Filomat 37:7 (2023), 2013–2026 https://doi.org/10.2298/FIL2307013D

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On a class of unitary operators on weighted Bergman spaces

Namita Das^a, Swarupa Roy^a

^a P. G. Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar- 751004, Odisha, India

Abstract. In this paper we consider a class of weighted composition operators defined on the weighted Bergman spaces $L_a^2(dA_\alpha)$ where \mathbb{D} is the open unit disk in \mathbb{C} and $dA_\alpha(z) = (\alpha + 1)(1 - |z|^2)^\alpha dA(z)$, $\alpha > -1$ and dA(z) is the area measure on \mathbb{D} . These operators are also self-adjoint and unitary. We establish here that a bounded linear operator S from $L_a^2(dA_\alpha)$ into itself commutes with all the composition operators $C_a^{(\alpha)}$, $a \in \mathbb{D}$, if and only if $B_\alpha S$ satisfies certain averaging condition. Here $B_\alpha S$ denotes the generalized Berezin transform of the bounded linear operator S from $L_a^2(dA_\alpha)$ into itself, $C_a^{(\alpha)} f = (f \circ \phi_a)$, $f \in L_a^2(dA_\alpha)$ and $\phi \in Aut(\mathbb{D})$. Applications of the result are also discussed. Further, we have shown that if \mathcal{M} is a subspace of $L^{\infty}(\mathbb{D})$ and if for $\phi \in \mathcal{M}$, the Toeplitz operator $T_{\phi}^{(\alpha)}$ represents a multiplication operator on a closed subspace $S \subset L_a^2(dA_\alpha)$, then ϕ is bounded analytic on \mathbb{D} . Similarly if $q \in L^{\infty}(\mathbb{D})$ and \mathcal{B}_n is a finite Blaschke product and $M_q^{(\alpha)}$ (Range $C_{g_n}^{(\alpha)}$) $\subset L_a^2(dA_\alpha)$) then $q \in H^{\infty}(\mathbb{D})$. Further, we have shown that if $\psi \in Aut(\mathbb{D})$, then $\mathcal{N} = \left\{q \in L_a^2(dA_\alpha) : M_q^{(\alpha)}$ (Range $C_{\psi}^{(\alpha)}$) $\subset L_a^2(dA_\alpha) \right\} = H^{\infty}(\mathbb{D})$ if and only if ψ is a finite Blaschke product. Here $M_{\phi}^{(\alpha)}$, $T_{\phi}^{(\alpha)}$, $C_{\phi}^{(\alpha)}$ denote the multiplication operator, the Toeplitz operator and the composition operator defined on $L_a^2(dA_\alpha)$ with symbol ϕ respectively.

1. Introduction

Let $H(\mathbb{D})$ denote the collection of all holomorphic functions on the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ in the complex plane \mathbb{C} . Let $H^2(\mathbb{D})$ be the Hardy space of \mathbb{D} consisting of those functions in $H(\mathbb{D})$ whose Maclaurin coefficients are square summable. The space $H^2(\mathbb{D})$ is a Hilbert space [12], [24]. Let ϕ denotes an analytic self-map of \mathbb{D} . Then ϕ induces a bounded [24] composition operator on $H^2(\mathbb{D})$ defined by $C_{\phi}f = f \circ \phi$. Bourdon and Narayan [5] studied the algebraic properties of the weighted composition operator (induced by ϕ with weight function ψ) $W_{\phi,\psi}$ on $H^2(\mathbb{D})$ defined by $W_{\phi,\psi}f = (f \circ \phi)\psi$ which result from composition with ϕ and then multiplying by a weight function $\psi \in H(\mathbb{D})$. Such weighted composition operators are bounded on $H^2(\mathbb{D})$ when ψ is bounded on \mathbb{D} . But the boundedness of ψ on \mathbb{D} is not necessary for $W_{\phi,\psi}$ to be bounded [5]. In this work, we consider a class of weighted composition operator $U_a^{\alpha}, a \in \mathbb{D}$ defined on the weighted Bergman space $L_a^2(dA_{\alpha})$ as $U_a^{\alpha}f = (f \circ \phi_a)k_a^{1+\frac{\alpha}{2}}$, $\alpha > -1$. These operators are selfadjoint, involutive unitary operators. We look at the action of these unitary weighted composition operators $U_a^{\alpha}, a \in \mathbb{D}$ on some bounded linear operator *S* defined on $L_a^2(dA_{\alpha})$. Such studies on the Segal-Bergman space

²⁰²⁰ Mathematics Subject Classification. Primary 47B38; Secondary 47B32

Keywords. Weighted Bergman spaces, reproducing kernel, Toeplitz operator, little Hankel operator, weighted composition operator Received: 21 February 2022; Revised: 23 July 2022; Accepted: 05 September 2022

Communicated by Dragan S. Djordjević

Email addresses: namitadas440@yahoo.co.in (Namita Das), swarupa.roy@gmail.com (Swarupa Roy)

(Fock space), Bergman space of the disk, on the Bergman space of the right half plane were carried out in [4], [13], [11], [23] and [18]. Applications of these results can be found in [4]. We have extended the results to weighted Bergman spaces $L_a^2(dA_\alpha)$, $\alpha > -1$. We then considered the weighted composition operator $W_{\psi,q} = M_q^{(\alpha)}C_{\psi}^{(\alpha)}$ on $L_a^2(dA_\alpha)$ where $\psi \in Aut(\mathbb{D})$ and $q \in L_a^2(dA_\alpha)$. We showed that if $W_{\psi,q}L_a^2(dA_\alpha) \subset L_a^2(dA_\alpha)$ then $q \in H^{\infty}(\mathbb{D})$ if and only if ψ is a finite Blaschke product.

Let $dA(z) = \frac{1}{\pi} dxdy$ denotes the normalized area measure defined on \mathbb{D} . Let the Hilbert space $L^2(\mathbb{D}, dA_\alpha)$, $\alpha > -1$ be the space of all Lebesgue measurable functions on \mathbb{D} that are absolutely square-integrable with respect to the measure $dA_\alpha(z) = (\alpha + 1)(1 - |z|^2)^\alpha dA(z)$, $z \in \mathbb{D}$. The weighted Bergman space $L^2_a(dA_\alpha)$ is the subspace of all analytic functions of $L^2(\mathbb{D}, dA_\alpha)$. The spaces $L^2_a(dA_\alpha)$ are closed subspaces. For $\alpha = 0$, we shall denote $L^2_a(dA_0) = L^2_a(\mathbb{D})$ as the unweighted Bergman space of \mathbb{D} whose reproducing kernel is given by $K(z, w) = \frac{1-|z|^2}{(1-x\overline{w})^2}$. Assume $K_z(w) = \overline{K(z,w)}$. The reproducing kernel of $L^2_a(dA_\alpha)$ is given by $K^{(\alpha)}(z,w) = [K(z,w)]^{1+\frac{\alpha}{2}} = \frac{1}{(1-z\overline{w})^{\alpha+2}}$ for $z, w \in \mathbb{D}$. Let $K^{(\alpha)}_z(w) = [K_z(w)]^{1+\frac{\alpha}{2}} = \overline{K^{(\alpha)}(z,w)}$. If $\langle \cdot, \cdot \rangle_\alpha$ denotes the inner product in $L^2(dA_\alpha) = L^2(\mathbb{D}, dA_\alpha)$, then $\langle h, K^{(\alpha)}_z \rangle_\alpha = h(z)$, for every $h \in L^2_a(dA_\alpha)$ and $z \in \mathbb{D}$. The orthogonal projection P_α from the Hilbert space $L^2(\mathbb{D}, dA_\alpha)$ onto the closed subspace $L^2_a(dA_\alpha)$ is given by $(P_\alpha f)(z) = \langle f, K^{(\alpha)}_z \rangle_\alpha = \int_{\mathbb{D}} f(w) \frac{1}{(1-\overline{zw})^{\alpha+2}} dA_\alpha(z)$ for $f \in L^2(\mathbb{D}, dA_\alpha)$ and $z \in \mathbb{D}$. The normalized reproducing kernels of $L^2_a(dA_\alpha)$ are the functions $k^{1+\frac{\alpha}{2}}_z(w) = \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}}{(1-\overline{zw})^{2+\alpha}}$. The sequence of functions $\{e_n^{(\alpha)}\} = \{\frac{z^n}{\gamma_{n\alpha}}\}$ form as an

orthonormal basis [24] for $L^2_a(dA_\alpha)$ where

$$\gamma_{n,\alpha}^2 = ||z^n||^2 = (\alpha+1) \int_{\mathbb{D}} |z|^{2n} (1-|z|^2)^{\alpha} dA(z) = \frac{\Gamma(n+1)\Gamma(\alpha+1)}{\Gamma(n+\alpha+2)} \sim (n+1)^{-\alpha-1}.$$

Henceforth we shall suppress the subscript α while writing the inner product and assume $\langle \cdot, \cdot \rangle_{\alpha} = \langle \cdot, \cdot \rangle$ for simplicity of notations. Let $L^{\infty}(\mathbb{D})$ be the space of all essentially bounded Lebesgue measurable functions on \mathbb{D} . The space $L^{\infty}(\mathbb{D})$ is a Banach space with the norm given by $||f||_{\infty} = ess \sup_{z \in \mathbb{D}} \{|f(z)|\}, f \in L^{\infty}(\mathbb{D})$. Let $H^{\infty}(\mathbb{D})$ be the space of all bounded analytic functions on \mathbb{D} and $h^{\infty}(\mathbb{D})$ be the space of all bounded harmonic functions on \mathbb{D} . A finite Blaschke product \mathcal{B}_n is a function of the form

$$\mathcal{B}_n(z) = z^m \prod_{k=1}^n \frac{\overline{\alpha_k}}{\alpha_k} \frac{\alpha_k - z}{1 - \overline{\alpha_k} z} \tag{1}$$

where $\alpha_k \neq 0$ and $|\alpha_k| < 1$, k = 1, 2, ..., n.

For $\phi \in L^{\infty}(\mathbb{D})$, we define the Toeplitz operator on the weighted Bergman space $L^2_a(dA_\alpha)$ with symbol ϕ by $T^{(\alpha)}_{\phi}f = P_{\alpha}(\phi f)$, $f \in L^2_a(dA_\alpha)$. We have $||T^{(\alpha)}_{\phi}|| \leq ||\phi||_{\infty}$ since the projection P_{α} has [24] norm 1. In fact, $\left(T^{(\alpha)}_{\phi}f\right)(w) = \int_{\mathbb{D}} \frac{\phi(z)f(z)}{(1-\overline{z}w)^{\alpha+2}} dA_{\alpha}(z)$ for $f \in L^2_a(dA_\alpha)$ and $w \in \mathbb{D}$. A Toeplitz operator $T^{(\alpha)}_{\phi}$ is an analytic (co-analytic) Toeplitz operator if the symbol ϕ belongs to $H^{\infty}(\mathbb{D})$ ($\overline{H^{\infty}(\mathbb{D})}$).

For $\phi \in L^{\infty}(\mathbb{D})$, the generalized Berezin transform of ϕ is defined by $(B_{\alpha}\phi)(z) = \left\langle T_{\phi}^{(\alpha)}k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle = \int_{\mathbb{D}} \phi(w)|k_{z}(w)|^{2+\alpha}dA_{\alpha}(w), \ z \in \mathbb{D}.$ For $\phi \in L^{\infty}(\mathbb{D})$, we define the big Hankel operator with symbol ϕ from the space $L_{a}^{2}(dA_{\alpha})$ onto its orthogonal complement $\left(L_{a}^{2}(dA_{\alpha})\right)^{\perp}$ by $H_{\phi}^{(\alpha)}f = (I - P_{\alpha})(\phi f), \ f \in L_{a}^{2}(dA_{\alpha})$. We have $||H_{\phi}^{(\alpha)}|| \leq ||\phi||_{\infty}$. Let $\overline{L_{a}^{2}(dA_{\alpha})} = \{\overline{f}: f \in L_{a}^{2}(dA_{\alpha})\}$. The space $\overline{L_{a}^{2}(dA_{\alpha})}$ is a closed subspace of $L^{2}(\mathbb{D}, dA_{\alpha})$. The little Hankel operator $h_{\phi}^{(\alpha)}$ with symbol ϕ is defined by $h_{\phi}^{(\alpha)}f = \overline{P_{\alpha}}(\phi f), \ f \in L_{a}^{2}(dA_{\alpha})$ where $\overline{P_{\alpha}}$ is the orthogonal projection from the Hilbert space $L^{2}(\mathbb{D}, dA_{\alpha})$ onto $\overline{L_{a}^{2}(dA_{\alpha})}$. Clearly, $||h_{\phi}^{(\alpha)}|| \leq ||\phi||_{\infty}$ as $||\overline{P_{\alpha}}|| \leq 1$.

Define J_{α} from $L^{2}(\mathbb{D}, dA_{\alpha})$ into itself by $(J_{\alpha}f)(z) = f(\overline{z}), z \in \mathbb{D}$. The operator J_{α} is a unitary operator. For $\phi \in L^{\infty}(\mathbb{D})$, define $S_{\phi}^{(\alpha)}$ from $L_{a}^{2}(dA_{\alpha})$ into itself by $S_{\phi}^{(\alpha)}f = P_{\alpha}J_{\alpha}(\phi f)$. The operator $S_{\phi}^{(\alpha)}$ is a linear operator and $\|S_{\phi}^{(\alpha)}\| \leq \|\phi\|_{\infty}$. It is not difficult to verify that $h_{\phi}^{(\alpha)} = J_{\alpha}S_{\phi}^{(\alpha)}$. Thus we shall refer in the sequel, both the operators $h_{\phi}^{(\alpha)}$ as little Hankel operators on $L_{a}^{2}(dA_{\alpha})$.

operators $h_{\phi}^{(\alpha)}$ and $S_{\phi}^{(\alpha)}$ as little Hankel operators on $L_a^2(dA_{\alpha})$. Suppose ϕ is an analytic function from \mathbb{D} into itself. If $\phi \in H^{\infty}(\mathbb{D})$, $f \in L_a^2(dA_{\alpha})$, the composition operator $C_{\phi}^{(\alpha)}$ on $L_a^2(dA_{\alpha})$ is defined by $(C_{\phi}^{(\alpha)}f)(z) = f(\phi(z))$ for all $z \in \mathbb{D}$. For a bounded analytic function ϕ on \mathbb{D} , the multiplication operator $M_{\phi}^{(\alpha)}$ on the space $L^2(\mathbb{D}, dA_{\alpha})$ is defined by $M_{\phi}^{(\alpha)}f = \phi f$. Let $\mathcal{L}(H)$ be the space of all bounded linear operators from the Hilbert space H into itself. For $T \in \mathcal{L}(L_a^2(dA_{\alpha}))$, we define $(B_{\alpha}T)(z) = \langle Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \rangle$, $z \in \mathbb{D}$. Notice that $|(B_{\alpha}T)(z)| \leq ||T||$ as $||k_z^{1+\frac{\alpha}{2}}|| = 1$ for all $z \in \mathbb{D}$. The function $B_{\alpha}T$ is called the generalized transform of T and denote $B_{\alpha}T_{\phi} = B_{\alpha}\phi$. In particular, we shall refer B_0T as the Berezin transform of T and $B_0T_{\phi} = B_0\phi$, the Berezin transform of the function ϕ . For more details about Berezin transform see [13].

The organization of the paper is as follows: In section 2, we consider a class of weighted composition operators U_z^{α} defined on the weighted Bergman spaces $L_a^2(dA_{\alpha})$. We have shown that these operators are involutions and unitary. Some elementary properties of these operators are also derived. In section 3, we prove that a bounded linear operator *S* from $L_a^2(dA_{\alpha})$ into itself commutes with all the composition operators $C_a^{(\alpha)}$, $a \in \mathbb{D}$, if and only if $B_{\alpha}S$ satisfies certain averaging condition. In section 4, we show that if \mathcal{M} is a subspace of $L^{\infty}(\mathbb{D})$ and if for $\phi \in \mathcal{M}$, the Toeplitz operator $T_{\phi}^{(\alpha)}$ represents a multiplication operator on a closed subspace $S \subset L_a^2(dA_{\alpha})$, then ϕ is bounded analytic on \mathbb{D} . Similarly if $q \in L^{\infty}(\mathbb{D})$ and \mathcal{B}_n is a finite Blaschke product and $M_q^{(\alpha)} \left(Range C_{\mathcal{B}_n}^{(\alpha)}\right) \subset L_a^2(dA_{\alpha})$, then $q \in H^{\infty}(\mathbb{D})$. Further, we have shown that if $\psi \in Aut(\mathbb{D})$, then $\mathcal{N} = \left\{q \in L_a^2(dA_{\alpha}) : M_q^{(\alpha)} \left(Range C_{\psi}^{(\alpha)}\right) \subset L_a^2(dA_{\alpha})\right\} = H^{\infty}(\mathbb{D})$ if and only if ψ is a finite Blaschke product. In section 5, we discuss the future scope of the work.

2. Preliminaries

In this section we considered a class of weighted composition operators U_z^{α} defined on the weighted Bergman spaces $L_a^2(dA_{\alpha})$. We showed that these operators are involutions and unitary. We discussed many elementary properties of these operators which will be used in establishing the main result of the paper.

Let $Aut(\mathbb{D})$ be the Lie group of all automorphisms (biholomorphic mappings) of \mathbb{D} . We can define for each $a \in \mathbb{D}$, an automorphism ϕ_a in $Aut(\mathbb{D})$ such that,

(i) $(\phi_a \circ \phi_a)(z) \equiv z;$

(ii) $\phi_a(0) = a, \ \phi_a(a) = 0;$

(iii) ϕ_a has a unique fixed point in \mathbb{D} . In fact, $\phi_a(w) = \frac{a-w}{1-\overline{a}w}$, for all $a, w \in \mathbb{D}$. Given $z \in \mathbb{D}$, and h any measurable function on \mathbb{D} , we define

$$U_z^{\alpha}h = (h \circ \phi_z)k_z^{1+\frac{\alpha}{2}}$$

Using the identity $1 - \overline{\phi_z(w)}z = \frac{1-|z|^2}{1-\overline{w}z}$, we have $k_z^{1+\frac{\alpha}{2}}(\phi_z(w)) = \frac{1}{k_z^{1+\frac{\alpha}{2}}}$. Since $\phi_z \circ \phi_z(w) \equiv w$, we see that $(U_z^{\alpha}(U_z^{\alpha}h))(z) = h(z)$ for all $z \in \mathbb{D}$ and $h \in L_a^2(dA_{\alpha})$. For $a \in \mathbb{D}$, define $C_a^{(\alpha)} : L_a^2(dA_{\alpha}) \to L_a^2(dA_{\alpha})$ as $C_a^{(\alpha)}f = f \circ \phi_a$.

Lemma 2.1. The following hold:

(*i*) The operator U_w^{α} is unitary and is an involution.

(*ii*) For $z, w \in \mathbb{D}$, $U_z^{\alpha} k_w^{1+\frac{\alpha}{2}} = \lambda k_{\phi_z(w)}^{1+\frac{\alpha}{2}}$ for some constant $\lambda \in \mathbb{C}$ with $|\lambda| = 1$.

(*iii*) For all $w \in \mathbb{D}$, $U_w^{\alpha} k_w^{1+\frac{\alpha}{2}} = 1$.

(iv) For any $z, w \in \mathbb{D}$, there exists a unitary map $U \in G_0 = \{\psi \in Aut(\mathbb{D}) : \psi(0) = 0\}$ such that $\phi_w \circ \phi_z = U\phi_{\phi_z(w)}$. (v) If $S \in \mathcal{L}(L^2_a(dA_\alpha))$ is invertible and is an involution with polar decomposition $S = \mathcal{V}[S]$, then \mathcal{V} is an involution which is also self-adjoint. *Proof.* (i) Since $\phi_w \circ \phi_w(z) \equiv z$, we see that for $h \in L^2_a(dA_\alpha)$, $U^{\alpha}_w U^{\alpha}_w h = U^{\alpha}_w (h \circ \phi_w) k^{1+\frac{\alpha}{2}}_w = (h \circ \phi_w \circ \phi_w) (k^{1+\frac{\alpha}{2}}_w \circ \phi^{\alpha}_w) k^{1+\frac{\alpha}{2}}_w = h$. Thus $(U^{\alpha}_w)^2 = I$ for all $w \in \mathbb{D}$ and therefore $(U^{\alpha}_w)^{-1} = U^{\alpha}_w$ and U^{α}_w is unitary on $L^2_a(dA_\alpha)$. (ii) Let $z, w \in \mathbb{D}$ and $f \in L^2_a(dA_\alpha)$. Then

$$\left\langle f, U_z^{\alpha} K_w^{(\alpha)} \right\rangle = \left\langle U_z^{\alpha} f, K_w^{(\alpha)} \right\rangle = (U_z^{\alpha} f)(w) = (f \circ \phi_z)(w) k_z^{1+\frac{\alpha}{2}}(w) = \left\langle f, \overline{k_z^{1+\frac{\alpha}{2}}(w)} K_{\phi_z(w)}^{(\alpha)} \right\rangle$$

Thus $U_z^{\alpha} K_w^{(\alpha)} = \overline{k_z^{1+\frac{\alpha}{2}}(w)} K_{\phi_z(w)}^{(\alpha)}$. This implies

$$\begin{aligned} U_{z}^{\alpha}k_{w}^{1+\frac{\alpha}{2}} &= \frac{\overline{k_{z}^{1+\frac{\alpha}{2}}(w)}}{\|K_{w}^{(\alpha)}\|} \frac{K_{\phi_{z}(w)}^{(\alpha)}}{\|K_{\phi_{z}(w)}^{(\alpha)}\|} \cdot \left\|K_{\phi_{z}(w)}^{(\alpha)}\right\| = \frac{\overline{k_{z}^{1+\frac{\alpha}{2}}(w)}}{\|K_{w}^{(\alpha)}\|} k_{\phi_{z}(w)}^{1+\frac{\alpha}{2}} \left\|K_{\phi_{z}(w)}^{(\alpha)}\right\| \\ &= \frac{\overline{k_{z}^{1+\frac{\alpha}{2}}(w)}}{\|K_{w}^{(\alpha)}\|} \left\|U_{z}^{\alpha}K_{w}^{(\alpha)}\right\| k_{\phi_{z}(w)}^{1+\frac{\alpha}{2}} = \lambda k_{\phi_{z}(w)}^{1+\frac{\alpha}{2}} \end{aligned}$$

for some constant $\lambda \in \mathbb{C}$ with $|\lambda| = 1$. This is so, since U_z^{α} is unitary and $\left\|k_w^{1+\frac{\alpha}{2}}\right\|_2 = \left\|k_{\phi_z(w)}^{1+\frac{\alpha}{2}}\right\|_2 = 1$. (iii) Notice that $1 - \overline{\phi_w(z)}w = \frac{1-|w|^2}{1-\overline{z}w}$. Hence $k_w^{1+\frac{\alpha}{2}}\left(\phi_w(z)\right) = \frac{1}{k_w^{1+\frac{\alpha}{2}}(z)}$ for all $w \in \mathbb{D}$ and $z \in \mathbb{D}$. (iv) Let $U = \phi_w \circ \phi_z \circ \phi_{\phi_z(w)}$, then $U(0) = \phi_w \circ \phi_z\left(\phi_z(w)\right) = \phi_w(w) = 0$; thus $U \in G_0$ is unitary. (v) We know that $R, T \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$ and RT = TR then $\sqrt{R}\sqrt{T} = \sqrt{T}\sqrt{R}$. Hence $(S^*S)(SS^*) = (SS^*)(S^*S)$ implies that $|S||S^*| = |S^*||S|$. Thus, it follows that

$$(|S^*||S|)^2 = |S^*|^2|S|^2 = (SS^*)(S^*S) = I.$$

Now since the product of two commuting positive operators will be positive, we obtain from the [12] uniqueness of the square root of a positive operator that $|S||S^*| = |S^*||S| = I$. Further, $S^*(S^*S) = (SS^*)S^*$ implies $S^*|S| = |S^*|S^*$. Now since $\mathcal{V} = S^*|S|$, we obtain $\mathcal{V}^2 = (|S^*|S^*) (S^*|S|) = |S^*||S| = I$. Since \mathcal{V} is unitary and $\mathcal{V}^2 = I$, we have $\mathcal{V}^* = \mathcal{V}$ and \mathcal{V} is self-adjoint. \Box

The operators U_w^{α} satisfy the following intertwining properties with Toeplitz, multiplication, Hankel and little Hankel operators defined on $L_a^2(dA_{\alpha})$.

Lemma 2.2. The following is valid for $\phi \in L^{\infty}(\mathbb{D})$: (i) $U_w^{\alpha} T_{\phi}^{(\alpha)} U_w^{\alpha} = T_{\phi \circ \phi_w}^{(\alpha)}$. (ii) $U_w^{\alpha} H_{\phi}^{(\alpha)} U_w^{\alpha} = H_{\phi \circ \phi_w}^{(\alpha)}$. (iii) $U_w^{\alpha} M_{\phi}^{(\alpha)} U_w^{\alpha} = M_{\phi \circ \phi_w}^{(\alpha)}$. (iv) $U_w^{\alpha} h_{\phi}^{(\alpha)} U_w^{\alpha} = h_{\phi \circ \phi_w}^{(\alpha)}$.

Proof. Notice that $U_w^{\alpha}(L_a^2(dA_{\alpha})) \subset L_a^2(dA_{\alpha})$ and $U_w^{\alpha}((L_a^2(dA_{\alpha}))^{\perp}) \subset (L_a^2(dA_{\alpha}))^{\perp}$. Hence $P_{\alpha}U_w^{\alpha} = U_w^{\alpha}P_{\alpha}$. Now let $f \in L_a^2(dA_{\alpha})$. Then from Lemma 2.1, it follows that

$$\begin{aligned} U_w^{\alpha} T_{\phi}^{(\alpha)} U_w^{\alpha} f &= U_w^{\alpha} T_{\phi}^{(\alpha)} \left((f \circ \phi_w) k_w^{1+\frac{\alpha}{2}} \right) = U_w^{\alpha} P_\alpha \left(\phi(f \circ \phi_w) k_w^{1+\frac{\alpha}{2}} \right) = P_\alpha U_w^{\alpha} \left(\phi(f \circ \phi_w) k_w^{1+\frac{\alpha}{2}} \right) \\ &= P_\alpha \left((\phi \circ \phi_w) (f \circ \phi_w \circ \phi_w) \left(k_w^{1+\frac{\alpha}{2}} \circ \phi_w \right) k_w^{1+\frac{\alpha}{2}} \right) = P_\alpha \left((\phi \circ \phi_w) f \right) = T_{\phi \circ \phi_w}^{(\alpha)} f. \end{aligned}$$

Hence (*i*) follows. Again let $f \in L^2_a(dA_\alpha)$. Then from Lemma 2.1, it follows that

$$\begin{aligned} U_{w}^{\alpha}H_{\phi}^{(\alpha)}U_{w}^{\alpha}f &= U_{w}^{\alpha}H_{\phi}^{(\alpha)}\left[(f\circ\phi_{w})k_{w}^{1+\frac{\alpha}{2}}\right] = U_{w}^{\alpha}\left[(I-P_{\alpha})\left(\phi(f\circ\phi_{w})k_{w}^{1+\frac{\alpha}{2}}\right)\right] \\ &= (I-P_{\alpha})U_{w}^{\alpha}\left[\phi(f\circ\phi_{w})k_{w}^{1+\frac{\alpha}{2}}\right] = (I-P_{\alpha})\left[(\phi\circ\phi_{w})(f\circ\phi_{w}\circ\phi_{w})\left(k_{w}^{1+\frac{\alpha}{2}}\circ\phi_{w}\right)k_{w}^{1+\frac{\alpha}{2}}\right] \\ &= (I-P_{\alpha})\left[(\phi\circ\phi_{w})f\right] = H_{\phi\circ\phi_{w}}^{(\alpha)}f.\end{aligned}$$

Thus (*ii*) follows. The proof of (*iii*) and (*iv*) are similar. \Box

Lemma 2.3. Fix $\alpha > -1$. If $S, T \in \mathcal{L}(L^2_a(dA_\alpha))$ and $(B_\alpha S)(z) = (B_\alpha T)(z)$ for all $z \in \mathbb{D}$, then S = T.

Proof. Assume $\langle (S-T)k_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \rangle = 0$ for all $z \in \mathbb{D}$. Then $\langle (S-T)K_z^{(\alpha)}, K_z^{(\alpha)} \rangle = K^{(\alpha)}(z, z) \langle (S-T)k_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \rangle = K^{(\alpha)}(z, z) \cdot 0 = 0$. Let A = S - T and define $G(x, y) = \langle AK_{\overline{x}}^{(\alpha)}, K_y^{(\alpha)} \rangle$. The function G is holomorphic in x and y and G(x, y) = 0 if $x = \overline{y}$. It can now be verified that such functions must vanish identically. Let x = u + iv, y = u - iv. Let F(u, v) = G(x, y). The function F is holomorphic and vanishes if u and v are real. Hence $G(x, y) = F(u, v) \equiv 0$. Thus even $\langle AK_x^{(\alpha)}, K_y^{(\alpha)} \rangle = 0$ for any $x, y \in \mathbb{D}$. Since the linear combinations of $K_x^{(\alpha)}, x \in \mathbb{D}$, are dense in $L_a^2(dA_\alpha)$, it follows that A = 0. That is, S = T. \Box

Lemma 2.4. If $f \in L^1_a(\mathbb{D}, dA_\alpha)$, then $f(z) = \int_{\mathbb{D}} f(w) K^{(\alpha)}(z, w) dA_\alpha(w)$ for all $z \in \mathbb{D}$ and $\|K^{(\alpha)}(\cdot, w)\|_2 \approx \frac{1}{(1 - |w|^2)^{1 + \frac{\alpha}{2}}}.$

Proof. It follows from [24] that

$$\begin{split} \|K^{(\alpha)}(\cdot,w)\|_{2} &= \left(\int_{\mathbb{D}} \left|K^{(\alpha)}(z,w)\right|^{2} dA_{\alpha}(z)\right)^{\frac{1}{2}} = \left(\int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\alpha}}{\left|1-\overline{w}z\right|^{2(\alpha+2)}} dA(z)\right)^{\frac{1}{2}} (\alpha+1)^{\frac{1}{2}} \\ &\approx \left(\frac{1}{\left(1-|w|^{2}\right)^{\alpha+2}}\right)^{\frac{1}{2}} = \frac{1}{\left(1-|w|^{2}\right)^{1+\frac{\alpha}{2}}} \,. \end{split}$$

For any $f \in L^2(\mathbb{D}, dA_\alpha)$, we define a function $B_\alpha f$ on \mathbb{D} by

$$(B_{\alpha}f)(z) = \int_{\mathbb{D}} f(\phi_z(w)) dA_{\alpha}(w) = \int_{\mathbb{D}} f(w) \left| k_z^{1+\frac{\alpha}{2}}(w) \right|^2 dA_{\alpha}(w).$$

From [1],[24] it follows that there exists a constant *C* such that $\frac{|K^{(\alpha)}(z,w)|}{|K^{(\alpha)}(z,z)|} = \frac{1}{|K^{(\alpha)}(z,\phi_z(w))|} \leq C$, for all *z* and *w* in **D**. It thus follows that $|B_{\alpha}f(z)| \leq C \int_{\mathbb{D}} |f(w)| |K^{(\alpha)}(z,w)| dA_{\alpha}(w)$. This implies that the transform B_{α} is a bounded linear operator on $L^2(\mathbb{D}, dA_{\alpha})$.

3. Main results

In this section, we proved that a bounded linear operator *S* from $L^2_a(dA_\alpha)$ into itself commutes with all the composition operators $C_a^{(\alpha)}$, $a \in \mathbb{D}$, if and only if $B_\alpha S$ satisfies certain averaging condition. That is, if and only if $\widehat{S} = S$ where $\widehat{S} = \int_{\mathbb{D}} U_a^\alpha S U_a^\alpha dA_\alpha(a)$. Since the mapping $a \mapsto U_a^{(\alpha)}$ is strong operator

continuous, we can define for each bounded linear operator S on $L^2_a(dA_\alpha)$, a bounded linear operator \widehat{S} (an averaging operation) on the space by $\widehat{S} = \int_{\mathbb{D}} U^{\alpha}_a S U^{\alpha}_a dA_{\alpha}(a)$ where the integral is taken in the sense that $\left(\left(\int_{\mathbb{D}} U^{\alpha}_a S U^{\alpha}_a dA_{\alpha}(a)\right)f,g\right) = \int_{\mathbb{D}} \langle U^{\alpha}_a S U^{\alpha}_a f,g \rangle dA_{\alpha}(a)$. Notice that the integrand of $\int_{\mathbb{D}} U^{\alpha}_a S U^{\alpha}_a dA_{\alpha}(a)$ is strongly continuous in *a* and uniformly bounded for each fixed *S*. For a discussion of such integrals see [6] and [7]. The idea of averaging an operator against some unitary operators were considered by many authors [4], [14]. We will also present some applications of Theorem 3.1 in form of corollaries at the end of this section.

Theorem 3.1. A bounded linear operator $S \in \mathcal{L}(L^2_a(dA_\alpha))$ commutes with all the composition operators $C^{(\alpha)}_a$, $a \in \mathbb{D}$, *if and only if*

$$(B_{\alpha}S)(z) = \int_{\mathbb{D}} (B_{\alpha}S)(\phi_a(z)) dA_{\alpha}(a)$$

for all $z \in \mathbb{D}$.

Proof. Suppose $(B_{\alpha}S)(z) = \int_{\mathbb{D}} (B_{\alpha}S)(\phi_a(z)) dA_{\alpha}(a)$ for all $z \in \mathbb{D}$. Then by Lemma 2.1, there exists a constant λ with $|\lambda| = 1$ such that for all $z \in \mathbb{D}$,

$$(B_{\alpha}S)(z) = \left\langle Sk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle = \int_{\mathbb{D}} (B_{\alpha}S)(\phi_{a}(z)) dA_{\alpha}(a) = \int_{\mathbb{D}} \left\langle Sk_{\phi_{a}(z)}^{1+\frac{\alpha}{2}}, k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}} \right\rangle dA_{\alpha}(a)$$
$$= \int_{\mathbb{D}} \left\langle \lambda SU_{a}^{\alpha}k_{z}^{1+\frac{\alpha}{2}}, \lambda U_{a}^{\alpha}k_{z}^{1+\frac{\alpha}{2}} \right\rangle dA_{\alpha}(a) = \int_{\mathbb{D}} \left\langle U_{a}^{\alpha}SU_{a}^{\alpha}k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle dA_{\alpha}(a)$$
$$= \left\langle \left(\int_{\mathbb{D}} U_{a}^{\alpha}SU_{a}^{\alpha}dA_{\alpha}(a) \right) k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle = \left\langle \widehat{Sk}_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle$$
$$= \left(B_{\alpha}\widehat{S} \right)(z)$$

where $\widehat{S} = \int_{\mathbb{D}} U_a^{\alpha} S U_a^{\alpha} dA_{\alpha}(a)$. Thus by Lemma 2.3, $S = \widehat{S}$. Hence for all $f, g \in L_a^2(dA_{\alpha}), \langle Sf, g \rangle = \langle \widehat{S}f, g \rangle$. That is,

$$\int_{\mathbb{D}} (Sf)(z)\overline{g(z)}dA_{\alpha}(z) = \int_{\mathbb{D}} \langle SU_{a}^{\alpha}f, U_{a}^{\alpha}g \rangle dA_{\alpha}(a).$$
⁽²⁾

The boundedness of *S* and the antianalyticity of $K^{(\alpha)}(z, a)$ in *a* imply that for each $z \in \mathbb{D}$, the function, $S\left(\frac{f}{K^{(\alpha)}(z,a)}\right)(z)K^{(\alpha)}(z,a)$ is antianalytic in *a*. Therefore, by the mean value property of harmonic functions, we have [19]

$$\int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot,a)}\right)(z)K^{(\alpha)}(z,a)dA_{\alpha}(a) = S\left(\frac{f}{K^{(\alpha)}(\cdot,0)}\right)K^{(\alpha)}(z,0) = Sf(z).$$
(3)

Thus, from (3), it follows that

$$\langle Sf,g\rangle = \int_{\mathbb{D}} \overline{g(z)} \int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot,a)}\right)(z) K^{(\alpha)}(z,a) dA_{\alpha}(a) dA_{\alpha}(z)$$

Using Fubini's theorem [22], we get $\langle Sf,g \rangle = \int_{\mathbb{D}} \int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot,a)}\right)(z)\overline{g(z)}K^{(\alpha)}(z,a)dA_{\alpha}(z)dA_{\alpha}(a)$. Now since $k_a^{1+\frac{\alpha}{2}}(z) = \frac{K^{(\alpha)}(z,a)}{\sqrt{K^{(\alpha)}(a,a)}}$ and $\left(k_a^{1+\frac{\alpha}{2}} \circ \phi_a\right)(z)k_a^{1+\frac{\alpha}{2}}(z) = 1$ for all $a, z \in \mathbb{D}$, we obtain $\langle Sf,g \rangle = \int_{\mathbb{D}} \int_{\mathbb{D}} S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right)(z)\overline{g(z)}k_a^{1+\frac{\alpha}{2}}(z)dA_{\alpha}(z)dA_{\alpha}(a)$ $= \int_{\mathbb{D}} \int_{\mathbb{D}} S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right)(z)\overline{g(z)}\overline{k_a^{1+\frac{\alpha}{2}}(\phi_a(z))}\left|k_a^{1+\frac{\alpha}{2}}(z)\right|^2 dA_{\alpha}(z)dA_{\alpha}(a).$ Finally, as $(\phi_a \circ \phi_a)(z) \equiv z$ and $J_{\phi_a(z)} = \frac{(1-|a|^2)^2}{(1-\bar{a}z)^4}$, we obtain using Lemma 2.1 that

$$\langle Sf,g\rangle = \int_{\mathbb{D}} \int_{\mathbb{D}} S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right) (\phi_a(z)) \overline{k_a^{1+\frac{\alpha}{2}}(z)} \overline{g(\phi_a(z))} dA_\alpha(z) dA_\alpha(a)$$

By our hypothesis, and using (3) we have $\langle Sf, g \rangle = \int_{\mathbb{D}} \langle SU_a^{\alpha} f, U_a^{\alpha} g \rangle dA_{\alpha}(a)$. Using Lemma 2.1, we obtain

$$\begin{split} \langle SU_a^{\alpha}f, U_a^{\alpha}g \rangle &= \left\langle S\left(\frac{f \circ \phi_a}{k_a^{1+\frac{\alpha}{2}} \circ \phi_a}\right), (g \circ \phi_a)k_a^{1+\frac{\alpha}{2}}\right\rangle \\ &= \left\langle S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}} \circ \phi_a\right), (g \circ \phi_a)k_a^{1+\frac{\alpha}{2}}\right\rangle \\ &= \int_{\mathbb{D}} S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}} \circ \phi_a\right)(z)\overline{g(\phi_a(z))}\overline{k_a^{1+\frac{\alpha}{2}}(z)}dA_{\alpha}(z). \end{split}$$

Thus we obtain for all $f, g \in L^2_a(dA_\alpha)$,

$$\int_{\mathbb{D}} S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}} \circ \phi_a\right)(z)\overline{g(\phi_a(z))}k_a^{1+\frac{\alpha}{2}}(z)dA_\alpha(z) = \int_{\mathbb{D}} S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right)(\phi_a(z))\overline{k_a^{1+\frac{\alpha}{2}}(z)}\overline{g(\phi_a(z))}dA_\alpha(z).$$

Hence for all $f, g \in L^2_a(dA_\alpha)$, $a \in \mathbb{D}$, we have

$$\left\langle S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\circ\phi_a\right), U_a^{\alpha}g\right\rangle = \left\langle S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right)\circ\phi_a, U_a^{\alpha}g\right\rangle.$$

Since $U_a^{\alpha} \in \mathcal{L}(L_a^2(dA_{\alpha}))$ is unitary, we obtain $S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}} \circ \phi_a\right) = S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right) \circ \phi_a$ for all $f \in L_a^2(dA_{\alpha})$ and $a \in \mathbb{D}$. Thus $SC_a^{(\alpha)}\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right) = C_a^{(\alpha)}S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right)$. Since $\left(k_a^{1+\frac{\alpha}{2}}\right)^{-1} \in H^{\infty}(\mathbb{D})$, hence $SC_a^{(\alpha)} = C_a^{(\alpha)}S$ for all $a \in \mathbb{D}$. Now to prove the converse, assume that $C_a^{(\alpha)}S = SC_a^{(\alpha)}$ for all $a \in \mathbb{D}$. That is, for all $f \in L_a^2(dA_{\alpha})$, $a \in \mathbb{D}$, we have $(Sf) \circ \phi_a = S(f \circ \phi_a)$. Hence by Lemma 2.1, we obtain for all $f \in L_a^2(dA_{\alpha})$,

$$SU_a^{\alpha}f = S\left((f \circ \phi_a)k_a^{1+\frac{\alpha}{2}}\right) = S\left(\frac{f \circ \phi_a}{k_a^{1+\frac{\alpha}{2}} \circ \phi_a}\right) = S\left(\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right) \circ \phi_a\right) = S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right) \circ \phi_a$$

Now since $k_a^{1+\frac{\alpha}{2}}(z) = \frac{K^{(\alpha)}(z,a)}{\sqrt{K^{(\alpha)}(a,a)}}$ for all $a, z \in \mathbb{D}$ and by using Lemma 2.1, we get for all $f, g \in L^2_a(dA_\alpha)$,

$$\begin{split} \langle SU_a^{\alpha}f, U_a^{\alpha}g \rangle &= \int_{\mathbb{D}} S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right) (\phi_a(z))\overline{(g \circ \phi_a)(z)} \overline{k_a^{1+\frac{\alpha}{2}}(z)} dA_{\alpha}(z) \\ &= \int_{\mathbb{D}} S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right) (z)\overline{g(z)} \overline{(k_a^{1+\frac{\alpha}{2}} \circ \phi_a)(z)} \left|k_a^{1+\frac{\alpha}{2}}(z)\right|^2 dA_{\alpha}(z) \\ &= \int_{\mathbb{D}} S\left(\frac{f}{k_a^{1+\frac{\alpha}{2}}}\right) (z)\overline{g(z)} \overline{k_a^{1+\frac{\alpha}{2}}} dA_{\alpha}(z) \\ &= \int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot,a)}\right) (z)\overline{g(z)} K^{(\alpha)}(z,a) dA_{\alpha}(z). \end{split}$$

By using Fubini's theorem, we obtain

$$\begin{split} \int_{\mathbb{D}} \langle SU_a^{\alpha} f, U_a^{\alpha} g \rangle dA_{\alpha}(a) &= \int_{\mathbb{D}} \int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot, a)}\right)(z) \overline{g(z)} K^{(\alpha)}(z, a) dA_{\alpha}(z) dA_{\alpha}(a) \\ &= \int_{\mathbb{D}} \overline{g(z)} dA_{\alpha}(z) \int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot, a)}\right)(z) K^{(\alpha)}(z, a) dA_{\alpha}(a) \end{split}$$

In the first part of the proof, we have already checked that for all $z \in \mathbb{D}$, $\int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot,a)}\right)(z)K^{(\alpha)}(z,a)dA_{\alpha}(a) = S\left(\frac{f}{K^{(\alpha)}(\cdot,0)}\right)(z)K^{(\alpha)}(z,0) = Sf(z)$. Thus $\int_{\mathbb{D}} \langle SU_a^{\alpha}f, U_a^{\alpha}g \rangle dA_{\alpha}(a) = \int_{\mathbb{D}} Sf(z)\overline{g(z)}dA_{\alpha}(z) = \langle Sf,g \rangle$. Taking $f = g = k_z^{1+\frac{\alpha}{2}}, z \in \mathbb{D}$, we obtain by Lemma 2.1 that

$$(B_{\alpha}S)(z) = \left\langle Sk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle = \int_{\mathbb{D}} \left\langle SU_{a}^{\alpha}k_{z}^{1+\frac{\alpha}{2}}, U_{a}^{\alpha}k_{z}^{1+\frac{\alpha}{2}} \right\rangle dA_{\alpha}(a)$$
$$= \int_{\mathbb{D}} \left\langle Sk_{\phi_{a}(z)}^{1+\frac{\alpha}{2}}, k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}} \right\rangle dA_{\alpha}(a) = \int_{\mathbb{D}} (B_{\alpha}S)(\phi_{a}(z)) dA_{\alpha}(a).$$
(4)

This completes the proof. \Box

Example 3.2. The operator B_{α} defined on $L^2(\mathbb{D}, dA_{\alpha})$ commutes with the composition operators $C_a^{(\alpha)}, a \in \mathbb{D}$. To verify this, let $f \in L^2(\mathbb{D}, dA_{\alpha})$. By a change of variable,

$$(B_{\alpha}f)(\phi_{a}(z)) = \int_{\mathbb{D}} f(w) \left| k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}}(w) \right|^{2} dA_{\alpha}(w)$$

=
$$\int_{\mathbb{D}} f(\phi_{a}(w)) \left| k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}} \circ \phi_{a}(w) \right|^{2} \left| k_{a}^{1+\frac{\alpha}{2}}(w) \right|^{2} dA_{\alpha}(w).$$

Applying Lemma 2.1, we obtain an unitary U with $\phi_{\phi_a(z)} \circ \phi_a = U\phi_{\phi_a\circ\phi_a(z)} = U\phi_z$. Taking the real Jacobian determinants of the above equation, we obtain $\left|k_{\phi_a(z)}^{1+\frac{\alpha}{2}} \circ \phi_a(w)\right|^2 \left|k_a^{1+\frac{\alpha}{2}}(w)\right|^2 = \left|k_z^{1+\frac{\alpha}{2}}(w)\right|^2$ for all a, z and w in \mathbb{D} . Therefore,

$$(B_{\alpha}f)(\phi_a(z)) = \int_{\mathbb{D}} f(\phi_a(w)) \left| k_z^{1+\frac{\alpha}{2}}(w) \right|^2 dA_{\alpha}(w) = B_{\alpha}(f \circ \phi_a)(z).$$

This implies that $B_{\alpha}C_{a}^{(\alpha)} = C_{a}^{(\alpha)}B_{\alpha}$ on $L^{2,\alpha}(\mathbb{D})$ and hence $\widehat{B_{\alpha}} = B_{\alpha}$.

For $\phi \in L^{\infty}(\mathbb{D})$, define the functions

$$(D_{\alpha}\phi)(z) = \int_{\mathbb{D}} \phi(\phi_a(z)) dA_{\alpha}(a),$$

and

$$(B_\alpha\phi)(z)=\int_{\mathbb{D}}\phi(\phi_z(w))dA_\alpha(w)$$

Now we present some applications of our main result Theorem 3.1.

Corollary 3.3. If $\phi \in L^{\infty}(\mathbb{D})$, then there exists a constant δ of modulus 1 such that

$$\int_{\mathbb{D}}\int_{\mathbb{D}}\phi\left(\phi_{\phi_{a}(z)}(w)\right)dA_{\alpha}(w)dA_{\alpha}(a)=\int_{\mathbb{D}}\int_{\mathbb{D}}\phi\left(\delta\phi_{\phi_{z}(a)}(w)\right)dA_{\alpha}(a)dA_{\alpha}(w).$$

Proof. From (4) it follows that

$$\begin{split} \int_{\mathbb{D}} \left(B_{\alpha} T_{\phi}^{(\alpha)} \right) (\phi_{a}(z)) dA_{\alpha}(a) &= \int_{\mathbb{D}} \left\langle T_{\phi}^{(\alpha)} k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}} k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}} \right\rangle dA_{\alpha}(a) \\ &= \int_{\mathbb{D}} \left\langle \phi k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}} k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}} \right\rangle dA_{\alpha}(a) \\ &= \int_{\mathbb{D}} (B_{\alpha} \phi) (\phi_{a}(z)) dA_{\alpha}(a) \\ &= \int_{\mathbb{D}} \int_{\mathbb{D}} \phi \left(\phi_{\phi_{a}(z)}(w) \right) dA_{\alpha}(w) dA_{\alpha}(a). \end{split}$$

Let $f, g \in L^2_a(dA_\alpha)$. Then by Lemma 2.1 and Fubini's theorem, we obtain

$$\begin{split} \int_{\mathbb{D}} \left\langle U_{a}^{\alpha} T_{\phi}^{(\alpha)} U_{a}^{\alpha} f, g \right\rangle dA_{\alpha}(a) &= \int_{\mathbb{D}} dA_{\alpha}(a) \int_{\mathbb{D}} \phi(z) (f \circ \phi_{a})(z) k_{a}^{1+\frac{\alpha}{2}}(z) \overline{(g \circ \phi_{a})(z)} \overline{k_{a}^{1+\frac{\alpha}{2}}(z)} dA_{\alpha}(z) \\ &= \int_{\mathbb{D}} dA_{\alpha}(a) \int_{\mathbb{D}} \phi(\phi_{a}(w)) f(w) \overline{g(w)} \left| \left(k_{a}^{1+\frac{\alpha}{2}} \circ \phi_{a} \right)(w) \right|^{2} \left| k_{a}^{1+\frac{\alpha}{2}}(w) \right|^{2} dA_{\alpha}(w) \\ &= \int_{\mathbb{D}} dA_{\alpha}(a) \int_{\mathbb{D}} \phi(\phi_{a}(w)) f(w) \overline{g(w)} dA_{\alpha}(w) \\ &= \int_{\mathbb{D}} f(w) \overline{g(w)} dA_{\alpha}(w) \int_{\mathbb{D}} \phi(\phi_{a}(w)) dA_{\alpha}(a) \\ &= \int_{\mathbb{D}} (D_{\alpha}\phi)(w) f(w) \overline{g(w)} dA_{\alpha}(w). \end{split}$$

Thus
$$\int_{\mathbb{D}} \left(B_{\alpha} T_{\phi}^{(\alpha)} \right) (\phi_{a}(z)) dA_{\alpha}(a) = \int_{\mathbb{D}} \left\langle U_{a}^{\alpha} T_{\phi}^{(\alpha)} U_{a}^{\alpha} k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle dA_{\alpha}(a)$$
$$= \int_{\mathbb{D}} (D_{\alpha} \phi)(w) \left| k_{z}^{1+\frac{\alpha}{2}}(w) \right|^{2} dA_{\alpha}(w) = \int_{\mathbb{D}} (D_{\alpha} \phi)(\phi_{z}(w)) dA_{\alpha}(w)$$
$$= \int_{\mathbb{D}} \int_{\mathbb{D}} (\phi \circ \phi_{a} \circ \phi_{z})(w) dA_{\alpha}(a) dA_{\alpha}(w).$$

Hence by Theorem 3.1, we obtain

$$\int_{\mathbb{D}}\int_{\mathbb{D}}\phi\left(\phi_{\phi_a(z)}(w)\right)dA_{\alpha}(w)dA_{\alpha}(a) = \int_{\mathbb{D}}\int_{\mathbb{D}}\phi(\phi_a\circ\phi_z)(w)dA_{\alpha}(a)dA_{\alpha}(w)dA_{\alpha}($$

Let $U = \phi_a \circ \phi_z \circ \phi_{\phi_z(a)}$. Then $U \in Aut(\mathbb{D})$ and $U(0) = \phi_a \circ \phi_z(\phi_z(a)) = \phi_a(a) = 0$ and $U\phi_{\phi_z(a)} = \phi_a \circ \phi_z$. It is well known [9] that if $\phi \in Aut(\mathbb{D})$, then $\phi(z) = e^{i\theta} \frac{z-p}{1-\bar{p}z}$ for some $\theta \in \mathbb{R}$ and $p \in \mathbb{D}$. Furthermore, $\phi(0) = 0$ if and only if $\phi(z) = e^{i\theta}z$. Thus $Uz = e^{i\theta}z$ and $\phi_a \circ \phi_z = U\phi_{\phi_z(a)} = e^{i\theta}\phi_{\phi_z(a)} = \delta\phi_{\phi_z(a)}$, where $\delta = e^{i\theta}$, $\theta \in \mathbb{R}$. Hence it follows that $\int_{\mathbb{D}} \int_{\mathbb{D}} \phi(\phi_{\phi_a(z)}(w)) dA_{\alpha}(w) dA_{\alpha}(a) = \int_{\mathbb{D}} \int_{\mathbb{D}} \phi(\delta\phi_{\phi_z(a)}(w)) dA_{\alpha}(a) dA_{\alpha}(w)$. \Box

Notice that one can define U_a^{α} on $L^2(\mathbb{D}, dA_{\alpha})$ also. Suppose $\phi \in L^{\infty}(\mathbb{D}), f, g \in L^2(\mathbb{D}, dA_{\alpha})$. Then by using

Fubini's theorem and making a change of variable, we obtain

$$\int_{\mathbb{D}} \left\langle \phi U_{a}^{\alpha} f, U_{a}^{\alpha} g \right\rangle dA_{\alpha}(a) = \int_{\mathbb{D}} dA_{\alpha}(a) \int_{\mathbb{D}} \phi(z) (f \circ \phi_{a})(z) k_{a}^{1+\frac{\alpha}{2}} \overline{(g \circ \phi_{a})(z)} \overline{k_{a}^{1+\frac{\alpha}{2}}(z)} dA_{\alpha}(z) \\
= \int_{\mathbb{D}} dA_{\alpha}(a) \int_{\mathbb{D}} \phi(\phi_{a}(w)) f(w) \overline{g(w)} dA_{\alpha}(w) \\
= \int_{\mathbb{D}} f(w) \overline{g(w)} dA_{\alpha}(w) \int_{\mathbb{D}} \phi(\phi_{a}(w)) dA_{\alpha}(a) \\
= \int_{\mathbb{D}} (D_{\alpha}\phi)(w) f(w) \overline{g(w)} dA_{\alpha}(w) = \left\langle (D_{\alpha}\phi) f, g \right\rangle.$$
(5)

Define $J_{\alpha} : L^{2}(\mathbb{D}, dA_{\alpha}) \to L^{2}(\mathbb{D}, dA_{\alpha})$ as $J_{\alpha}f(z) = f(\overline{z})$. The map J_{α} is an unitary operator and $J_{\alpha}^{*} = J_{\alpha}$. Let $\overline{L_{a}^{2}(dA_{\alpha})} = \{\overline{f} : f \in L_{a}^{2}(dA_{\alpha})\}$. Define $h_{\phi}^{(\alpha)} : L_{a}^{2}(dA_{\alpha}) \to \overline{L_{a}^{2}(dA_{\alpha})}$ such that $h_{\phi}^{(\alpha)}f = \overline{P_{\alpha}}(\phi f)$, where $\overline{P_{\alpha}}$ is the orthogonal projection from $L^{2}(\mathbb{D}, dA_{\alpha})$ onto $\overline{L_{a}^{2}(dA_{\alpha})}$. The operator $h_{\phi}^{(\alpha)}$ is called the little Hankel operator on $L_{a}^{2}(dA_{\alpha})$.

In Corollary 3.4, we show that $\widehat{H}_{\phi}^{(\alpha)} = H_{D_{\alpha}\phi}^{(\alpha)}$, $\widehat{h}_{\phi}^{(\alpha)} = h_{D_{\alpha}\phi}^{(\alpha)}$, $\widehat{T}_{\phi}^{(\alpha)} = T_{D_{\alpha}\phi}^{(\alpha)}$. Thus $T_{\phi}^{(\alpha)}$, $H_{\phi}^{(\alpha)}$, $h_{\phi}^{(\alpha)}$ commutes with all $C_{\alpha}^{(\alpha)}$, $a \in \mathbb{D}$ if and only if $D_{\alpha}\phi = \phi$.

Corollary 3.4. If
$$\phi \in L^{\infty}(\mathbb{D})$$
, $f \in L^{2}_{a}(dA_{\alpha})$, then
(i) $\int_{\mathbb{D}} \left\langle U^{\alpha}_{a} H^{(\alpha)}_{\phi} U^{\alpha}_{a} f, g \right\rangle dA_{\alpha}(a) = \left\langle H^{(\alpha)}_{(D_{\alpha}\phi)} f, g \right\rangle$ for all $g \in \left(L^{2}_{a}(dA_{\alpha})\right)^{\perp}$.
(ii) $\int_{\mathbb{D}} \left\langle U^{\alpha}_{a} h^{(\alpha)}_{\phi} U^{\alpha}_{a} f, g \right\rangle dA_{\alpha}(a) = \left\langle h^{(\alpha)}_{(D_{\alpha}\phi)} f, g \right\rangle$ for all $g \in \overline{L^{2}_{a}(dA_{\alpha})}$.
(iii) $\int_{\mathbb{D}} \left\langle U^{\alpha}_{a} T^{(\alpha)}_{\phi} U^{\alpha}_{a} f, g \right\rangle dA_{\alpha}(a) = \left\langle T^{(\alpha)}_{(D_{\alpha}\phi)} f, g \right\rangle$ for all $g \in L^{2}_{a}(dA_{\alpha})$.

Proof. (i) If $f \in L^2_a(dA_\alpha)$, $g \in (L^2_a(dA_\alpha))^{\perp}$, then from (5), it follows that

$$\int_{\mathbb{D}} \left\langle \phi U_a^{\alpha} f, U_a^{\alpha} g \right\rangle dA_{\alpha}(a) = \left\langle (D_{\alpha} \phi) f, g \right\rangle.$$

This implies that $\int_{\mathbb{D}} \left\langle \phi U_a^{\alpha} f, U_a^{\alpha} (I - P_{\alpha}) g \right\rangle dA_{\alpha}(a) = \left\langle (D_{\alpha} \phi) f, (I - P_{\alpha}) g \right\rangle.$ Hence since $U_a^{\alpha} P_{\alpha} = P_{\alpha} U_a^{\alpha}$, we obtain $\int \left\langle U_a^{\alpha} (I - P_{\alpha}) (\phi U_a^{\alpha} f), g \right\rangle dA_{\alpha}(a) = \int \left\langle \phi U_a^{\alpha} f, (I - P_{\alpha}) U_a^{\alpha} g \right\rangle dA_{\alpha}(a)$

$$\int_{\mathbb{D}} \left\langle U_a^{\alpha} (I - P_{\alpha})(\phi U_a^{\alpha} f), g \right\rangle dA_{\alpha}(a) = \int_{\mathbb{D}} \left\langle \phi U_a^{\alpha} f, (I - P_{\alpha}) U_a^{\alpha} g \right\rangle dA_{\alpha}(a)$$
$$= \left\langle (I - P_{\alpha})((D_{\alpha} \phi) f), g \right\rangle.$$

Therefore, we get $\int_{\mathbb{D}} \left\langle U_a^{\alpha} H_{\phi}^{(\alpha)} U_a^{\alpha} f, g \right\rangle dA_{\alpha}(a) = \left\langle H_{(D_{\alpha}\phi)}^{(\alpha)} f, g \right\rangle.$

(ii) If $f \in L^2_a(dA_\alpha)$, $g \in \overline{L^2_a(dA_\alpha)}$, then from the above discussion it follows that $\int_{\mathbb{D}} \langle \phi U^{\alpha}_a f, U^{\alpha}_a g \rangle dA_{\alpha}(a) = \langle (D_{\alpha}\phi)f, g \rangle$. This implies

$$\int_{\mathbb{D}} \left\langle \phi U_a^{\alpha} P_{\alpha} f, U_a^{\alpha} \overline{P_{\alpha}} g \right\rangle dA_{\alpha}(a) = \left\langle (D_{\alpha} \phi) P_{\alpha} f, \overline{P_{\alpha}} g \right\rangle.$$

Since $\overline{P_{\alpha}} = J_{\alpha}P_{\alpha}J_{\alpha}$, hence we obtain $\int_{\mathbb{D}} \left\langle \phi U_{a}^{\alpha}P_{\alpha}f, U_{a}^{\alpha}J_{\alpha}P_{\alpha}J_{\alpha}g \right\rangle dA_{\alpha}(a) = \langle (D_{\alpha}\phi)P_{\alpha}f, J_{\alpha}P_{\alpha}J_{\alpha}g \rangle$. Now $U_{a}^{\alpha}P_{\alpha} = P_{\alpha}U_{a}^{\alpha}$. Thus we obtain

$$\int_{\mathbb{D}} \left\langle U_{a}^{\alpha} J_{\alpha} P_{\alpha} J_{\alpha} \phi P_{\alpha} U_{a}^{\alpha} f, g \right\rangle dA_{\alpha}(a) = \int_{\mathbb{D}} \left\langle \phi U_{a}^{\alpha} P_{\alpha} f, J_{\alpha} P_{\alpha} J_{\alpha} U_{a}^{\alpha} g \right\rangle dA_{\alpha}(a)$$
$$= \left\langle J_{\alpha} P_{\alpha} J_{\alpha} (D_{\alpha} \phi) P_{\alpha} f, g \right\rangle.$$

Thus
$$\int_{\mathbb{D}} \left\langle U_a^{\alpha} h_{\phi}^{(\alpha)} U_a^{\alpha} f, g \right\rangle dA_{\alpha}(a) = \left\langle h_{D_a \phi}^{(\alpha)} f, g \right\rangle.$$

(iii) If $f, g \in L^2_a(dA_{\alpha})$, then from equation (5), it follows that

$$\int_{\mathbb{D}} \left\langle \phi U_a^{\alpha} f, U_a^{\alpha} g \right\rangle dA_{\alpha}(a) = \left\langle (D_{\alpha} \phi) f, g \right\rangle.$$

Hence we obtain $\int_{\mathbb{D}} \left\langle \phi U_a^{\alpha} f, P_{\alpha} U_a^{\alpha} g \right\rangle dA_{\alpha}(a) = \left\langle (D_{\alpha} \phi) f, P_{\alpha} g \right\rangle$. Thus

$$\begin{split} \int_{\mathbb{D}} \left\langle U_a^{\alpha} P_{\alpha}(\phi U_a^{\alpha} f), g \right\rangle dA_{\alpha}(a) &= \int_{\mathbb{D}} \left\langle P_{\alpha}(\phi U_a^{\alpha} f), U_a^{\alpha} g \right\rangle dA_{\alpha}(a) = \left\langle (D_{\alpha} \phi) f, P_{\alpha} g \right\rangle \\ &= \left\langle P_{\alpha}((D_{\alpha} \phi) f), g \right\rangle. \end{split}$$

It follows therefore that $\int_{\mathbb{D}} \left\langle U_a^{\alpha} T_{\phi}^{(\alpha)} U_a^{\alpha} f, g \right\rangle dA_{\alpha}(a) = \left\langle T_{(D_{\alpha}\phi)}^{(\alpha)} f, g \right\rangle. \quad \Box$

Example 3.5. Let $\alpha = 0$ and consider the Berezin transform B_0 . Notice that if g is harmonic on \mathbb{D} , then g is the sum of an analytic function and the conjugate of another analytic function. It follows from [1], [10], [13] that $B_0g = g$ and $D_0g = g(0) - \frac{1}{2}\frac{\partial g}{\partial z}(0)z - \frac{1}{2}\frac{\partial g}{\partial z}(0)\overline{z}$. Let $g(z) = \sum_{n=0}^{\infty} c_n z^n \in H^{\infty}(\mathbb{D})$. Then from [1], [13], [10] that $B_0g = g$ and $D_0g = c_0 - \frac{c_1}{2}z$. Hence if $g(z) = 3 - 2z + 7z^2 - 5z^3$, $z \in \mathbb{D}$, then $B_0g = g$ but $D_0g = 3 - z$. Hence $\widehat{T}_g^{(0)} = T_{D_0g}^{(0)} \neq T_g^{(0)}$. By Theorem 3.1, $T_g^{(0)}$ does not commute with all $C_a^{(0)}$, $a \in \mathbb{D}$. Now let $f(z) = -2\overline{z} - 7\overline{z}^2$. Then $B_0f = f$ but $(D_0f)(z) = \overline{z}$. Thus $\widehat{H}_f^{(0)} = H_{\overline{z}}^{(0)} \neq H_f^{(0)}$ and similarly $\widehat{h}_f^{(0)} = h_{D_0f}^{(0)} = h_{\overline{z}}^{(0)} \neq h_f^{(0)}$. By Theorem 3.1, $H_f^{(0)}$ and $h_f^{(0)}$ does not commute with all $C_a^{(0)} = h_{D_0f}^{(0)} = h_{\overline{z}}^{(0)} \neq h_f^{(0)}$.

4. Bounded analytic functions and composition operators

It is not difficult to verify that $M_{\phi}^{(\alpha)}L_a^2(dA_{\alpha}) \subset L_a^2(dA_{\alpha})$ if and only if $\phi \in H^{\infty}(\mathbb{D})$. In section 3, we considered the weighted composition operator $U_a^{\alpha}f = (f \circ \phi_a)k_a^{1+\frac{\alpha}{2}}$, $f \in L_a^2(dA_{\alpha})$. Here $\phi'_a = -k_a \in H^{\infty}(\mathbb{D})$ and observe that the inducing function of the weighted composition operator belongs to $Aut(\mathbb{D})$ and the weight function belongs to $H^{\infty}(\mathbb{D})$. Now consider the weighted composition operator $W_{\psi,q}$ on $L_a^2(dA_{\alpha})$ where $q \in L_a^2(dA_{\alpha})$ and $\psi \in Aut(\mathbb{D})$. If $W_{\psi,q}L_a^2(dA_{\alpha}) \subset L_a^2(dA_{\alpha})$ then what will be the relation between q and ψ . In this section we have shown that $q \in H^{\infty}(\mathbb{D})$ if and only if ψ is a finite Blaschke product. More specifically, we established the following. We showed that if \mathcal{M} is a subspace of $L^{\infty}(\mathbb{D})$ and if for $\phi \in \mathcal{M}$, the Toeplitz operator $T_{\phi}^{(\alpha)}$ represents a multiplication operator on a closed subspace $S \subset L_a^2(dA_{\alpha})$, then ϕ is bounded analytic on \mathbb{D} . Similarly if $q \in L^{\infty}(\mathbb{D})$ and \mathcal{B}_n is a finite Blaschke product and $M_q^{(\alpha)}(Range C_{\mathcal{B}_n}^{(\alpha)}) \subset L_a^2(dA_{\alpha})$, then $q \in H^{\infty}(\mathbb{D})$. Further, we have shown that if $\psi \in Aut(\mathbb{D})$ and $q \in L_a^2(dA_{\alpha})$, then $\mathcal{N} = \{q \in L_a^2(dA_{\alpha}) : M_q^{(\alpha)}(Range C_{\psi}^{(\alpha)}) \subset L_a^2(dA_{\alpha})\} =$ $H^{\infty}(\mathbb{D})$ if and only if ψ is a finite Blaschke product. Akeroyd and Ghatage (2008,[2]) showed that if ϕ is univalent, analytic self-map of the disk, then C_{ϕ} has closed range on the Bergman space $L_a^2(\mathbb{D})$ if and only if ϕ is a conformal automorphism of the disk.

Theorem 4.1. (*i*) Let \mathcal{M} be a subspace of $L^{\infty}(\mathbb{D})$ such that for $\phi \in \mathcal{M}$, there exists a closed subspace \mathcal{S} of $L^2_a(dA_\alpha)$ for which $T^{(\alpha)}_{\phi}f = \phi f$, for all $f \in \mathcal{S}$. Then $\mathcal{M} \subset H^{\infty}(\mathbb{D})$.

(ii) Let $q \in L^{\infty}(\mathbb{D})$ and \mathcal{B}_n is a finite Blaschke product as defined in (1). If $M_q^{(\alpha)}\left(\text{Range } C_{\mathcal{B}_n}^{(\alpha)}\right) \subset L_a^2(dA_\alpha)$, then $q \in H^{\infty}(\mathbb{D})$.

Proof. (i) Suppose $T_{\phi}^{(\alpha)}f = \phi f$, $f \in S \subset L^2_a(dA_{\alpha})$. Then $\phi(z) = \frac{T_{\phi}^{(\alpha)}f(z)}{f(z)}$. Hence ϕ is analytic on $\mathbb{D} \setminus \{\text{zeros of } f\}$. Thus each isolated singularity of ϕ in \mathbb{D} is removable since ϕ is assumed to be bounded. Thus ϕ is analytic on \mathbb{D} . Since $\phi \in L^{\infty}(\mathbb{D})$, hence $\phi \in H^{\infty}(\mathbb{D})$.

(ii) Since $M_q^{(\alpha)}\left(C_{\mathcal{B}_n}^{(\alpha)}L_a^2(dA_\alpha)\right) \subset L_a^2(dA_\alpha)$, hence $M_q^{(\alpha)}C_{\mathcal{B}_n}^{(\alpha)}$ is bounded (see [3],[24]). Let $f \in L_a^2(dA_\alpha)$. Then

$$\left\langle \left(C_{\mathcal{B}_n}^{(\alpha)} \right)^* M_{\overline{q}}^{(\alpha)} K^{(\alpha)}(\cdot, z), f \right\rangle = \left\langle K^{(\alpha)}(\cdot, z), M_q^{(\alpha)} C_{\mathcal{B}_n}^{(\alpha)} f \right\rangle = \overline{q(z)} \overline{f(\mathcal{B}_n(z))}$$
$$= \overline{q(z)} \left\langle K^{(\alpha)}(\cdot, \mathcal{B}_n(z)), f \right\rangle.$$

Hence $(C_{\mathcal{B}_n}^{(\alpha)})^* M_{\overline{q}}^{(\alpha)} K^{(\alpha)}(\cdot, z) = \overline{q(z)} K^{(\alpha)}(\cdot, \mathcal{B}_n(z))$. Since $M_q^{(\alpha)} C_{\mathcal{B}_n}^{(\alpha)}$ is bounded, so is $(C_{\mathcal{B}_n}^{(\alpha)})^* M_{\overline{q}}^{(\alpha)}$ as $(M_q^{(\alpha)})^* = M_{\overline{q}}^{(\alpha)}$ (for details see [24]). Thus there exists R > 0 such that $\left\| (C_{\mathcal{B}_n}^{(\alpha)})^* M_{\overline{q}}^{(\alpha)} K^{(\alpha)}(\cdot, z) \right\|_2 \le R \|K^{(\alpha)}(\cdot, z)\|_2$. Hence $|q(z)| \|K^{(\alpha)}(\cdot, \mathcal{B}_n(z))\|_2 \le R \|K^{(\alpha)}(\cdot, z)\|_2$ and we obtain from Lemma 2.4 that

$$|q(z)| \frac{1}{(1-|\mathcal{B}_n(z)|^2)^{1+\frac{\alpha}{2}}} \le R \frac{1}{(1-|z|^2)^{1+\frac{\alpha}{2}}}$$

That is,

$$|q(z)| \le R \left(\frac{1 - |\mathcal{B}_n(z)|^2}{1 - |z|^2} \right)^{1 + \frac{\alpha}{2}}$$

Let $l = \max_{1 \le i \le n} \{|\alpha_i|\}$ and $p = \min_{1 \le i \le n} \{|\alpha_i|\}$. It follows from [8] that for l < |z| < 1, we have

$$\frac{1 - |\mathcal{B}_n(z)|^2}{1 - |z|^2} \le m + 2n\frac{1 + p}{1 - p}$$

Hence $q \in H^{\infty}(\mathbb{D})$. \Box

Theorem 4.2. Let $\psi \in Aut(\mathbb{D})$ and $\mathcal{N} = \left\{ q \in L^2_a(dA_\alpha) : M^{(\alpha)}_q(Range C^{(\alpha)}_{\psi}) \subset L^2_a(dA_\alpha) \right\}$. If $\mathcal{N} = H^{\infty}(\mathbb{D})$, then there exist constants L > 0 and R > 0 such that

$$L ||M_q^{(\alpha)} C_{\psi}^{(\alpha)}|| \le ||q||_{\infty} \le R ||M_q^{(\alpha)} C_{\psi}^{(\alpha)}||.$$

Proof. The set N is a vector space. Define for $q \in N$, the norm $||q||_{N} := ||M_{q}^{(\alpha)}C_{\psi}^{(\alpha)}||$. The space N is complete with respect to the metric induced from $|| \cdot ||_{N}$. Let Ξ_{n} be a sequence in N which is Cauchy. Then $M_{\Xi_{n}}^{(\alpha)}C_{\psi}^{(\alpha)}$ is a Cauchy sequence in $\mathcal{L}(L_{a}^{2}(dA_{\alpha}))$. Since the space $\mathcal{L}(L_{a}^{2}(dA_{\alpha}))$ is complete, hence there exists $S \in \mathcal{L}(L_{a}^{2}(dA_{\alpha}))$ such that $\lim_{n\to\infty} M_{\Xi_{n}}^{(\alpha)}C_{\psi}^{(\alpha)} = S$. For $f \in L_{a}^{2}(dA_{\alpha})$, $\lim_{n\to\infty} M_{\Xi_{n}}^{(\alpha)}C_{\psi}^{(\alpha)}f = Sf$. That is, $\lim_{n\to\infty} \Xi_{n}(f \circ \psi) = Sf$ and for $z \in \mathbb{D}$, $\lim_{n\to\infty} \Xi_{n}(z)f(\psi(z)) = (Sf)(z)$. For f = 1, we obtain $\lim_{n\to\infty} \Xi_{n} = S1$. Let q = S1. Then for $q \in L_{a}^{2}(dA_{\alpha})$, $z \in \mathbb{D}$, we have $\lim_{n\to\infty} \Xi_{n}(z)f(\psi(z)) = q(z)f(\psi(z))$. Hence we get $(Sf)(z) = q(z)f(\psi(z))$. It follows therefore that $S = M_{q}^{(\alpha)}C_{\psi}^{(\alpha)}$ and $q \in N$ and $\lim_{n\to\infty} ||\Xi_{n} - q||_{N} = \lim_{n\to\infty} ||M_{\Xi_{n}}^{(\alpha)}C_{\psi}^{(\alpha)} - M_{q}^{(\alpha)}C_{\psi}^{(\alpha)}|| = 0$ and N is complete with respect to the metric induced from the norm $|| \cdot ||_{N}$. Since $N = H^{\infty}(\mathbb{D})$, we obtain by inverse mapping theorem [20] that there exist constants L > 0 and R > 0 such that $L||q||_{N} \leq ||q||_{\infty} \leq R||q||_{N}$. Thus $L||M_{q}^{(\alpha)}C_{\psi}^{(\alpha)}|| \leq ||q||_{\infty} \leq R||M_{q}^{(\alpha)}C_{\psi}^{(\alpha)}||$. The theorem follows.

Theorem 4.3. Let $\psi \in Aut(\mathbb{D})$ and $q \in L^2_a(dA_\alpha)$. Then

$$\mathcal{N} = \left\{ q \in L^2_a(dA_\alpha) : M^{(\alpha)}_q \left(Range \ C^{(\alpha)}_\psi \right) \subset L^2_a(dA_\alpha) \right\} = H^\infty(\mathbb{D})$$

if and only if ψ *is a finite Blaschke product.*

Proof. The sufficiency part follows from Theorem 4.1. For the necessary part, define for $z, w \in \mathbb{D}$, the function $K_w^{(\alpha)}(z) = \left(\frac{1}{1-z\overline{w}}\right)^{\alpha+2}$. Then for any $f \in L^2_a(dA_\alpha)$, it follows from Lemma 2.4 that

$$\begin{split} \left\| M_{K_w^{(\alpha)}}^{(\alpha)} C_{\psi}^{(\alpha)} f \right\|_2^2 &= \int_{\mathbb{D}} |K_w^{(\alpha)}(z)|^2 |f(\psi(z))|^2 dA_{\alpha}(z) \\ &= \int_{\mathbb{D}} \frac{1}{|1 - z\overline{w}|^{2(\alpha+2)}} |f(\psi(z))|^2 dA_{\alpha}(z) \\ &= \frac{1}{(1 - |w|^2)^{\alpha+2}} \int_{\mathbb{D}} \frac{(1 - |w|^2)^{\alpha+2}}{|1 - z\overline{w}|^{2(\alpha+2)}} |f(\psi(z))|^2 dA_{\alpha}(z) \\ &= \frac{1}{(1 - |w|^2)^{\alpha+2}} \int_{\mathbb{D}} |f(\psi(z))|^2 |k_z^{1+\frac{\alpha}{2}}|^2 dA_{\alpha}(z) \\ &= \frac{1}{(1 - |w|^2)^{\alpha+2}} \int_{\mathbb{D}} |f((\psi \circ \phi_w)(z))|^2 dA_{\alpha}(z) \\ &\leq \frac{1}{(1 - |w|^2)^{\alpha+2}} \left(\frac{1 + |\psi(w)|}{1 - |\psi(w)|}\right)^{\alpha+2} ||f||_2^2. \end{split}$$

The last inequality follows from [16]. So

$$\left\| M_{K_w^{(\alpha)}}^{(\alpha)} C_{\psi}^{(\alpha)} \right\| \leq \frac{1}{(1-|w|^2)^{1+\frac{\alpha}{2}}} \left(\frac{1+|\psi(w)|}{1-|\psi(w)|} \right)^{1+\frac{\alpha}{2}}$$

From Theorem 4.2, it follows that there exists a constant R' > 0 such that

$$\|K_w^{(\alpha)}\|_{\infty} \le R' \frac{1}{(1-|w|^2)^{1+\frac{\alpha}{2}}} \left(\frac{1+|\psi(w)|}{1-|\psi(w)|}\right)^{1+\frac{\alpha}{2}}$$

Since $||K_w^{(\alpha)}||_{\infty} = \left(\frac{1}{1-|w|}\right)^{\alpha+2}$, we obtain $\left(\frac{1}{1-|w|}\right)^{\alpha+2} \le R' \frac{1}{(1-|w|^2)^{1+\frac{\alpha}{2}}} \left(\frac{1+|\psi(w)|}{1-|\psi(w)|}\right)^{1+\frac{\alpha}{2}}$. That is,

$$\left(\frac{1+|w|}{1-|w|}\right)^{1+\frac{\alpha}{2}} \le R' \left(\frac{1+|\psi(w)|}{1-|\psi(w)|}\right)^{1+\frac{\alpha}{2}} \le R' \left(\frac{2}{1-|\psi(w)|}\right)^{1+\frac{\alpha}{2}}.$$

Thus when $|w| \to 1$, then $|\psi(w)| \to 1$ and the function ψ is a finite Blaschke product. \Box

5. Conclusion

- (i) In this work, we only dealt with the weights $(1-|z|^2)^{\alpha} dA(z)$, $z \in \mathbb{D}$, $\alpha > -1$ which is a Möbius invariant. Whether such result holds for other weights like (i) $\frac{1}{\Gamma(\alpha+1)} \left(\log \frac{1}{|z|^2} \right)^{\alpha}$, $\alpha > -1$ (ii) $exp\left(\frac{-c}{(1-|z|)^{\alpha}}\right)$, $\alpha, c > 0$ (iii) $exp\left(-\gamma exp\left(\frac{\beta}{(1-|z|)^{\alpha}}\right)\right) \alpha, \beta, \gamma > 0$ defined on \mathbb{D} and in the weighted Bergman spaces $L^2_a(\Omega)$ where Ω is any bounded symmetric domain in \mathbb{C} ?
- (ii) De Leeuw [17] showed that the isometries in the Hardy space $H^1(\mathbb{D})$ are weighted composition operators and Forelli [15] obtained the same result for the Hardy spaces H^p , $1 , <math>p \neq 2$. Further, it is well-known [17] that if *T* is any Banach space isometry of $H^{\infty}(\mathbb{D})$ onto $H^{\infty}(\mathbb{D})$, then *T* has the form $(Tf)(\lambda) = \alpha f(\tau(\lambda)), f \in H^{\infty}(\mathbb{D})$ and where α is a complex constant of modulus 1 and τ is a conformal map of the open unit disk onto itself. Bourdon and Narayan [5] gave a characterization of the unitary weighted composition operators on $H^2(\mathbb{D})$ in 2010. They showed that if the weighted composition operator $W_{\phi,\psi}$ from $H^2(\mathbb{D})$ into itself is unitary, then $\phi \in Aut(\mathbb{D})$. Further in 2014, Matache [21] proved that if $W_{\phi,\psi}$ is isometric on $H^2(\mathbb{D})$ then ϕ must be an inner function and ψ must belong to $H^2(\mathbb{D})$ and $\|\psi\| = 1$. In this context it is also important to analyse what are all the isometries from $L^a_a(dA_\alpha), 1 \le p < \infty$ into itself ?

(iii) In section 2, we have seen that the map $U_a^{\alpha} = (f \circ \phi_a)k_a^{1+\frac{\alpha}{2}}$, $a \in \mathbb{D}$ is bounded, unitary and self-adjoint. Notice that, $\phi'_a = -k_a$. That is, if the inducing function of the composition operator is ϕ_a then the weight function is $k_a^{1+\frac{\alpha}{2}}$ and the resulting operator is unitary. In section 4, we have shown that if the inducing function of the composition operator is a finite Blaschke product if and only if the weight function belong to $H^{\infty}(\mathbb{D})$. Now we ask if the inducing function is an infinite Blaschke product or an inner function then to which class the weight function ψ must belong to, so that $W_{\phi,\psi}$ will be bounded and unitary.

References

- [1] P. Ahern, M. Flores, W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993) 380–397.
- [2] J. Akeroyd, P. Ghatage, Closed-range composition operators on A², Illinois J. Math. 52(2) (2008) 533–549.
- [3] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, Monogr. Stud. Mat. 9, Pitman, USA, 1981.
- [4] C. A. Berger, L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987) 813-829.
- [5] P. S. Bourdon, S. K. Narayan, Normal weighted composition operators on the Hardy space H²(U), J. Math. Anal. Appl. 367(1) (2010) 278–286.
- [6] O. Bratteli, D. Robinson, Operator Algebra and Quantum Statistical Mechanics I, Springer, New York, 1979.
- [7] O. Bratteli, D. Robinson, Operator Algebra and Quantum Statistical Mechanics II, Springer, New York, 1981.
- [8] M. D. Contreras, A. G. Hernández Diáz, Weighted composition operators between different Hardy spaces, Integral Equations Operator Theory 46 (2003) 165–188.
- [9] J. B. Conway, Functions of One Complex Variable, Second Edition, Springer-Verlag, New York, 1978.
- [10] N. Das, Fredholm Toeplitz operators on the Bergman space, Recent trends in Mathematical sciences, Narosa 1 (2000) 94–106.
- [11] N. Das, J. K. Behera, On a class of unitary operators on the Bergman space of the right half plane, Turk. J. Math. 42 (2018) 471–486.
- [12] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- [13] M. Engliš, Functions invariant under Berezin transform, J. Funct. Anal. 121 (1994) 233-254.
- [14] M. Engliš, Toeplitz operators on Bergman-type spaces, Ph.D. thesis (Kandidátská dissertačni práce), MU CSAV, Praha, 1991.
- [15] F. Forelli, The isometries of H^p, Canad. J. Math. 16 (1964) 721--728.
- [16] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Graduate texts in Mathematics 199, Springer- Verlag, New York, 2000.
- [17] K. Hoffman, Banach spaces of analytic functions, Dover Publications, Inc., New York, 1988.
- [18] T. Le, Self-adjoint, unitary, and normal weighted composition operators in several variables, J. Math. Anal. Appl. 395(2) (2012) 596–607.
- [19] J. Lee, Iterates of weighted Berezin transform under invariant measure in the unit ball, Korean J. Math. 28 (2020) No 3 449–457.
- [20] B. V. Limaye, Functional analysis, New Age International Limited, New Delhi, 1996.
- [21] V. Matache, Isometric weighted composition operators, New York J. Math. 20 (2014) 711-726.
- [22] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
- [23] K. Zhu, On certain unitary operators and composition operators, Proc. Symp. Pure Math. Part 2 51 (1990) 371–385.
- [24] K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990.