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Abstract. The functions with bounded mean oscillation (BMO) have been shown to be immense interest
in several areas of analysis and probability. We introduce BMO-type space BMOHK(Rn) for non-absolute
integrable functions. Various properties and completion of BMOHK(Rn) are included. Relations between
the classical BMO space and BMOHK(Rn) are investigated.

1. Introduction

Around 1962, F. John and L. Nirenberg introduced the class of functions with bounded mean oscillation,
in view of its apparent interest in the Real Analysis as well as in Partial Differential Equations (see [14]).
Chaeles Fefferman gave important link between BMO and Harmonic Analysis in several real variables.
One can find BMO spaces in various areas of analysis like function theory, harmonic analysis, PDEs.
BMO-spaces are consider as applicable replacement for L∞. BMO spaces are applicable to conserve a
broad class of dominant operators such as the Hardy-Littlewood maximal function, Hilbert transform.
Various properties of BMO as well as for detailed of BMO spaces (see [19–22]). BMO spaces are not
naturally Banach space. Umberto Neri [18] studied the completeness of the BMO spaces. In recent times
Kwok-Pun-Ho, Lucas Chaffee, Peng Chun, Yanchang Han, Rodolfo H. Torres, Lesley A. Ward, Vagif S.
Guliyer, Fatih Deringoz, Sabir G. Hasanov studied the characterizations of BMO and Lipschitz spaces
by rearrangement-invariant Banach function spaces also provided the sharp function characterization
of the rearrangement-invariant Banach function spaces. The commutators of bilinear Calderón-Zygmund
operators and pointwise multiplication with a symbol in CMO are bilinear compact operators on products of
Lebesgue spaces (see [4, 13]). The necessary and sufficient conditions of boundedness of the commutators of
Riesz potential operator on Orlicz spaces when measurable functions are belongs to the BMO and Lipschitz
spaces, respectively (see [11]). T.X. Duong and L. Yan instigated a new spaces BMOL, analogous with
L being a generator of a semigroup fulfilling the Gaussian upper bounds (see [7, 8]). D. Deng et.al. [6]
investigated the applications of the new BMOL space in the theory of singular integration. They obtained
BMOL estimates as well as interpolation results for fractional powers also purely imaginary powers and
spectral multipliers of self adjoint operators, also demonstrated that the space BMOL might coincide with
or might be essentially different from the classical BMO space.
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In 1957, Jaroslav Kurzweil discussed about a new integral in one of his publication, while unaware of
the work of Kurzweil, Ralph Henstock published an article on integration theory in which he discussed
the same integration as J. Kurzweil. This new integral can integrate a substantial class of functions than
the Riemann or Lebesgue integral. In the honors of these mathematicians, nowadays this integral is called
Henstock-Kurzweil integral in short HK-integral. Measure theory is not essential in the definition of HK-
integral. In quantum theory and nonlinear analysis, HK-integrals are aid for highly oscillatory functions to
integrate. Moreover, HK integrability encloses improper integrals (see [1–3, 10, 12, 15, 17]). Tepper L.Gill
and W.W. Zachary in [9] introduced a class of Banach space of Henstock-Kurzweil integral. They called this
space as Kuelbs-Steadman space in shortKSp(Rn). In Feynman operator Calculus, path integralKSp(Rn) is
directly related. We motivate the work of Donggao Deng, Xuan Thinh Duong, Adam Sikora and Lixin Yan
of [6] to introduce a new BMO type space and investigate the classical BMO space should be a subset as a
continuous embedding.

In Section 2, we surveyKSp(Rn) of [9] with a new norm that can be generated from weighted lp spaces.
We found this new norm is equivalent with the norm given by T. L. Gill and W.W. Zachary for their study.
We introduce a new spaceKS∞c (R) and studyKS∞c (R) is contained in locally Henstock-Kurzweil integrable
function spaces like L∞c (Rn) defined in the Section 3.2 of [16] for their purpose. We define the locally
Henstock-Kurzweil integrable function in the Definition 2.2 of the preliminaries section.

2. Preliminaries

Throughout the article, we assume Ω , ∅ is an abstract space. The class of all subsets of Ω will be
denoted by P(Ω), Σ is σ−algebra.

Definition 2.1. [2] For a function ξ : [a, b] ⊂ Ω→ R is said to be Henstock-Kurzweil integrable (briefly, Henstock
integrable) on a set Ao ∈ Σ if there is an element IAo ∈ R such that for every ε > 0 there is a gauge δ on Ao with
|S(ξ,D) − IAo | ≤ ε whenever D is a δ-fine partition of Ao such that S(ξ,D) exists in R.

Let HK(Ω) be the space of Henstock-Kurzweil integrable functions over Ω. Recalling the Henstock-
Kurzweil integral properly contains the union of L1 and the Cauchy-Lebesgue integrable functions. It is
very unfortunate that HK(Ω) is not a Banach space with Alexiewicz norm ( see [1–3, 9]). We introduce the
locally Henstock-Kurzweil integrable functions as follows:

Definition 2.2. A measurable function ξ : G ⊂ Rn
→ R is called locally Henstock-Kurzweil integrable if ξχK is

Henstock-Kurzweil integrable over a compact set K ⊆ G. We denote the set of locally Henstock-Kurzweil integrable
functions as HKloc.

With easy analogous, L1
loc(R

n) ⊂ HKloc(Rn). On the assumption of the Euclidean space Rn, a function f
is claimed to be in BMO(Rn) if

||ξ||BMO(Rn) = sup
Q

1
|Q|

∫
Q

|ξ(x) − ξQ|dx < ∞,

where ξQ is average value of ξ on the cube Q and the supremum is taken over all cubes Q in Rn.

Definition 2.3. [9, Definition 3.50] Suppose ξ ∈ Lloc(Rn). Let B(x, r) is a cube in Rn.

(a) We define the average of ξ over B(x, r) by

ξB(x,r) =
1

µ(B(x, r))

∫
B(x,r)

ξ(y)dµ(y).

(b) We define the sharp function MZ(ξ)(x) by

MZ(ξ)(x) = sup
B(x,r)

1
µ(B(x, r))

∫
B(x,r)

|ξ(y) − ξB(x,r)|dµ(y).
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(c) For MZ(ξ)(x) ∈ L∞(Rn), f is said to be bounded mean oscillation. Accurately,

BMO(Rn) =
{
ξ ∈ Lloc(Rn) : MZ(ξ) ∈ L∞(Rn)

}
. (1)

is the space of functions of bounded mean oscillation.

Proposition 2.4. [16, Remark 3.10] If X is a Banach space then a mapping J : L∞c (G)→ X is continuous if and only
if its precomposition with the inclusion mapping L∞(K)→ L∞c (G) is continuous for all compact subset K.

3. SpacesKSp(Rn) andKS∞c (Rn)

Recalling that all closed cubes {B j(xi)| ( j, i) ∈N ×N} centered at a point in Qn are in the set {Bk : k ∈N}.
Suppose Ek(x) is the characteristic function of Bk,with the aim that Ek(x) ∈ Lp(Rn)∩L∞(Rn) for 1 ≤ p < ∞,
with the assumption |Ek(x)| = Ek(x) ≤ 1. Define Fk(.) on L1(Rn) by

Fk(ξ) =
∫
Rn
Ek(x)ξ(x)dx.

Then Fk(.) is a bounded linear functional on Lp(Rn) for each k, ||Fk||∞ ≤ 1 and if Fk(ξ) = 0, ∀ k, ξ = 0.

That is, it is fundamental on Lp(Rn) for 1 ≤ p ≤ ∞. For tk > 0 such that
∞∑

k=1
tk = 1, then KS2(Rn) is formed

with the inner product as follows:

(ξ, 1) =
∞∑

k=1

[∫
Rn
Ek(x)ξ(x)dx

] [∫
Rn
Ek(x)1(y)dy

]c
.

ClearlyKS2(Rn) is completion of L1(Rn) ⊆ HK(Rn) with a small variant Ek(x) = 1.
Let {Bk}

∞

k=1 be the countable collection of balls in Rn such that radius of Br = G(Bl) is of the form
2−l, l ∈ N, and the center of Bk is contained in Qn. Let τ = {tk} be a non negative real sequence such that
∞∑

k=1
tk = 1.

||ξ||KSp =

 ∞∑
k=1

tk

∣∣∣∣∣∣
∫
Bk

ξ(x)dx

∣∣∣∣∣∣p


1
p

. (2)

KSp(Rn) is the closure of Lp(Rn) with the norm (2) (see [9]). We write this by defining the weighted lp

space lp(τ) :

||{σk}||lp(τ) =

 ∞∑
k=1

tk|σk|
p


1
p

.

Then

||ξ||KSp = ||

{∫
Bk

ξ(x)dx
}
||lp(τ) = ||{ξ(Bk)}||lp(τ). (3)

Clearly (3) gives us that norm of Kuelbs-Steadman space can be formed from the weighted lp spaces.
Throughout the work we use (2) as the norm of the space KSp(Rn). The norm (3) can be used to construct
Kuelbs-Steadman spaces for variable exponent spaces.

Theorem 3.1. With the norm (2) forKSp, we have the following:

(i) If 1 ≤ p ≤ ∞, Lp
⊂ KSp as continuous dense embeddings.
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(ii) If 1 ≤ p ≤ ∞ and ξ, 1 ∈ KSp, then∥∥∥ξ + 1∥∥∥
KSp ⩽ ∥ξ∥KSp +

∥∥∥1∥∥∥
KSp (Minkowski inequality).

(iii) If 1 ≤ p ≤ ∞, Ko is a weakly sequentially compact subset of Lp, it is a compact subset ofKSp.

(iv) If 1 < p < ∞, thenKSp is uniformly convex.
(v) If 1 < p < ∞ and p−1 + q−1 = 1, then the dual space ofKSp isKSq.

Recall the fact (see [16, Lemma 3.8]) that ifM(Rn) is a translation invariant Banach function space then
the following are equivalents:

1. Cc(Rn) ⊆ M(Rn).
2. Cc(Rn) ∩M(Rn) , ∅.

Then for any compact K ⊆ Rn we have χK ∈ M so, KS∞(K) ⊆ M, also KS∞(K) in M is continuous.
This motivates us to introduce KS∞c (Rn). From [16, Definition 3.9], we introduce KS∞c (Rn) of compactly
supported essentially bounded functions on Rn as

KS∞c (Rn) =
⊕
K⊆Rn

KS∞(K), where K is compact (4)

as the direct limit ofKS∞(K),where K ⊆ Rn ranges over the compact sets. SinceKS∞c (Rn) is a direct limit of
topological vector spaces, it is naturally equipped with the inductive topology. So, KS∞c (K) ⊂ KS∞c (M) for
K ⊆M. If K is a weakly sequentially compact subset of Lp, it is a compact subset ofKSp.

We leave few open questions in this section are

(1) Whether if K is weakly sequential compact subset of L∞c (K) is strongly compact inKS∞c (K)?
(2) Whether following is possible:

KS∞c (Rn) =
⋃⊕

K⊆Rn

L
∞(K), where K is compact.

Theorem 3.2. KS∞c (Rn) is a linear space.

Theorem 3.3. Let E be translation invariant Banach function space such that E ∩ Cc(Rn) , {0} then KS∞c (Rn) ⊂
E(Rn) with continuous inclusion.

Proof. For any K ⊆ E we have χK ∈ E. Since E is an ideal in HK0(Rn), KS∞(Rn) ⊆ E(Rn). Let ξ ∈ KS∞(K) be
arbitrary and suppose j : KS∞(K)→ E with the inclusion map

|| j(ξ)||E = || j(|ξ|)||E
≤ || j(||ξ||KS∞χK)||E
= ||ξ||KS∞ ||χK||E.

Therefore, the inclusion ofKS∞(K) in E is continuous. Also,

KS∞c (Rn) =
⊕
K⊆Rn

KS∞(K), where K is compact. (5)

So,KS∞c (Rn) ⊆ E(Rn) with continuous inclusion.

Theorem 3.4. KS∞c (R) ⊂ HKloc(Rn).
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4. Introduction of BMOHK(Rn) spaces

We motivate the importance of locally Henstock-Kurzweil integral for essentially bounded approach
for BMO type spaces.

We introduce the definition of the space of BMOHK(Rn) in terms of locally Henstock-Kurzweil integral.
We discuss few preliminaries results related to this BMO type space.

Definition 4.1. Let ξ ∈ HKloc(Rn) and B(x, r) be a cube in Rn.

(a) We define the average of ξ over B(x, r) by

ξB(x,r) =
1

µ(B(x, r))
(HK)

∫
B(x,r)

ξ(y)dµ(y).

(b) We define the sharp function MZ(ξ)(x) by

MZ(ξ)(x) = sup
B(x,r)

1
µ(B(x, r))

(HK)
∫
B(x,r)

|ξ(y) − ξB(x,r)|dµ(y).

(c) If MZ(ξ)(x) ∈ KS∞(Rn), we say that ξ is bounded mean oscillation. More precisely, the space of functions of
bounded mean oscillation is defined by

BMOHK(Rn) = {ξ ∈ HKloc(Rn) : MZ(ξ) ∈ KS∞(Rn)}, (6)

Suppose ξ ∈ HKloc(Rn). Let

||ξ||∗ = sup
x∈Rn, r>0

1
|B(x, r)|

(HK)
∫
B(x,r)

|ξ(y) − ξB(x,r)|dµ(y), (7)

where ξB(x,r) =
1

|B(x,r)| (HK)
∫
B(x,r) ξ(y)dµ(y) and ||ξ||BMOHK = ||MZ(ξ)||KS∞ .

If
n∑

k=1
tk = 2−k then clearly ||ξ||∗ is equivalent to ||MZ(ξ)||KS∞ .

We can define a BMO type space as

BMOHK(Rn) =
{
ξ ∈ HKloc(Rn) : ||ξ||∗ < ∞

}
.

The function ξ is called of bounded mean oscillation if ||ξ||∗ < ∞ and BMOHK(Rn) is the set of all locally
Henstock-Kurzweil integrable functions ξ on Rn with ||ξ||∗ < ∞.

Theorem 4.2. BMOHK(Rn) is a linear space.

Proof. Let ξ, 1 ∈ BMOHK(Rn). Then

||ξ + 1||∗ = sup
x∈Rn, r>0

1
|B(x, r)|

∞∑
k=1

tk|(HK)
∫
B(x,r)

((ξ + 1)(y) − (ξ + 1)B(x,r))|dµ(y)

= sup
x∈Rn, r>0

1
|B(x, r)

∞∑
k=1

tk|(HK)
∫
B(x,r)

(ξ(y) + 1(y) − ξB(x,r) − 1B(x,r))|dµ(y)

≤ ||ξ||∗ + ||1||∗
< ∞.

Therefore ξ + 1 ∈ BMOHK(Rn). Again, for α ∈ C,

||αξ||∗ = |α|||ξ||∗ < ∞.

So, αξ ∈ BMOHK(Rn). Hence the proof.
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If ||ξ||∗ = 0 of (7), this never gives ξ = 0, so ||ξ||∗ is not a norm.

Lemma 4.3. If ||ξ||∗ = 0 then ξ is a constant a.e..

Proof. Let ||ξ||∗ = 0. This gives

1
|B(x, r)|

∞∑
k=1

tk|(HK)
∫
B(x,r)

(ξ(y) − ξ|B(x,r))| = 0

⇒

∞∑
k=1

tk|(HK)
∫
B(x,r)

(ξ(y) − ξB(x,r))|dµ(y) = 0

⇒ ξ(y) − ξB(x,r) = 0 a.e.

So, ξ = ξB(x,r) a.e. Hence ξ is a.e. equal to a constant.

Using the Lemma 4.3, we can conclude the following:

Theorem 4.4. The space BMOHK(Rn) is a Banach space with reference to the norm (7).

Proof. If {ξn} is a Cauchy sequence in BMOHK(Rn). Then {ξn} is a Cauchy sequence inL1(K) for any compact
subset K of Rn. Clearly L1(K) ⊂ HKloc(K). So, {ξn} ∈ HKloc(K) is a Cauchy sequence. Now using diagonal
process, we can reduce {ξn} converges in BMOHK(Rn).

Theorem 4.5. BMO(Rn) ⊆ BMOHK(Rn) as continuous embeddings.

Proof. Let ξ ∈ BMOHK(Rn). Then

||ξ||∗ = sup
x∈Rn, r>0

1
|B(x, r)|

∞∑
k=1

tk|(HK)
∫
B(x,r)

(
ξ(y) − ξB(x,r)

)
|dµ(y)

≤ sup
x∈Rn, r>0

1
|B(x, r)|

∞∑
k=1

tk

∫
B(x,r)

|ξ(y) − ξB(x,r)|dµ(y)

≤ ||ξ||BMO(Rn).

So, BMO(Rn) ⊆ BMOHK(Rn).

Our next aim to show BMOHK(Rn) is translational invariance in nature. Functions ξ and 1 are such that
ξ = 1 a.e., then ξ is Henstock-Kurzweil integrable if and only if 1 is Henstock-Kurzweil integrable and the
integrals of ξ = 1 if they exist. We consider H0(µ) is an equivalence classes of measurable Henstock-Kurzweil
integrals.

Definition 4.6. (a) For x ∈ Rn, we denote λy : H0(µ) → H0(µ) as left translation operator if λy(1)(x) =
1(y−1x), ∀ 1 ∈ H0(µ), y ∈ BMOHK(Rn).

(b) For x ∈ Rn, we denote ρy : H0(µ) → H0(µ) as right translation operator if ρy(1)(x) = 1(xy−1), ∀ 1 ∈
H0(µ), y ∈ BMOHK(Rn).

The space BMOHK(Rn) is called translation invariant if it is both left and right translation invariant. Clearly
an element f ∈ BMOHK(Rn) if lim

y→x
||λyξ − λxξ||∗ = 0, ∀x ∈ Rn.

Definition 4.7. (a) An element ξ ∈ BMOHK(Rn) is called left strongly continuous if lim
y→x
||λyξ − λxξ||∗ = 0 ∀x ∈

Rn.
(b) An element ξ ∈ BMOHK(Rn) is called right strongly continuous if lim

y→x
||ρyξ − ρxξ||∗ = 0, ∀x ∈ Rn.

We say that an element ξ ∈ BMOHK(Rn) is strongly continuous if

lim
y→e
||λyξ − ξ||∗ = lim

y→e
||ρyξ − ξ||∗ for e ∈ BMOHK(Rn).
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Theorem 4.8. The space BMOHK(Rn) is translation invariant.

Proof. Let ξ ∈ BMOHK(Rn) vanish at infinity, and let ε > 0 and y ∈ Rn be arbitrary. Let K ⊂ Rn be compact
such that

||ξχRn\K||∗ <
ε

||λy||
B
(

BMOHK(Rn),BMOHK(Rn)
) ,

where B(BMOHK(Rn),BMOHK(Rn)) is the set of bounded linear on BMOHK(Rn). Then

||(λyξ)χRn\yK||∗ = ||λ(ξχRn\K||∗

≤ ||λy||
B
(

BMOHK(Rn),BMOHK(Rn)
)||ξχRn\K||∗

< ε.

As yK is compact and ε > 0 arbitrary, so, λyξ vanishes at infinity. Similarly we can find ρyξ vanish at
infinity. Now, let ξ ∈ BMOHK(Rn) and y ∈ Rn. Since ξ is left and strongly continuous and commutative,

lim
x→e
||λx(λyξ) − λyξ||∗ = 0 = lim

x→e
||ρx(λyξ) − λyξ||∗.

Now

||ρx(λyξ) − λyξ||∗ = ||λy(ρxξ) − ξ||∗
≤ ||λy||

B
(

BMOHK(Rn),BMOHK(Rn)
)||ρxξ − ξ||∗.

So, λyξ ∈ BMOHK(Rn). An analogous proof shows that ρyξ ∈ BMOHK(Rn). Hence BMOHK(Rn) is trans-
lation invariant.

4.1. Properties of BMOHK(Rn) as translation invariant Banach function spaces:

Let (Ω,Σ, µ) be a complete σ−finite measure space and let H0(µ) = H0(Ω,Σ, µ) the space of all equivalence
classes of µ− measurable real valued functions endowed with the topology of convergence in measure
relative to each set of finite measure. The Banach space BMOHK(Rn) ⊂ Ho(µ) is called a Banach function
space on (Ω,Σ, µ) if there exists a u ∈ BMOHK(Rn) such that u > 0 a.e. constant and BMOHK(Rn) satisfies
the ideal property:

(a) x ∈ H0(µ), y ∈ BMOHK(Rn), |x| ≤ |y| µ−a.e. constant then
(b) x ∈ BMOHK(Rn) and ||x||∗ ≤ ||y||∗.

Proposition 4.9. BMOHK(Rn) is a Banach function space.

Proof. Functions that are differing for a constant c > 0 can contribute the same as BMOHK(Rn) norm value
if their disparity is not zero a.e. as constant functions have zero mean oscillation.

Remark 4.10. Note thatKS∞(Rn) is contained in BMOHK(Rn) and we have ||ξ||∗ ≤ 2||ξ||KS∞ .Moreover BMOHK(Rn)
contains unbounded functions, in fact the function lo1|x| on R, is in BMOHK but it is not bounded, so KS∞(Rn) ⊂
BMOHK(Rn).

Function spaces are important and natural examples of abstract Banach lattice.

Proposition 4.11. BMOHK(Rn) is an order continuous Banach lattice with a weak unit.

There exists a probability space (Ω,Σ, µ) and a Banach function space BMOHK(Rn) such that BMOHK(Rn)
is isometrically lattice isomorphic to BMOHK(Rn) and KS∞(Rn) ⊂ BMOHK(Rn) ⊂ HK(µ) with a continuous
inclusions. We denote BMOs

HK(Rn) of strongly continuous part of Banach function space BMOHK(Rn).
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Definition 4.12. For a Banach function space BMOHK(Rn), the set of strongly continuous elements of BMOHK(Rn)
that vanish at infinity as:

BMOs,o
HK(Rn) =

{
ξ ∈ BMOs

HK(Rn) : ∀ ε > 0 ∃K ⊆ Rn compact s.t. ||ξχRn\K||∗ < ε
}
. (8)

For a continuous function ξ : G ⊂ Rn
→ R we write

supp(ξ) = {x ∈ G : ξ(x) , 0}

for its support, we denote Cc(G), the set of all continuous function from G to R with compact support. For
any measurable subset H ⊆ G we denote HK(H) and KS∞(H) the µ−Henstock-Kurzweil integrable and
essentially bounded element of H0(µ), respectively that vanish almost everywhere outsideH .

Lemma 4.13. BMOs
HK(Rn) is closed in BMOHK(Rn).

Proof. Let ( jn)n∈N ⊆ BMOs
HK(Rn) be a sequence converging to j ∈ BMOHK(Rn) and let ε > 0 be arbitrary. We

claim that if κ is a neighbourhood of e in G ⊆ BMOHK(Rn) such that ||λy j − j||∗ < ε, ∀y ∈ κ. Suppose κ0 is a
neighbourhood of e inGwith compact closure and a constantω ∈ R > 0 such that ||λy||

B
(

BMOHK(Rn),BMOHK(Rn)
) <

ω, ∀ y ∈ κ0. For all y ∈ κ0, for n ∈ N such that || j − jn||∗ < ε
2(ω+1) and a neighbourhood κ1 of e in G such that

||λy jn − jn||∗ < ε2 ∀ y ∈ κ1. Let κ = κ0 ∩ κ1,with triangle inequality, we have

||λy j − j||∗ ≤ ||λy j − λy jn||∗ + ||λy jn − jn||∗ + || jn − j||∗

< (ω + 1)
ε

2(ω + 1)
+
ε
2

= ε.

Therefore, j is left strongly continuous. Similarly j is right strongly continuous, hence j is strongly
continuous and consequently j ∈ BMOs

HK(Rn). Hence the proof.

Corollary 4.14. BMOs,o
HK(Rn) is closed in BMOHK(Rn).

Proposition 4.15. Cc(G) is a subset of BMOHK(Rn).

Theorem 4.16. KS∞c (G) ⊆ BMOHK(Rn) with continuous inclusions.

Proof. BMOHK(G) is translational invariant Banach function space with BMOHK(G)∩Cc(G) , {0}. Then using
Theorem 3.3, we getKS∞c (G) ⊆ BMOHK(G).

4.2. Completion of BMOHK(Rn):
The completion of smooth functions in BMOHK(Rn) norm, namely the space VMOHK(Rn)(= vanishing

mean oscillation) is the completion of smooth maps in the BMOHK(Rn) norm.
If ξ ∈ BMOHK(Rn) then there is a sequence (ξ j) in VMOHK(Rn) of smooth functions such that ||ξ j−ξ||∗ → 0.

An elementary argument establish that VMOHK(Rn) is a closed subspace of BMOHK(Rn). It is obvious that
VMOHK(Rn) contains all uniformly continuous functions in BMOHK(Rn). The space VMOHK(Rn) is a Banach
space with the norm of BMOHK(Rn).

Proposition 4.17. VMO(Rn) ⊂ VMOHK(Rn).

Proof. If ξ ∈ VMO(Rn), then there is a sequence (ξ j) in BMO(Rn), such that ||ξ j − ξ||BMO → 0. The fact (ξ j) in
BMOHK(Rn), gives ||ξ j − ξ||∗ → 0. Hence ξ ∈ VMOHK(Rn). Therefore the proof.

Theorem 4.18. The space VMOHK(Rn) is translation invariant.

Proof. Proof is alike as Theorem 4.8.
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Remark 4.19. The functions in VMOHK(Rn) are those with the additional property that their mean oscillations over
small cubes are small. Here in this paper we introduce VMOHK(Rn) for the purpose to to investigate this space is
translation invariant like BMOHK(Rn). Under the assumption ξ is a Borel measurable function of C to itself.

We can introduce the more general form of Fominykh-Chevalier Theorem as follows:

Theorem 4.20. The following are equivalent:

(a) sup
x,y∈C

(1 + |x − y|)−1
|ξ(x) − ξ(y)| < ∞.

(b) Tξ[VMOHK(Rn)] ⊆ VMOHK(Rn), where Tξ maps bounded subset of VMOHK(Rn) to bounded subset of
VMOHK(Rn).

Interested researcher can extend the result of Brezis and Nirenberg with the space VMOHK(Rn). In our
next work we will investigate Degree Theory and VMOHK with compact manifolds without boundaries.
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