , then *T* is generalized Drazin invertible and in particular  $g_z$ -invertible. If  $0 \in \operatorname{acc} \sigma(T)$  then  $0 \in \operatorname{acc} (\operatorname{so} \sigma(T))$ . We distinguish two cases:

**Case 1:** acc (iso  $\sigma(T)$ )  $\neq$  {0}. It follows that  $\epsilon := \inf_{\lambda \in acc \ (iso \ \sigma(T)) \setminus \{0\}} |\lambda| > 0$ . Moreover, the sets  $F_2 := D(0, \frac{\epsilon}{2}) \cap \overline{iso \ \sigma(T)}$ and  $F_1 := ((\operatorname{acc} \sigma(T)) \setminus \{0\}) \cup (\overline{iso \ \sigma(T)} \setminus F_2)$  are closed and disjoint. Indeed,  $F_1 \cap F_2 = F_2 \cap [(\operatorname{acc} \sigma(T)) \setminus \{0\}] \subset [\operatorname{acc} (\operatorname{iso} \sigma(T)) \setminus \{0\}] \cap D(0, \frac{\epsilon}{2}) = \emptyset$ . As  $0 \notin \operatorname{acc} (\operatorname{acc} \sigma(T))$  then  $(\operatorname{acc} \sigma(T)) \setminus \{0\}$  is closed. Let us to show that  $C := (\overline{iso \ \sigma(T)} \setminus F_2)$  is closed. If  $\lambda \in \operatorname{acc} C$  (the case of  $\operatorname{acc} C = \emptyset$  is obvious), then  $\lambda \in \overline{iso \ \sigma(T)}$ . Let  $(\lambda_n)_n \subset C$  be a non stationary sequence that converges to  $\lambda$ , it follows that  $\lambda \neq 0$ . We have  $\lambda \notin F_2$ . Otherwise,  $\lambda \in D(0, \frac{\epsilon}{2})$  and then  $\lambda \notin \operatorname{acc} (\operatorname{iso} \sigma(T)$ . So  $\lambda \in \operatorname{iso} \sigma(T)$  and this is a contradiction. Therefore *C* is closed and then  $F_1$  is closed. As  $\sigma(T) = F_1 \cup F_2$  then there exists  $(M, N) \in \text{Red}(T)$  such that  $\sigma(T_M) = F_1$  and  $\sigma(T_N) = F_2$ . So  $T_M$  is invertible and  $0 \in \text{acc } \sigma(T_N)$ . Let  $v \in F_2$ , then  $v \notin \text{acc } \sigma(T_N) \setminus \{0\}$ , since  $F_1 \cap F_2 = F_2 \cap (\text{acc } \sigma(T) \setminus \{0\}) = \emptyset$ . Hence  $\text{acc } \sigma(T_N) = \{0\}$  and T is  $g_z$ -invertible.

**Case 2:** acc (iso  $\sigma(T)$ ) = {0}. Then  $F_2 := D(0, 1) \cap \overline{iso \sigma(T)}$  and  $F_1 := ((\operatorname{acc} \sigma(T)) \setminus \{0\}) \cup (\overline{iso \sigma(T)} \setminus F_2)$  are closed disjoint subsets and give the desired result. For this, if  $\lambda \in \overline{C}$ , where  $C := \overline{iso \sigma(T)} \setminus F_2$ , then there exists a sequence  $(\lambda_n) \subset C$  that converges to  $\lambda$ . As acc (iso  $\sigma(T)$ ) = {0} and  $\lambda \neq 0$  ∈  $\overline{iso \sigma(T)}$  then  $\lambda \in iso \sigma(T)$ . Therefore  $(\lambda_n)_n$  is stationary and so  $\lambda \in C$ . Thus  $F_1$  is closed and hence there exists  $(M, N) \in \operatorname{Red}(T)$  such that  $\sigma(T_M) = F_1$  and  $\sigma(T_N) = F_2$ . Conclusion, *T* is  $g_z$ -invertible.

Conversely, if *T* is  $g_z$ -invertible, then  $T = T_1 \oplus T_2$ , where  $T_1$  is invertible and  $T_2$  is zeroloid. And then there exists  $\epsilon > 0$  such that  $B(0, \epsilon) \setminus \{0\} \subset (\sigma(T_1))^C \cap (\operatorname{acc} \sigma(T_2))^C \subset (\operatorname{acc} \sigma(T))^C$ . Thus  $0 \notin \operatorname{acc} (\operatorname{acc} \sigma(T))$ .

From the previous theorem and some well known results in perturbation theory, we obtain the following corollary.

**Corollary 4.12.** Let  $T \in L(X)$ . The following statements hold:

(i)  $\sigma_{lg_zd}(T)$ ,  $\sigma_{rg_zf}(T)$  and  $\sigma_{g_zd}(T)$  are compact. (ii)  $\sigma_{g_zd}(T) = \sigma_{g_zd}(T^*)$ . (iii) If  $S \in L(Y)$ , then  $T \oplus S$  is  $g_z$ -invertible if and only if T and S are  $g_z$ -invertible. (iv) T is  $g_z$ -invertible if and only if  $T^n$  is  $g_z$ -invertible for some (equivalently for every) integer  $n \ge 1$ . (v) If  $Q \in comm(T)$  is quasi-nilpotent, then  $\sigma_{g,d}(T) = \sigma_{g,d}(T+Q)$ .

(vi) If  $F \in \mathcal{F}_0(X) \cap comm(T)$ , then  $\sigma_{a,d}(T) = \sigma_{a,d}(T+F)$ , where  $\mathcal{F}_0(X)$  is the set of all power finite rank operators.

**Example 4.13.** Let  $T \in L(X)$  be the operator such that  $\sigma(T) = \sigma_d(T) = \{\frac{1}{n}\}$ . Then T is  $g_z$ -invertible and not generalized Drazin-meromorphic invertible, since  $0 \in \operatorname{acc} \sigma_d(T)$  (see [35, Theorem 5]). Note also that T is not generalized Kato-meromorphic. Otherwise, we get  $\tilde{\alpha}(T) = \tilde{\beta}(T) = 0$ , since T is  $g_z$ -invertible. Hence T is generalized Drazin-meromorphic invertible and this is a contradiction.

**Proposition 4.14.** *Let*  $T \in L(X)$ *. The following statements are equivalent:* 

(*i*)  $0 \in iso (acc \sigma(T))$  (*i.e.* T is  $q_z$ -invertible and not generalized Drazin invertible);

(*ii*)  $T = T_1 \oplus T_2$ , where  $T_1$  is invertible and  $acc \sigma(T_2) = \{0\}$ ;

(iii) *T* is  $g_z$ -Kato and there exists a non stationary sequence of isolated points of  $\sigma(T)$  that converges to 0.

*Proof.* (i)  $\implies$  (ii) Follows directly from the proof of Theorem 4.11. Note here that  $\operatorname{acc} \sigma(T_N) = \{0\}$  for every  $(M, N) \in q_z KD(T)$ .

(ii)  $\Longrightarrow$  (iii) As  $T = T_1 \oplus T_2$ ,  $T_1$  is invertible and  $\operatorname{acc} \sigma(T_2) = \{0\}$ , then  $0 \in \operatorname{iso} (\operatorname{acc} \sigma(T))$  and there exists a non stationary sequence  $(\lambda_n)_n \subset \operatorname{iso} \sigma(T_2)$  that converges to 0. Thus *T* is  $g_z$ -invertible and there exists  $N \in \mathbb{N}$  such that  $\lambda_n \in \sigma(T) \setminus \operatorname{acc} \sigma(T) = \operatorname{iso} \sigma(T)$  for all  $n \ge N$ .

(iii)  $\implies$  (i) Assume that  $T = T_1 \oplus T_2$ ,  $T_1$  is semi-regular,  $T_2$  is zeroloid and there exists a non stationary sequence  $(\lambda_n)_n$  of isolated point of  $\sigma(T)$  that converges to 0. Hence  $0 \in \operatorname{acc} \sigma(T)$  and  $T \oplus T^*$  has the SVEP at 0. This entails that *T* is  $g_z$ -invertible and then  $0 \in \operatorname{iso} (\operatorname{acc} \sigma(T))$ .  $\Box$ 

Recall that  $\sigma \subset \sigma(T)$  is called a spectral set (called also isolated part) of T if  $\sigma$  and  $\sigma(T) \setminus \sigma$  are closed, see [17]. Let T be a  $g_z$ -invertible operator which is not generalized Drazin invertible. From Proposition 4.14, we conclude that there exists a non-zero strictly decreasing sequence  $(\lambda_n)_n \subset \text{iso } \sigma(T)$  that converges to 0 such that  $\sigma := \overline{\{\lambda_n : n \in \mathbb{N}\}}$  is a spectral set of T. If  $P_\sigma$  is the spectral projection associated to  $\sigma$ , then  $(M_\sigma, N_\sigma) := (\mathcal{N}(P_\sigma), \mathcal{R}(P_\sigma)) \in g_z KD(T), \sigma(T_{N_\sigma}) = \sigma$  and  $\sigma(T_{M_\sigma}) = \sigma(T) \setminus \sigma$ . Thus  $T + rP_\sigma = T_{M_\sigma} \oplus (T + rI)_{N_\sigma}$  is invertible for every  $|r| > |\lambda_0|$  and then the operator  $T_\sigma^D := (T + rP_\sigma)^{-1}(I - P_\sigma) = (T_{M_\sigma})^{-1} \oplus 0_{N_\sigma}$  is a  $g_z$ -inverse of T and depends only on  $\sigma$ . Note that  $P_\sigma = I - TT_\sigma^D \in \text{comm}^2(T) := \{S \in \text{comm}(L) : L \in \text{comm}(T)\}$ , so that  $(M_\sigma, N_\sigma) \in \text{Red}(S)$  for every operator  $S \in \text{comm}(T)$  and  $T_\sigma^D \in \text{comm}^2(T)$ . Note also that  $T + P_\sigma$  is generalized Drazin invertible and  $TP_\sigma$  is zeroloid.

**Lemma 4.15.** Let  $T \in L(X)$  be a  $g_z$ -invertible operator and  $(M, N) \in g_z KD(T)$  such that  $T_M$  invertible and  $\sigma(T_M) \cap \sigma(T_N) = \emptyset$ . Then  $\sigma(T_N) \setminus \{0\} \subset iso \sigma(T)$  and for every  $S \in comm(T)$  we have  $(M, N) \in Red(S)$ .

*Proof.* If T is generalized Drazin invertible, then  $0 \notin \operatorname{acc} \sigma(T)$  and so  $\operatorname{acc} \sigma(T_N) = \emptyset$ , hence  $\sigma(T_N)$  is a finite set of isolated points of  $\sigma(T)$ . Let  $P_{\sigma}$  be the spectral projection associated to  $\sigma = \sigma(T_N)$ . From [17, Proposition 2.4] and the fact that  $P_{\sigma} \in \text{comm}^2(T)$  we deuce that  $(M, N) = (\mathcal{N}(P_{\sigma}), \mathcal{R}(P_{\sigma})) \in \text{Red}(S)$  for every  $S \in \text{comm}(T)$ . If *T* is not generalized Drazin invertible, then there exists a strictly decreasing sequence  $(\lambda_n)_n$  of isolated point of  $\sigma(T)$  that converges to 0 and such that  $\sigma(T_N) = \{\lambda_n : n \in \mathbb{N}\}$ . Thus  $\sigma(T_N) \setminus \{0\} \subset \text{iso } \sigma(T)$ . Let *P* be the spectral projection associated to the spectral set  $\sigma(T_N)$ , then  $(M, N) = (\mathcal{N}(P), \mathcal{R}(P))$  and so  $(M, N) \in \text{Red}(S)$ for every  $S \in \text{comm}(T)$ .  $\Box$ 

**Remark 4.16.** It is not difficult to see that the following assertions are aquivalent: (*i*)  $\exists (M, N) \in Red(S)$  such that  $T_M$  is invertible for every  $S \in comm(T)$ ; (*ii*)  $\exists L \in comm^2(T)$  such that  $L = L^2T$ .

**Theorem 4.17.** Let  $T \in L(X)$ . The following statements are equivalent: (i) T is  $q_z$ -invertible; (*ii*)  $0 \notin acc(acc \sigma(T));$ (iii) There exists  $(M, N) \in q_z KD(T)$  such that  $T_M$  invertible and  $\sigma(T_M) \cap \sigma(T_N) = \emptyset$ ; (iv) There exists a spectral set  $\sigma$  of T such that  $0 \notin \sigma(T) \setminus \sigma$  and  $\sigma \setminus \{0\} \subset iso \sigma(T)$ ; (v) There exists a bounded projection  $P \in comm^2(T)$  such that T + P is generalized Drazin invertible and TP is zeroloid.

*Proof.* For the equivalence (i)  $\iff$  (ii), see Theorem 4.11. For the equivalences (i)  $\iff$  (iii) and (i)  $\iff$  (v), see Theorem 4.7 and the paragraph preceding Lemma 4.15 (the case of T is generalized Drazin invertible is clear). The proof of the equivalence (iii)  $\iff$  (iv) is a consequence of Lemma 4.15 and the spectral decomposition theorem.  $\Box$ 

**Proposition 4.18.** For every  $g_z$ -invertible operator  $T \in L(X)$ , the following statements hold: (i) Let  $(M, N), (M', N') \in g_z KD(T)$  such that  $T_M, T_{M'}$  are invertible and  $\sigma(T_M) \cap \sigma(T_N) = \sigma(T_{M'}) \cap \sigma(T_{N'}) = \emptyset$ . If  $(T_M)^{-1} \oplus 0_N = (T_{M'})^{-1} \oplus 0_{N'}$ , then (M, N) = (M', N'). (ii) Let  $\sigma, \sigma'$  two spectral sets of T such that  $0 \notin \sigma(T) \setminus (\sigma \cap \sigma')$  and  $(\sigma \cup \sigma') \setminus \{0\} \subset iso \sigma(T)$ . If  $(T + rP_{\sigma})^{-1}(I - P_{\sigma}) = 0$  $(T + r'P_{\sigma'})^{-1}(I - P_{\sigma'})$ , where  $P_{\sigma}$  is the spectral projection of T associated to  $\sigma$ ,  $|r| > \max_{\lambda \in \sigma} |\lambda|$  and  $|r'| > \max_{\lambda \in \sigma'} |\lambda|$ , then  $\sigma = \sigma'$ .

*Proof.* (i) From the proof of Lemma 4.15, we have  $(M, N) = (\mathcal{N}(P_{\sigma}), \mathcal{R}(P_{\sigma}))$  and  $(M', N') = (\mathcal{N}(P_{\sigma'}), \mathcal{R}(P_{\sigma'}))$ , where  $\sigma = \sigma(T_N)$  and  $\sigma' = \sigma(T_{N'})$ . As  $(T_M)^{-1} \oplus 0_N = (T_{M'})^{-1} \oplus 0_{N'}$  then  $\sigma(T_M) = \sigma(T_{M'})$  and thus  $\sigma(T_N) = \sigma(T_{N'})$ . This proves that (M, N) = (M', N'). (ii) Follows from (i).  $\Box$ 

The previous Proposition 4.18 gives a sense to the next remark.

**Remark 4.19.** If  $T \in L(X)$  is  $q_z$ -invertible, then

(i) For every  $(M, N) \in g_z KD(T)$  such that  $T_M$  is invertible and  $\sigma(T_M) \cap \sigma(T_N) = \emptyset$ , the  $g_z$ -inverse operator  $T^{\mathcal{D}}_{(M,N)} :=$ 

 $(T_M)^{-1} \oplus 0_N \in comm^2(T)$ , and we call  $T^D_{(M,N)}$  the  $g_z$ -inverse of T associated to (M, N). (ii) If  $\sigma$  is a spectral set of T such that  $0 \notin \sigma(T) \setminus \sigma$  and  $\sigma \setminus \{0\} \subset iso \sigma(T)$ , then the operator  $T^D_{\sigma} := (T + rP_{\sigma})^{-1}(I - P_{\sigma}) \in comm^2(T)$  is a  $g_z$ -inverse of T, where  $|r| > \max_{\lambda \in \sigma} |\lambda|$ , and we call  $T^D_{\sigma}$  the  $g_z$ -inverse of T associated to  $\sigma$ .

Note that if  $T \in L(X)$  is generalized Drazin invertible which is not invertible, then by [24, Lemma 2.4] and Proposition 4.18 we conclude that the Drazin inverse of T is exactly the  $q_z$ -inverse of T associated to  $\sigma = \{0\}$ , in other words  $T^D = T^D_{\{0\}}$ .

**Proposition 4.20.** Let  $T, S \in L(X)$  two commuting  $g_z$ -invertible. If  $\sigma$  and  $\sigma'$  are spectral sets of T and S, respectively such that  $0 \notin (\sigma(T) \setminus \sigma) \cup (\sigma(S) \setminus \sigma'), \sigma \setminus \{0\} \subset iso \sigma(T) and \sigma' \setminus \{0\} \subset iso \sigma(S), then T, S, T^D_{\sigma}, S^D_{\sigma'}$  are mutually commutative.

*Proof.* As TS = ST then the previous remark entails that  $T_{\sigma}^{D} = (T + rP_{\sigma})^{-1}(I - P_{\sigma}) \in \text{comm}(S_{\sigma'}^{D})$ , and analogously for other operators.  $\Box$ 

The following proposition describe the relation between the  $g_z$ -inverse of a  $g_z$ -invertible operator T associated to (M, N) and the  $g_z$ -inverse of T associated to a spectral set  $\sigma$ . It's proof is clear.

**Proposition 4.21.** If  $T \in L(X)$  is  $g_z$ -invertible and  $(M, N) \in g_z KD(T)$  such that  $T_M$  is invertible and  $\sigma(T_M) \cap \sigma(T_N) = \emptyset$ , then  $T^D_{(M,N)} = T^D_{\sigma}$ , where  $\sigma = \sigma(T_N)$ . In other words  $T^D_{\sigma(T_N)} = (T_M)^{-1} \oplus 0_N$ .

Our next theorem gives a generalization of [24, Theorem 4.4] in the case of the complex Banach algebra L(X). Denote by Hol(T) the set of all analytic functions defined on an open neighborhood of  $\sigma(T)$ .

**Theorem 4.22.** If  $0 \in \sigma(T) \setminus acc(acc \sigma(T))$ , then for every spectral set  $\sigma$  such that  $0 \in \sigma$  and  $\sigma \setminus \{0\} \subset iso \sigma(T)$  we have

$$T^{D}_{\sigma} = f_{\sigma}(T),$$

where  $f_{\sigma} \in Hol(T)$  defined by  $f_{\sigma} = 0$  in a neighborhood of  $\sigma$  and  $f_{\sigma}(\lambda) = \lambda^{-1}$  in a neighborhood of  $\sigma(T) \setminus \sigma$ . Moreover  $\sigma(T_{\sigma}^{D}) = \{0\} \cup \{\lambda^{-1} : \lambda \in \sigma(T) \setminus \sigma\}.$ 

*Proof.* Let  $\Omega_1$  and  $\Omega_2$  two disjoint open sets such that  $\sigma \subset \Omega_1$  and  $\sigma(T) \setminus \sigma \subset \Omega_2$  (for the construction of  $\Omega_1$  and  $\Omega_2$ , see the paragraph below) and let  $g \in Hol(T)$  be the function defined by

$$g(\lambda) = \begin{cases} 1 & \text{if } \lambda \in \Omega_1 \\ 0 & \text{if } \lambda \in \Omega_2 \end{cases}$$

It is clear that  $P_{\sigma} = g(T)$  and as  $T_{\sigma}^{D} = (T + rP_{\sigma})^{-1}(I - P_{\sigma})$  (where  $|r| > \max_{\lambda \in \sigma} |\lambda|$  be arbitrary), then the function  $f_{\sigma}(\lambda) = (\lambda + rg(\lambda))^{-1}(1 - g(\lambda))$  has the required property. Moreover, we have  $\sigma(T_{\sigma}^{D}) = f_{\sigma}(\sigma(T)) = \{0\} \cup \{\lambda^{-1} : \lambda \in \sigma(T) \setminus \sigma\}$ .  $\Box$ 

According to [17], if  $\sigma$  is a spectral set of T then there exist two disjoint open sets  $\Omega_1$  and  $\Omega_2$  such that  $\sigma \subset \Omega_1$ and  $\sigma(T) \setminus \sigma \subset \Omega_2$ . Choose a Cauchy domains  $S_1$  and  $S_2$  such that  $\sigma \subset S_1$ ,  $\sigma(T) \setminus \sigma \subset S_2$ ,  $\overline{S_1} \subset \Omega_1$  and  $\overline{S_2} \subset \Omega_2$ . It follows that the spectral projection corresponding to  $\sigma$  is

$$P_{\sigma} = \frac{1}{2i\pi} \int_{\partial S_1} (\lambda I - T)^{-1} d\lambda.$$

Moreover, if  $0 \in \sigma$  and  $\sigma \setminus \{0\} \subset iso \sigma(T)$ , then from Theorem 4.22 we conclude that

$$T^D_{\sigma} = \frac{1}{2i\pi} \int_{\partial S_2} \lambda^{-1} (\lambda I - T)^{-1} d\lambda.$$

#### 5. Weak SVEP and applications

As a continuation of some results proved in [19, 22], we begain this part by the next theorem which gives a new characterization of some Browder's type theorems in terms of spectra introduced and studied in the preceding parts.

**Theorem 5.1.** For  $T \in L(X)$ , we have (i)  $T \in (B)$  if and only if  $\sigma_{g_zw}(T) = \sigma_{g_zd}(T)$ . (ii)  $T \in (B_e)$  if and only if  $\sigma_{g_zf}(T) = \sigma_{g_zd}(T)$ . (iii)  $T \in (aB)$  if and only if  $\sigma_{ug_zw}(T) = \sigma_{lg_zd}(T)$ . *Proof.* (i) If  $\lambda \notin \sigma_{g_z w}(T)$ , then from Corollary 3.16 we have  $\lambda \notin \operatorname{acc} \sigma_{pbw}(T)$  [note that  $\operatorname{acc} \sigma_{pbw}(T - \lambda I) = \operatorname{acc} (\sigma_{pbw}(T)) - \lambda$ ]. Since  $T \in (B)$  then [22, Theorem 2.6] or [19, Theorem 2.8] implies that  $\lambda \notin \operatorname{acc} \sigma_{gd}(T)$ , and this implies from Theorem 4.11 that  $\lambda \notin \sigma_{g_z d}(T)$ . As the inclusion  $\sigma_{g_z w}(T) \subset \sigma_{g_z d}(T)$  is always true, it follows that  $\sigma_{g_z w}(T) = \sigma_{g_z d}(T)$ . Conversely, let  $\lambda \notin \sigma_w(T)$ , then  $\lambda \notin \sigma_{g_z w}(T) = \sigma_{g_z d}(T)$ . On the other hand, [5, Corollary 3.7] implies that there exists  $(M, N) \in \operatorname{Red}(T)$  such that  $T_M - \lambda I$  is semi-regular and  $T_N - \lambda I$  is nilpotent. Since  $T - \lambda I$  is  $g_z$ -invertible then  $p(T_M - \lambda I) = \tilde{p}(T - \lambda I) = \tilde{q}(T - \lambda I) = q(T_M - \lambda I) = 0$ , and so  $T_M - \lambda I$  is invertible. Hence  $T - \lambda I$  is Browder and consequently  $T \in (B)$ . Using [22, Corollary 2.10] or [19, Corollary 2.14], the point (ii) goes similarly with (i). And Using [22, Theorem 2.7], we obtain analogously the point (iii).

**Definition 5.2.** Let A be a subset of  $\mathbb{C}$ . We say that  $T \in L(X)$  has the Weak SVEP on A (T has the  $W_A$ -SVEP for brevity) if there exists a subset  $B \subset A$  such that T has the SVEP on B and  $T^*$  has the SVEP on A\B. If T has the  $W_{\mathbb{C}}$ -SVEP, then T is said to have the Weak SVEP (T has the W-SVEP for brevity).

**Remark 5.3.** (*i*) Let A be a subset of  $\mathbb{C}$ . Then  $T \in L(X)$  has the  $W_A$ -SVEP if and only if for every  $\lambda \in A$ , at least T or  $T^*$  has the SVEP at  $\lambda$ .

(ii) If T or T<sup>\*</sup> has the SVEP, then T has the W-SVEP. But the converse is not generally true. For this, the left shift operator  $L \in L(\ell^2(\mathbb{N}))$  defined by  $L(x_1, x_2, ...) = (x_2, x_3, ...)$  has the W-SVEP, but it does not have the SVEP. (iii) The operator  $L \oplus L^*$  does not have the W-SVEP.

The next theorem gives a sufficient condition for an operator  $T \in L(X)$  to have the W-SVEP.

**Theorem 5.4.** Let  $T \in L(X)$ . If

$$X_T(\emptyset) \times X_{T^*}(\emptyset) \subset \{(x,0) : x \in X\} \ | \ |\{(0,f) : f \in X^*\},\$$

then T has the W-SVEP.

*Proof.* Let  $\lambda \in \mathbb{C}$  and let  $V, W \subset \mathbb{C}$  two open neighborhood of  $\lambda$ . Let  $f : V \longrightarrow X$  and  $g : W \longrightarrow X^*$  two analytic functions such that  $(T - \mu I)f(\mu) = 0$  and  $(T^* - vI)g(v) = 0$  for every  $(\mu, v) \in V \times W$ . If we take  $U = V \cap W$ , then [1, Theorem 2.9] implies that  $\sigma_T(f(\mu)) = \sigma_T(0) = \emptyset = \sigma_{T^*}(0) = \sigma_{T^*}(g(\mu))$  for every  $\mu \in U$ . Hence  $(f(\mu), g(v)) \in X_T(\emptyset) \times X_{T^*}(\emptyset)$  for every  $\mu, v \in U$ . We discuss two cases. The first, there exists  $\mu \in U$  such that  $g(\mu) \neq 0$ . As  $(f(v), g(\mu)) \in X_T(\emptyset) \times X_{T^*}(\emptyset)$  for every  $v \in U$  then by hypotheses  $f \equiv 0$  on U. The identity theorem for analytic functions entails that T has the SVEP at  $\lambda$ . The second,  $g(\mu) = 0$  for every  $\mu \in U$ . In the same way, we prove that  $T^*$  has the SVEP at  $\lambda$ . Hence T has the W-SVEP.  $\Box$ 

**Question:** Similarly to [1, Theorem 2.14] which characterizes the SVEP of  $T \in L(X)$  in terms of its local spectral subspace  $X_T(\emptyset)$ , we ask if the converse of Theorem 5.4 is true?

The next proposition characterizes the classes (*B*) and (*aB*) in terms of the Weak SVEP.

**Proposition 5.5.** *If*  $T \in L(X)$ *, then* 

(a) For σ<sub>\*</sub> ∈ {σ<sub>w</sub>, σ<sub>bw</sub>, σ<sub>gzw</sub>}, the following statements are equivalent:

(i) T ∈ (B);
(ii) T has the Weak SVEP on σ<sub>\*</sub>(T)<sup>C</sup>;
(iii) For all λ ∉ σ<sub>\*</sub>(T), T ⊕ T<sup>\*</sup> has the SVEP at λ;
(iv) For all λ ∉ σ<sub>\*</sub>(T), T has the SVEP at λ;
(v) For all λ ∉ σ<sub>\*</sub>(T), T<sup>\*</sup> has the SVEP at λ.

(b) For σ<sub>\*</sub> ∈ {σ<sub>e</sub>, σ<sub>bf</sub>, σ<sub>gzf</sub>}, the following statements are equivalent:

(i) T ∈ (B<sub>e</sub>);
(ii) For all λ ∉ σ<sub>\*</sub>(T), T ⊕ T<sup>\*</sup> has the SVEP at λ.

(c) For σ<sub>\*</sub> ∈ {σ<sub>uw</sub>, σ<sub>ubw</sub>, σ<sub>ugzw</sub>}, the following statements are equivalent:

(i) T ∈ (aB);
(ii)] T has the Weak SVEP on σ<sub>\*</sub>(T)<sup>C</sup>;

(iii) For all  $\lambda \notin \sigma_*(T)$ , T has the SVEP at  $\lambda$ .

*Proof.* (a) For  $\sigma_* = \sigma_{g_z w}$ , we have only to show (ii)  $\Longrightarrow$  (i), and the other implications are clair. Let  $\lambda \notin \sigma_{g_z w}(T)$ , then there exists  $(M, N) \in \text{Red}(T)$  such that  $T_M - \lambda I$  is Weyl and  $T_N - \lambda I$  is zeroloid. Hence T or  $T^*$  has the SVEP at  $\lambda$  is equivalent to say that  $T_M$  or  $(T_M)^*$  has the SVEP at  $\lambda$ , and this is equivalent to min  $\{p(T_M - \lambda I), q(T_M - \lambda I)\} < \infty$ . Therefore  $T_M - \lambda I$  is Browder and then  $\lambda \notin \sigma_{g_z d}(T)$ . From Theorem 5.1, it follows that  $T \in (B)$ . For  $\sigma_* \in \{\sigma_w, \sigma_{bw}\}$ , the proof of (ii)  $\Longrightarrow$  (i) is similar, and the other implications are already done in [1]. The assertions (b) and (c) go similarly with (a). Note that some implications of assertions (b) and (c) are already done in [1, 6, 19, 22].  $\Box$ 

We end this part by the next result which extends [1, Theorem 5.6].

**Theorem 5.6.** If the  $g_z$ -Weyl spectrum of  $T \in L(X)$  has empty interior that is, int  $\sigma_{g_z w}(T) = \emptyset$ , then the following statements are equivalent:

(i)  $T \in (B)$ ; (ii)  $T \in (B_e)$ ; (iii)  $T \in (aB)$ ; (iv) T has the SVEP; (v)  $T^*$  has the SVEP; (vi)  $T \oplus T^*$  has the SVEP; (vii) T has the W-SVEP.

*Proof.* (i)  $\Longrightarrow$  (vi) As  $T \in (B)$  then by Proposition 5.5,  $T \oplus T^*$  has the SVEP on  $\sigma_{g_zw}(T)^C$ . Let  $\lambda \in \sigma_{g_zw}(T)$ ,  $U \subset \mathbb{C}$  be an open neighborhood of  $\lambda$  and  $f : U \longrightarrow X$  be an analytic function which satisfies  $(\mu I - T)f(\mu) = 0$ , for every  $\mu \in U$ . The hypothesis int  $\sigma_{g_zw}(T) = \emptyset$  implies that there exists  $\gamma \in U \cap (\sigma_{g_zw}(T))^C$ . Hence  $f \equiv 0$  on U, since T has the SVEP at  $\gamma$ . It then follows that T has the SVEP at  $\lambda$ . Analogously we prove that  $T^*$  has the SVEP at  $\lambda$ , and consequently  $T \oplus T^*$  has the SVEP. It is clear that the statement (*vi*) implies without condition on T all other statements. Furthermore, all statements imply (*i*). This completes the proof.  $\Box$ 

#### References

- P. Aiena, Fredholm and Local Spectral Theory II with Application to Weyl-type Theorems, Springer Lecture Notes of Math no. 2235, 2018.
- [2] M. Amouch, M. Karmouni and A. Tajmouati, Spectra originated from Fredholm theory and Browder's theorem, Commun. Korean Math. Soc. 33 (2018) 853–869.
- [3] Z. Aznay, H. Zariouh, The Berkani's property and a note on some recent results, Linear and Multilinear Algebra, doi: 10.1080/03081087.2021.1939254, (2021).
- [4] Z. Aznay, A. Ouahab, H. Zariouh, On the index of pseudo B-Fredholm operators, Monatsh. Math., doi: 10.1007/s00605-022-01798-8,(2022).
- [5] Z. Aznay, A. Ouahab, H. Zariouh, Generalization of Kato's decomposition, Linear Algebra Appl., to appear (2023).
- [6] Z. Aznay, H. Zariouh, On the class of (*W*<sub>e</sub>)-operators, Rend. Circ. Mat. Palermo, doi: 10.1007/s12215-022-00737-8, (2022).
- [7] M. Berkani, On a class of quasi-Fredholm operators, Integr. Equ. and Oper. Theory, 34 (1999) 244–249.
- [8] M. Berkani and N. Castro, Unbounded B-Fredholm operators on Hilbert spaces, Proc. Edinb. Math. Soc. 51 (2008) 285–296.
- [9] M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged), 69 (2003) 359-376.
- [10] M. Berkani and M. Sarih, On semi-B-Fredholm operators, Glasgow Math. J. 43 (2001) 457-465.
- [11] E. Boasso, Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges, Math. Proc. Royal Irish Academy, 115A (2015) 1–15.
- [12] W. Bouamama, Opérateurs Pseudo Fredholm dans les espaces de Banach, Rend. Circ. Mat. Parelmo, 53 (2004) 313–324.
- [13] J. J. Buoni, R. Harte, T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977) 309–314.
- [14] M. D. Cvetković, S. Č. Živković-Zlatanović, Generalized Kato decomposition and essential spectra, Complex Anal. Oper. Theory, 11 (2017) 1425–1449.
- [15] S. V. Djordjević, B. P. Duggal, Drazin invertibility of the diagonal of an operator, Linear and Multilinear Algebra, 60 (2012) 65–71.
- [16] M. P. Drazin, Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506–514.
- [17] I. Gohberg, S. Goldberg, M. A. Kaashoek, Classes of linear operators, Vol. I, Birkhäuser, 1990.
- [18] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan, 34 (1982) 317–337.
- [19] A. Gupta, A. Kumar, A new characterization of generalized Browder's theorem and a Cline's formula for generalized Drazinmeromorphic inverses, Filomat 33 (2019) 6335–6345.
- [20] K. Hocine, M. Benharrat, B. Messirdi, Left and right generalized Drazin invertible operators, Linear and Multilinear Algebra, 63 (2015) 1635–1648.
- [21] M. A. Kaashoek, Ascent, descent, nullity and defect, a note on a paper by A. E. Taylor, Math. Annalen, 172 (1967) 105–115.
- [22] M. Karmouni, A. Tajmouati, A new characterization of Browder's theorem, Filomat 32 (2018) 4865–4873.

- [23] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958) 261–322.
- [24] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996) 367-381.
- [25] J. P. Labrousse, Les opérateurs quasi-Fredholm: Une généralisation des opérateurs semi Fredholm, Rend. Circ. Mat. Palermo, 29 (1980) 161–258.
- [26] K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- [27] M. Mbekhta, Opérateurs pseudo-Fredholm I: Résolvant généralisé, J. Operator Theory, 24 (1990) 255–276.
- [28] M. Mbekhta, V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996) 129-147.
- [29] V. Müller, On the Kato-decomposition of quasi-Fredholm and B-Fredholm operators, Vienna, Preprint ESI 1013, (2001).
- [30] V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Birkhäuser Verlag, Basel-Boston-Berlin, 2nd Edition, 2007.
- [31] P. W. Poon, The stability radius of a quasi-Fredholm operator, Proc. Amer. Math. Soc. 126 (1998) 1071–1080.
- [32] A. Tajmouati, M. Karmouni, M. Abkari, Pseudo semi-B-Fredholm and generalized Drazin invertible operators through Localized SVEP, Italian Journal of pure and applied mathematics, 37 (2017) 301–314.
- [33] H. Zariouh, H. Zguitti, On pseudo B-Weyl operators and generalized Drazin invertible for operator matrices, Linear and Multilinear Algebra, 64 (2016) 1245–1257.
- [34] S. Č. Živković-Zlatanović, M. D. Cvetković, Generalized Kato-Riesz decomposition and generalized Drazin-Riesz invertible operators, Linear and Multilinear Algebra, 65 (2017) 1171-1193.
- [35] S. Č. Živković-Zlatanović, B. P. Duggal, Generalized Kato-meromorphic decomposition, generalized Drazin-meromorphic invertible operators and single-valued extension property, Banach J. Math. Anal. 14 (2020) 894–914.