On a class of unitary operators on weighted Bergman spaces

Namita Das ${ }^{\text {a }}$, Swarupa Roy ${ }^{\text {a }}$
${ }^{a}$ P. G. Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar- 751004, Odisha, India

Abstract

In this paper we consider a class of weighted composition operators defined on the weighted Bergman spaces $L_{a}^{2}\left(d A_{\alpha}\right)$ where \mathbb{D} is the open unit disk in \mathbb{C} and $d A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z), \alpha>-1$ and $d A(z)$ is the area measure on \mathbb{D}. These operators are also self-adjoint and unitary. We establish here that a bounded linear operator S from $L_{a}^{2}\left(d A_{\alpha}\right)$ into itself commutes with all the composition operators $C_{a}^{(\alpha)}, a \in \mathbb{D}$, if and only if $B_{\alpha} S$ satisfies certain averaging condition. Here $B_{\alpha} S$ denotes the generalized Berezin transform of the bounded linear operator S from $L_{a}^{2}\left(d A_{\alpha}\right)$ into itself, $C_{a}^{(\alpha)} f=\left(f \circ \phi_{a}\right), f \in L_{a}^{2}\left(d A_{\alpha}\right)$ and $\phi \in \operatorname{Aut}(\mathbb{D})$. Applications of the result are also discussed. Further, we have shown that if \mathcal{M} is a subspace of $L^{\infty}(\mathbb{D})$ and if for $\phi \in \mathcal{M}$, the Toeplitz operator $T_{\phi}^{(\alpha)}$ represents a multiplication operator on a closed subspace $\mathcal{S} \subset L_{a}^{2}\left(d A_{\alpha}\right)$, then ϕ is bounded analytic on \mathbb{D}. Similarly if $q \in L^{\infty}(\mathbb{D})$ and \mathcal{B}_{n} is a finite Blaschke product and $M_{q}^{(\alpha)}\left(\operatorname{Range} C_{\mathcal{B}_{n}}^{(\alpha)}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)$, then $q \in H^{\infty}(\mathbb{D})$. Further, we have shown that if $\psi \in \operatorname{Aut}(\mathbb{D})$, then $\mathcal{N}=\left\{q \in L_{a}^{2}\left(d A_{\alpha}\right): M_{q}^{(\alpha)}\left(\right.\right.$ Range $\left.\left.C_{\psi}^{(\alpha)}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)\right\}=H^{\infty}(\mathbb{D})$ if and only if ψ is a finite Blaschke product. Here $M_{\phi}^{(\alpha)}, T_{\phi}^{(\alpha)}, C_{\phi}^{(\alpha)}$ denote the multiplication operator, the Toeplitz operator and the composition operator defined on $L_{a}^{2}\left(d A_{\alpha}\right)$ with symbol ϕ respectively.

1. Introduction

Let $H(\mathbb{D})$ denote the collection of all holomorphic functions on the open unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ in the complex plane \mathbb{C}. Let $H^{2}(\mathbb{D})$ be the Hardy space of \mathbb{D} consisting of those functions in $H(\mathbb{D})$ whose Maclaurin coefficients are square summable. The space $H^{2}(\mathbb{D})$ is a Hilbert space [12], [24]. Let ϕ denotes an analytic self-map of \mathbb{D}. Then ϕ induces a bounded [24] composition operator on $H^{2}(\mathbb{D})$ defined by $C_{\phi} f=f \circ \phi$. Bourdon and Narayan [5] studied the algebraic properties of the weighted composition operator (induced by ϕ with weight function $\psi) W_{\phi, \psi}$ on $H^{2}(\mathbb{D})$ defined by $W_{\phi, \psi} f=(f \circ \phi) \psi$ which result from composition with ϕ and then multiplying by a weight function $\psi \in H(\mathbb{D})$. Such weighted composition operators are bounded on $H^{2}(\mathbb{D})$ when ψ is bounded on \mathbb{D}. But the boundedness of ψ on \mathbb{D} is not necessary for $W_{\phi, \psi}$ to be bounded [5]. In this work, we consider a class of weighted composition operator $U_{a}^{\alpha}, a \in \mathbb{D}$ defined on the weighted Bergman space $L_{a}^{2}\left(d A_{\alpha}\right)$ as $U_{a}^{\alpha} f=\left(f \circ \phi_{a}\right) k_{a}^{1+\frac{\alpha}{2}}, \alpha>-1$. These operators are selfadjoint, involutive unitary operators. We look at the action of these unitary weighted composition operators $U_{a}^{\alpha}, a \in \mathbb{D}$ on some bounded linear operator S defined on $L_{a}^{2}\left(d A_{\alpha}\right)$. Such studies on the Segal-Bergman space

[^0](Fock space), Bergman space of the disk, on the Bergman space of the right half plane were carried out in [4], [13], [11], [23] and [18]. Applications of these results can be found in [4]. We have extended the results to weighted Bergman spaces $L_{a}^{2}\left(d A_{\alpha}\right), \alpha>-1$. We then considered the weighted composition operator $W_{\psi, q}=M_{q}^{(\alpha)} C_{\psi}^{(\alpha)}$ on $L_{a}^{2}\left(d A_{\alpha}\right)$ where $\psi \in A u t(\mathbb{D})$ and $q \in L_{a}^{2}\left(d A_{\alpha}\right)$. We showed that if $W_{\psi, q} L_{a}^{2}\left(d A_{\alpha}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)$ then $q \in H^{\infty}(\mathbb{D})$ if and only if ψ is a finite Blaschke product.

Let $d A(z)=\frac{1}{\pi} d x d y$ denotes the normalized area measure defined on \mathbb{D}. Let the Hilbert space $L^{2}\left(\mathbb{D}, d A_{\alpha}\right), \alpha>$ -1 be the space of all Lebesgue measurable functions on \mathbb{D} that are absolutely square-integrable with respect to the measure $d A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z), \quad z \in \mathbb{D}$. The weighted Bergman space $L_{a}^{2}\left(d A_{\alpha}\right)$ is the subspace of all analytic functions of $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$. The spaces $L_{a}^{2}\left(d A_{\alpha}\right)$ are closed subspaces of the corresponding spaces $L^{2}\left(\mathbb{D}, d A_{\alpha}\right), \alpha>-1$ and these are all reproducing kernel Hilbert spaces. For $\alpha=0$, we shall denote $L_{a}^{2}\left(d A_{0}\right)=L_{a}^{2}(\mathbb{D})$ as the unweighted Bergman space of \mathbb{D} whose reproducing kernel is given by $K(z, w)=\frac{1}{(1-z \bar{w})^{2}}, z, w \in \mathbb{D}$ and the normalized reproducing kernel of $L_{a}^{2}(\mathbb{D})$ is given by $k_{z}(w)=\frac{1-|z|^{2}}{(1-w \bar{z})^{2}}$. Assume $K_{z}(w)=\overline{K(z, w)}$. The reproducing kernel of $L_{a}^{2}\left(d A_{\alpha}\right)$ is given by $K^{(\alpha)}(z, w)=[K(z, w)]^{1+\frac{\alpha}{2}}=\frac{1}{(1-z \bar{w})^{\alpha+2}}$ for $z, w \in \mathbb{D}$. Let $K_{z}^{(\alpha)}(w)=\left[K_{z}(w)\right]^{1+\frac{\alpha}{2}}=\overline{K^{(\alpha)}(z, w)}$. If $\langle\cdot, \cdot\rangle_{\alpha}$ denotes the inner product in $L^{2}\left(d A_{\alpha}\right)=L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$, then $\left\langle h, K_{z}^{(\alpha)}\right\rangle_{\alpha}=h(z)$, for every $h \in L_{a}^{2}\left(d A_{\alpha}\right)$ and $z \in \mathbb{D}$. The orthogonal projection P_{α} from the Hilbert space $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ onto the closed subspace $L_{a}^{2}\left(d A_{\alpha}\right)$ is given by $\left(P_{\alpha} f\right)(z)=\left\langle f, K_{z}^{(\alpha)}\right\rangle_{\alpha}=\int_{\mathbb{D}} f(w) \frac{1}{(1-\bar{z} w)^{\alpha+2}} d A_{\alpha}(z)$ for $f \in L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ and $z \in \mathbb{D}$. The normalized reproducing kernels of $L_{a}^{2}\left(d A_{\alpha}\right)$ are the functions $k_{z}^{1+\frac{\alpha}{2}}(w)=\frac{\left.(1-|z|)^{1}\right)^{1+\frac{\alpha}{2}}}{(1-\bar{z} w)^{2+\alpha}}$. The sequence of functions $\left\{e_{n}^{(\alpha)}\right\}=\left\{\frac{z^{n}}{\gamma_{n, \alpha}}\right\}$ form as an orthonormal basis [24] for $L_{a}^{2}\left(d A_{\alpha}\right)$ where

$$
\gamma_{n, \alpha}^{2}=\left\|z^{n}\right\|^{2}=(\alpha+1) \int_{\mathbb{D}}|z|^{2 n}\left(1-|z|^{2}\right)^{\alpha} d A(z)=\frac{\Gamma(n+1) \Gamma(\alpha+1)}{\Gamma(n+\alpha+2)} \sim(n+1)^{-\alpha-1} .
$$

Henceforth we shall suppress the subscript α while writing the inner product and assume $\langle\cdot, \cdot\rangle_{\alpha}=\langle\cdot, \cdot\rangle$ for simplicity of notations. Let $L^{\infty}(\mathbb{D})$ be the space of all essentially bounded Lebesgue measurable functions on \mathbb{D}. The space $L^{\infty}(\mathbb{D})$ is a Banach space with the norm given by $\|f\|_{\infty}=\operatorname{ess} \sup _{z \in \mathbb{D}}\{|f(z)|\}, f \in L^{\infty}(\mathbb{D})$. Let $H^{\infty}(\mathbb{D})$ be the space of all bounded analytic functions on \mathbb{D} and $h^{\infty}(\mathbb{D})$ be the space of all bounded harmonic functions on \mathbb{D}. A finite Blaschke product \mathcal{B}_{n} is a function of the form

$$
\begin{equation*}
\mathcal{B}_{n}(z)=z^{m} \prod_{k=1}^{n} \frac{\overline{\alpha_{k}}}{\overline{\alpha_{k}}} \frac{\alpha_{k}-z}{1-\overline{\alpha_{k}} z} \tag{1}
\end{equation*}
$$

where $\alpha_{k} \neq 0$ and $\left|\alpha_{k}\right|<1, k=1,2, \ldots, n$.
For $\phi \in L^{\infty}(\mathbb{D})$, we define the Toeplitz operator on the weighted Bergman space $L_{a}^{2}\left(d A_{\alpha}\right)$ with symbol ϕ by $T_{\phi}^{(\alpha)} f=P_{\alpha}(\phi f), f \in L_{a}^{2}\left(d A_{\alpha}\right)$. We have $\left\|T_{\phi}^{(\alpha)}\right\| \leq\|\phi\|_{\infty}$ since the projection P_{α} has [24] norm 1. In fact, $\left(T_{\phi}^{(\alpha)} f\right)(w)=\int_{\mathbb{D}} \frac{\phi(z) f(z)}{(1-\bar{z} w)^{\alpha+2}} d A_{\alpha}(z)$ for $f \in L_{a}^{2}\left(d A_{\alpha}\right)$ and $w \in \mathbb{D}$. A Toeplitz operator $T_{\phi}^{(\alpha)}$ is an analytic (co-analytic) Toeplitz operator if the symbol ϕ belongs to $H^{\infty}(\mathbb{D})\left(\overline{H^{\infty}(\mathbb{D})}\right)$.

For $\phi \in L^{\infty}(\mathbb{D})$, the generalized Berezin transform of ϕ is defined by $\left(B_{\alpha} \phi\right)(z)=\left\langle T_{\phi}^{(\alpha)} k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}}\right\rangle=$ $\int_{\mathbb{D}} \phi(w)\left|k_{z}(w)\right|^{2+\alpha} d A_{\alpha}(w), z \in \mathbb{D}$. For $\phi \in L^{\infty}(\mathbb{D})$, we define the big Hankel operator with symbol ϕ from the space $L_{a}^{2}\left(d A_{\alpha}\right)$ onto its orthogonal complement $\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)^{\perp}$ by $H_{\phi}^{(\alpha)} f=\left(I-P_{\alpha}\right)(\phi f), f \in L_{a}^{2}\left(d A_{\alpha}\right)$. We have $\left\|H_{\phi}^{(\alpha)}\right\| \leq\|\phi\|_{\infty}$. Let $\overline{L_{a}^{2}\left(d A_{\alpha}\right)}=\left\{\bar{f}: f \in L_{a}^{2}\left(d A_{\alpha}\right)\right\}$. The space $\overline{L_{a}^{2}\left(d A_{\alpha}\right)}$ is a closed subspace of $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$. The little Hankel operator $h_{\phi}^{(\alpha)}$ with symbol ϕ is defined by $h_{\phi}^{(\alpha)} f=\overline{P_{\alpha}}(\phi f), f \in L_{a}^{2}\left(d A_{\alpha}\right)$ where $\overline{P_{\alpha}}$ is the orthogonal projection from the Hilbert space $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ onto $\overline{L_{a}^{2}\left(d A_{\alpha}\right)}$. Clearly, $\left\|h_{\phi}^{(\alpha)}\right\| \leq\|\phi\|_{\infty}$ as $\left\|\overline{P_{\alpha}}\right\| \leq 1$.

Define J_{α} from $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ into itself by $\left(J_{\alpha} f\right)(z)=f(\bar{z}), z \in \mathbb{D}$. The operator J_{α} is a unitary operator. For $\phi \in L^{\infty}(\mathbb{D})$, define $S_{\phi}^{(\alpha)}$ from $L_{a}^{2}\left(d A_{\alpha}\right)$ into itself by $S_{\phi}^{(\alpha)} f=P_{\alpha} J_{\alpha}(\phi f)$. The operator $S_{\phi}^{(\alpha)}$ is a linear operator and $\left\|S_{\phi}^{(\alpha)}\right\| \leq\|\phi\|_{\infty}$. It is not difficult to verify that $h_{\phi}^{(\alpha)}=J_{\alpha} S_{\phi}^{(\alpha)}$. Thus we shall refer in the sequel, both the operators $h_{\phi}^{(\alpha)}$ and $S_{\phi}^{(\alpha)}$ as little Hankel operators on $L_{a}^{2}\left(d A_{\alpha}\right)$.

Suppose ϕ is an analytic function from \mathbb{D} into itself. If $\phi \in H^{\infty}(\mathbb{D}), f \in L_{a}^{2}\left(d A_{\alpha}\right)$, the composition operator $C_{\phi}^{(\alpha)}$ on $L_{a}^{2}\left(d A_{\alpha}\right)$ is defined by $\left(C_{\phi}^{(\alpha)} f\right)(z)=f(\phi(z))$ for all $z \in \mathbb{D}$. For a bounded analytic function ϕ on \mathbb{D}, the multiplication operator $M_{\phi}^{(\alpha)}$ on the space $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ is defined by $M_{\phi}^{(\alpha)} f=\phi f$. Let $\mathcal{L}(H)$ be the space of all bounded linear operators from the Hilbert space H into itself. For $T \in \mathcal{L}\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)$, we define $\left(B_{\alpha} T\right)(z)=\left\langle T k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}}\right\rangle, z \in \mathbb{D}$. Notice that $\left|\left(B_{\alpha} T\right)(z)\right| \leq\|T\|$ as $\left\|k_{z}^{1+\frac{\alpha}{2}}\right\|=1$ for all $z \in \mathbb{D}$. The function $B_{\alpha} T$ is called the generalized transform of T and denote $B_{\alpha} T_{\phi}=B_{\alpha} \phi$. In particular, we shall refer $B_{0} T$ as the Berezin transform of T and $B_{0} T_{\phi}=B_{0} \phi$, the Berezin transform of the function ϕ. For more details about Berezin transform see [13].

The organization of the paper is as follows: In section 2, we consider a class of weighted composition operators U_{z}^{α} defined on the weighted Bergman spaces $L_{a}^{2}\left(d A_{\alpha}\right)$. We have shown that these operators are involutions and unitary. Some elementary properties of these operators are also derived. In section 3, we prove that a bounded linear operator S from $L_{a}^{2}\left(d A_{\alpha}\right)$ into itself commutes with all the composition operators $C_{a}^{(\alpha)}, a \in \mathbb{D}$, if and only if $B_{\alpha} S$ satisfies certain averaging condition. In section 4 , we show that if \mathcal{M} is a subspace of $L^{\infty}(\mathbb{D})$ and if for $\phi \in \mathcal{M}$, the Toeplitz operator $T_{\phi}^{(\alpha)}$ represents a multiplication operator on a closed subspace $\mathcal{S} \subset L_{a}^{2}\left(d A_{\alpha}\right)$, then ϕ is bounded analytic on \mathbb{D}. Similarly if $q \in L^{\infty}(\mathbb{D})$ and \mathcal{B}_{n} is a finite Blaschke product and $M_{q}^{(\alpha)}\left(\operatorname{Range} C_{\mathcal{B}_{n}}^{(\alpha)}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)$, then $q \in H^{\infty}(\mathbb{D})$. Further, we have shown that if $\psi \in \operatorname{Aut}(\mathbb{D})$, then $\mathcal{N}=\left\{q \in L_{a}^{2}\left(d A_{\alpha}\right): M_{q}^{(\alpha)}\left(\operatorname{Range} C_{\psi}^{(\alpha)}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)\right\}=H^{\infty}(\mathbb{D})$ if and only if ψ is a finite Blaschke product. In section 5, we discuss the future scope of the work.

2. Preliminaries

In this section we considered a class of weighted composition operators U_{z}^{α} defined on the weighted Bergman spaces $L_{a}^{2}\left(d A_{\alpha}\right)$. We showed that these operators are involutions and unitary. We discussed many elementary properties of these operators which will be used in establishing the main result of the paper.

Let $A u t(\mathbb{D})$ be the Lie group of all automorphisms (biholomorphic mappings) of \mathbb{D}. We can define for each $a \in \mathbb{D}$, an automorphism ϕ_{a} in $A u t(\mathbb{D})$ such that,
(i) $\left(\phi_{a} \circ \phi_{a}\right)(z) \equiv z$;
(ii) $\phi_{a}(0)=a, \phi_{a}(a)=0$;
(iii) ϕ_{a} has a unique fixed point in \mathbb{D}. In fact, $\phi_{a}(w)=\frac{a-w}{1-\bar{a} \bar{w}}$, for all $a, w \in \mathbb{D}$. Given $z \in \mathbb{D}$, and h any measurable function on \mathbb{D}, we define

$$
U_{z}^{\alpha} h=\left(h \circ \phi_{z}\right) k_{z}^{1+\frac{\alpha}{2}}
$$

Using the identity $1-\overline{\phi_{z}(w) z}=\frac{1-|z|^{2}}{1-\bar{w} z}$, we have $k_{z}^{1+\frac{\alpha}{2}}\left(\phi_{z}(w)\right)=\frac{1}{k_{z}^{1+\frac{\alpha}{2}}}$. Since $\phi_{z} \circ \phi_{z}(w) \equiv w$, we see that $\left(U_{z}^{\alpha}\left(U_{z}^{\alpha} h\right)\right)(z)=h(z)$ for all $z \in \mathbb{D}$ and $h \in L_{a}^{2}\left(d A_{\alpha}\right)$. For $a \in \mathbb{D}$, define $C_{a}^{(\alpha)}: L_{a}^{2}\left(d A_{\alpha}\right) \rightarrow L_{a}^{2}\left(d A_{\alpha}\right)$ as $C_{a}^{(\alpha)} f=f \circ \phi_{a}$.

Lemma 2.1. The following hold:
(i) The operator U_{w}^{α} is unitary and is an involution.
(ii) For $z, w \in \mathbb{D}, U_{z}^{\alpha} k_{w}^{1+\frac{\alpha}{2}}=\lambda k_{\phi_{z}(w)}^{1+\frac{\alpha}{2}}$ for some constant $\lambda \in \mathbb{C}$ with $|\lambda|=1$.
(iii) For all $w \in \mathbb{D}, U_{w}^{\alpha} k_{w}^{1+\frac{\alpha}{2}}=1$.
(iv) For any $z, w \in \mathbb{D}$, there exists a unitary map $U \in G_{0}=\{\psi \in A u t(\mathbb{D}): \psi(0)=0\}$ such that $\phi_{w} \circ \phi_{z}=U \phi_{\phi_{z}(w)}$.
(v) If $S \in \mathcal{L}\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)$ is invertible and is an involution with polar decomposition $S=\mathcal{V}|S|$, then \mathcal{V} is an involution which is also self-adjoint.

Proof. (i) Since $\phi_{w} \circ \phi_{w}(z) \equiv z$, we see that for $h \in L_{a}^{2}\left(d A_{\alpha}\right)$,
$U_{w}^{\alpha} U_{w}^{\alpha} h=U_{w}^{\alpha}\left(h \circ \phi_{w}\right) k_{w}^{1+\frac{\alpha}{2}}=\left(h \circ \phi_{w} \circ \phi_{w}\right)\left(k_{w}^{1+\frac{\alpha}{2}} \circ \phi_{w}^{\alpha}\right) k_{w}^{1+\frac{\alpha}{2}}=h$. Thus $\left(U_{w}^{\alpha}\right)^{2}=I$ for all $w \in \mathbb{D}$ and therefore $\left(U_{w}^{\alpha}\right)^{-1}=U_{w}^{\alpha}$ and U_{w}^{α} is unitary on $L_{a}^{2}\left(d A_{\alpha}\right)$.
(ii) Let $z, w \in \mathbb{D}$ and $f \in L_{a}^{2}\left(d A_{\alpha}\right)$. Then

$$
\left\langle f, U_{z}^{\alpha} K_{w}^{(\alpha)}\right\rangle=\left\langle U_{z}^{\alpha} f, K_{w}^{(\alpha)}\right\rangle=\left(U_{z}^{\alpha} f\right)(w)=\left(f \circ \phi_{z}\right)(w) k_{z}^{1+\frac{\alpha}{2}}(w)=\left\langle f, \overline{k_{z}^{1+\frac{\alpha}{2}}(w)} K_{\phi_{z}(w)}^{(\alpha)}\right\rangle .
$$

Thus $U_{z}^{\alpha} K_{w}^{(\alpha)}=\overline{k_{z}^{1+\frac{\alpha}{2}}(w)} K_{\phi_{z}(w)}^{(\alpha)}$. This implies

$$
\begin{aligned}
U_{z}^{\alpha} k_{w}^{1+\frac{\alpha}{2}} & =\frac{\overline{k_{z}^{1+\frac{\alpha}{2}}(w)}}{\left\|K_{w}^{(\alpha)}\right\|} \frac{K_{\phi_{z}(w)}^{(\alpha)}}{\left\|K_{\phi_{z}(w)}^{(\alpha)}\right\|} \cdot\left\|K_{\left.\phi_{z}(w)\right)}^{(\alpha)}\right\|=\frac{\overline{k_{z}^{1+\frac{\alpha}{2}}(w)}}{\left\|K_{w}^{(\alpha)}\right\|} k_{\phi_{z}(w)}^{1+\frac{\alpha}{2}}\left\|K_{\phi_{z}(w)}^{(\alpha)}\right\| \\
& =\frac{\overline{k_{z}^{1+\frac{\alpha}{2}}(w)}}{\left\|K_{w}^{(\alpha)}\right\|}\left\|U_{z}^{\alpha} K_{w}^{(\alpha)}\right\| k_{\phi_{z}(w)}^{1+\frac{\alpha}{2}}=\lambda k_{\phi_{z}(w)}^{1+\frac{\alpha}{2}}
\end{aligned}
$$

for some constant $\lambda \in \mathbb{C}$ with $|\lambda|=1$. This is so, since U_{z}^{α} is unitary and $\left\|k_{w}^{1+\frac{\alpha}{2}}\right\|_{2}=\left\|k_{\phi_{z}(w)}^{1+\frac{\alpha}{2}}\right\|_{2}=1$.
(iii) Notice that $1-\overline{\phi_{w}(z)} w=\frac{1-|w|^{2}}{1-\bar{z} w}$. Hence $k_{w}^{1+\frac{\alpha}{2}}\left(\phi_{w}(z)\right)=\frac{1}{k_{w}^{1+\frac{\alpha}{2}}(z)}$ for all $w \in \mathbb{D}$ and $z \in \mathbb{D}$.
(iv) Let $U=\phi_{w} \circ \phi_{z} \circ \phi_{\phi_{z}(w)}$, then $U(0)=\phi_{w} \circ \phi_{z}\left(\phi_{z}(w)\right)=\phi_{w}(w)=0$; thus $U \in G_{0}$ is unitary.
(v) We know that $R, T \in \mathcal{L}\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)$ and $R T=T R$ then $\sqrt{R} \sqrt{T}=\sqrt{T} \sqrt{R}$. Hence $\left(S^{*} S\right)\left(S S^{*}\right)=\left(S S^{*}\right)\left(S^{*} S\right)$ implies that $\left|S \| S^{*}\right|=\left|S^{*}\right||S|$. Thus, it follows that

$$
\left(\left|S^{*} \| S\right|\right)^{2}=\left|S^{*}\right|^{2}|S|^{2}=\left(S S^{*}\right)\left(S^{*} S\right)=I
$$

Now since the product of two commuting positive operators will be positive, we obtain from the [12] uniqueness of the square root of a positive operator that $|S|\left|S^{*}\right|=\left|S^{*}\right||S|=I$. Further, $S^{*}\left(S^{*} S\right)=\left(S S^{*}\right) S^{*}$ implies $S^{*}|S|=\left|S^{*}\right| S^{*}$. Now since $\mathcal{V}=S^{*}|S|$, we obtain $\mathcal{V}^{2}=\left(\left|S^{*}\right| S^{*}\right)\left(S^{*}|S|\right)=\left|S^{*}\right||S|=I$. Since \mathcal{V} is unitary and $\mathcal{V}^{2}=I$, we have $\mathcal{V}^{*}=\mathcal{V}$ and \mathcal{V} is self-adjoint.

The operators U_{w}^{α} satisfy the following intertwining properties with Toeplitz, multiplication, Hankel and little Hankel operators defined on $L_{a}^{2}\left(d A_{\alpha}\right)$.

Lemma 2.2. The following is valid for $\phi \in L^{\infty}(\mathbb{D})$:
(i) $U_{w w}^{\alpha} T_{\phi}^{(\alpha)} U_{w}^{\alpha}=T_{\phi \circ \phi_{w}}^{(\alpha)}$.
(ii) $U_{w}^{\alpha} H_{\phi}^{(\alpha)} U_{w}^{\alpha}=H_{\phi \circ \phi_{w}}^{(\alpha)}$.
(iii) $U_{w}^{\alpha} M_{\phi}^{(\alpha)} U_{w}^{\alpha}=M_{\phi \circ \phi_{w}}^{(\alpha)}$.
(iv) $U_{w}^{\alpha} h_{\phi}^{(\alpha)} U_{w}^{\alpha}=h_{\phi \circ \phi_{w}}^{(\alpha)}$.

Proof. Notice that $U_{w}^{\alpha}\left(L_{a}^{2}\left(d A_{\alpha}\right)\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)$ and $U_{w}^{\alpha}\left(\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)^{\perp}\right) \subset\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)^{\perp}$. Hence $P_{\alpha} U_{w}^{\alpha}=U_{w}^{\alpha} P_{\alpha}$. Now let $f \in L_{a}^{2}\left(d A_{\alpha}\right)$. Then from Lemma 2.1, it follows that

$$
\begin{aligned}
U_{w}^{\alpha} T_{\phi}^{(\alpha)} U_{w}^{\alpha} f & =U_{w}^{\alpha} T_{\phi}^{(\alpha)}\left(\left(f \circ \phi_{w}\right) k_{w}^{1+\frac{\alpha}{2}}\right)=U_{w}^{\alpha} P_{\alpha}\left(\phi\left(f \circ \phi_{w}\right) k_{w}^{1+\frac{\alpha}{2}}\right)=P_{\alpha} U_{w}^{\alpha}\left(\phi\left(f \circ \phi_{w}\right) k_{w}^{1+\frac{\alpha}{2}}\right) \\
& =P_{\alpha}\left(\left(\phi \circ \phi_{w}\right)\left(f \circ \phi_{w} \circ \phi_{w}\right)\left(k_{w}^{1+\frac{\alpha}{2}} \circ \phi_{w}\right) k_{w}^{1+\frac{\alpha}{2}}\right)=P_{\alpha}\left(\left(\phi \circ \phi_{w}\right) f\right)=T_{\phi \circ \phi_{w}}^{(\alpha)} f .
\end{aligned}
$$

Hence (i) follows. Again let $f \in L_{a}^{2}\left(d A_{\alpha}\right)$. Then from Lemma 2.1, it follows that

$$
\begin{aligned}
U_{w}^{\alpha} H_{\phi}^{(\alpha)} U_{w}^{\alpha} f & =U_{w}^{\alpha} H_{\phi}^{(\alpha)}\left[\left(f \circ \phi_{w}\right) k_{w}^{1+\frac{\alpha}{2}}\right]=U_{w}^{\alpha}\left[\left(I-P_{\alpha}\right)\left(\phi\left(f \circ \phi_{w}\right) k_{w}^{1+\frac{\alpha}{2}}\right)\right] \\
& =\left(I-P_{\alpha}\right) U_{w}^{\alpha}\left[\phi\left(f \circ \phi_{w}\right) k_{w}^{1+\frac{\alpha}{2}}\right]=\left(I-P_{\alpha}\right)\left[\left(\phi \circ \phi_{w}\right)\left(f \circ \phi_{w} \circ \phi_{w}\right)\left(k_{w}^{1+\frac{\alpha}{2}} \circ \phi_{w}\right) k_{w}^{1+\frac{\alpha}{2}}\right] \\
& =\left(I-P_{\alpha}\right)\left[\left(\phi \circ \phi_{w}\right) f\right]=H_{\phi \circ \phi_{w}}^{(\alpha)} f .
\end{aligned}
$$

Thus (ii) follows. The proof of (iii) and (iv) are similar.
Lemma 2.3. Fix $\alpha>-1$. If $S, T \in \mathcal{L}\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)$ and $\left(B_{\alpha} S\right)(z)=\left(B_{\alpha} T\right)(z)$ for all $z \in \mathbb{D}$, then $S=T$.
Proof. Assume $\left\langle(S-T) k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}}\right\rangle=0$ for all $z \in \mathbb{D}$. Then $\left\langle(S-T) K_{z}^{(\alpha)}, K_{z}^{(\alpha)}\right\rangle=K^{(\alpha)}(z, z)\left\langle(S-T) k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}}\right\rangle=$ $K^{(\alpha)}(z, z) \cdot 0=0$. Let $A=S-T$ and define $G(x, y)=\left\langle A K_{\bar{x}}^{(\alpha)}, K_{y}^{(\alpha)}\right\rangle$. The function G is holomorphic in x and y and $G(x, y)=0$ if $x=\bar{y}$. It can now be verified that such functions must vanish identically. Let $x=u+i v, y=u-i v$. Let $F(u, v)=G(x, y)$. The function F is holomorphic and vanishes if u and v are real. Hence $G(x, y)=F(u, v) \equiv 0$. Thus even $\left\langle A K_{x}^{(\alpha)}, K_{y}^{(\alpha)}\right\rangle=0$ for any $x, y \in \mathbb{D}$. Since the linear combinations of $K_{x}^{(\alpha)}, x \in \mathbb{D}$, are dense in $L_{a}^{2}\left(d A_{\alpha}\right)$, it follows that $A=0$. That is, $S=T$.

Lemma 2.4. If $f \in L_{a}^{1}\left(\mathbb{D}, d A_{\alpha}\right)$, then $f(z)=\int_{\mathbb{D}} f(w) K^{(\alpha)}(z, w) d A_{\alpha}(w)$ for all $z \in \mathbb{D}$ and

$$
\left\|K^{(\alpha)}(\cdot, w)\right\|_{2} \approx \frac{1}{\left(1-|w|^{2}\right)^{1+\frac{\alpha}{2}}}
$$

Proof. It follows from [24] that

$$
\begin{aligned}
\left\|K^{(\alpha)}(\cdot, w)\right\|_{2} & =\left(\int_{\mathbb{D}}\left|K^{(\alpha)}(z, w)\right|^{2} d A_{\alpha}(z)\right)^{\frac{1}{2}}=\left(\int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\alpha}}{|1-\bar{w} z|^{2(\alpha+2)}} d A(z)\right)^{\frac{1}{2}}(\alpha+1)^{\frac{1}{2}} \\
& \approx\left(\frac{1}{\left(1-|w|^{2}\right)^{\alpha+2}}\right)^{\frac{1}{2}}=\frac{1}{\left(1-|w|^{2}\right)^{1+\frac{\alpha}{2}}}
\end{aligned}
$$

For any $f \in L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$, we define a function $B_{\alpha} f$ on \mathbb{D} by

$$
\left(B_{\alpha} f\right)(z)=\int_{\mathbb{D}} f\left(\phi_{z}(w)\right) d A_{\alpha}(w)=\int_{\mathbb{D}} f(w)\left|k_{z}^{1+\frac{\alpha}{2}}(w)\right|^{2} d A_{\alpha}(w)
$$

From [1],[24] it follows that there exists a constant C such that $\frac{\left|K^{(\alpha)}(z, w)\right|}{K^{(\alpha)}(z, z)}=\frac{1}{\left|K^{(\alpha)}\left(z, \phi_{z}(w)\right)\right|} \leq C$, for all z and w in \mathbb{D}. It thus follows that $\left|B_{\alpha} f(z)\right| \leq C \int_{\mathbb{D}}|f(w)|\left|K^{(\alpha)}(z, w)\right| d A_{\alpha}(w)$. This implies that the transform B_{α} is a bounded linear operator on $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$.

3. Main results

In this section, we proved that a bounded linear operator S from $L_{a}^{2}\left(d A_{\alpha}\right)$ into itself commutes with all the composition operators $C_{a}^{(\alpha)}, a \in \mathbb{D}$, if and only if $B_{\alpha} S$ satisfies certain averaging condition. That is, if and only if $\widehat{S}=S$ where $\widehat{S}=\int_{\mathbb{D}} U_{a}^{\alpha} S U_{a}^{\alpha} d A_{\alpha}(a)$. Since the mapping $a \mapsto U_{a}^{(\alpha)}$ is strong operator
continuous, we can define for each bounded linear operator S on $L_{a}^{2}\left(d A_{\alpha}\right)$, a bounded linear operator \widehat{S} (an averaging operation) on the space by $\widehat{S}=\int_{\mathbb{D}} U_{a}^{\alpha} S U_{a}^{\alpha} d A_{\alpha}(a)$ where the integral is taken in the sense that $\left\langle\left(\int_{\mathbb{D}} U_{a}^{\alpha} S U_{a}^{\alpha} d A_{\alpha}(a)\right) f, g\right\rangle=\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} S U_{a}^{\alpha} f, g\right\rangle d A_{\alpha}(a)$. Notice that the integrand of $\int_{\mathbb{D}} U_{a}^{\alpha} S U_{a}^{\alpha} d A_{\alpha}(a)$ is strongly continuous in a and uniformly bounded for each fixed S. For a discussion of such integrals see [6] and [7]. The idea of averaging an operator against some unitary operators were considered by many authors [4], [14]. We will also present some applications of Theorem 3.1 in form of corollaries at the end of this section.
Theorem 3.1. A bounded linear operator $S \in \mathcal{L}\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)$ commutes with all the composition operators $C_{a}^{(\alpha)}, a \in \mathbb{D}$, if and only if

$$
\left(B_{\alpha} S\right)(z)=\int_{\mathbb{D}}\left(B_{\alpha} S\right)\left(\phi_{a}(z)\right) d A_{\alpha}(a)
$$

for all $z \in \mathbb{D}$.
Proof. Suppose $\left(B_{\alpha} S\right)(z)=\int_{\mathbb{D}}\left(B_{\alpha} S\right)\left(\phi_{a}(z)\right) d A_{\alpha}(a)$ for all $z \in \mathbb{D}$. Then by Lemma 2.1, there exists a constant λ with $|\lambda|=1$ such that for all $z \in \mathbb{D}$,

$$
\begin{aligned}
\left(B_{\alpha} S\right)(z) & =\left\langle S k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}}\right\rangle=\int_{\mathbb{D}}\left(B_{\alpha} S\right)\left(\phi_{a}(z)\right) d A_{\alpha}(a)=\int_{\mathbb{D}}\left\langle S k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}}, k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}}\right\rangle d A_{\alpha}(a) \\
& =\int_{\mathbb{D}}\left\langle\lambda S U_{a}^{\alpha} k_{z}^{1+\frac{\alpha}{2}}, \lambda U_{a}^{\alpha} k_{z}^{1+\frac{\alpha}{2}}\right\rangle d A_{\alpha}(a)=\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} S U_{a}^{\alpha} k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}}\right\rangle d A_{\alpha}(a) \\
& =\left\langle\left(\int_{\mathbb{D}} U_{a}^{\alpha} S U_{a}^{\alpha} d A_{\alpha}(a)\right) k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}}\right\rangle=\left\langle\widehat{S} k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}}\right\rangle \\
& =\left(B_{\alpha} \widehat{S}\right)(z)
\end{aligned}
$$

where $\widehat{S}=\int_{\mathbb{D}} U_{a}^{\alpha} S U_{a}^{\alpha} d A_{\alpha}(a)$. Thus by Lemma $2.3, S=\widehat{S}$. Hence for all $f, g \in L_{a}^{2}\left(d A_{\alpha}\right),\langle S f, g\rangle=\langle\widehat{S} f, g\rangle$. That is,

$$
\begin{equation*}
\int_{\mathbb{D}}(S f)(z) \overline{g(z)} d A_{\alpha}(z)=\int_{\mathbb{D}}\left\langle S U_{a}^{\alpha} f, U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a) \tag{2}
\end{equation*}
$$

The boundedness of S and the antianalyticity of $K^{(\alpha)}(z, a)$ in a imply that for each $z \in \mathbb{D}$, the function, $S\left(\frac{f}{K^{(\alpha)}(, a)}\right)(z) K^{(\alpha)}(z, a)$ is antianalytic in a. Therefore, by the mean value property of harmonic functions, we have [19]

$$
\begin{equation*}
\int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot, a)}\right)(z) K^{(\alpha)}(z, a) d A_{\alpha}(a)=S\left(\frac{f}{K^{(\alpha)}(\cdot, 0)}\right) K^{(\alpha)}(z, 0)=S f(z) \tag{3}
\end{equation*}
$$

Thus, from (3), it follows that

$$
\langle S f, g\rangle=\int_{\mathbb{D}} \overline{g(z)} \int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot, a)}\right)(z) K^{(\alpha)}(z, a) d A_{\alpha}(a) d A_{\alpha}(z)
$$

Using Fubini's theorem [22], we get $\langle S f, g\rangle=\int_{\mathbb{D}} \int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot, a)}\right)(z) \overline{g(z)} K^{(\alpha)}(z, a) d A_{\alpha}(z) d A_{\alpha}(a)$. Now since $k_{a}^{1+\frac{\alpha}{2}}(z)=\frac{K^{(a)}(z, a)}{\sqrt{K^{(\alpha)}(a, a)}}$ and $\left(k_{a}^{1+\frac{\alpha}{2}} \circ \phi_{a}\right)(z) k_{a}^{1+\frac{\alpha}{2}}(z)=1$ for all $a, z \in \mathbb{D}$, we obtain

$$
\begin{aligned}
\langle S f, g\rangle & =\int_{\mathbb{D}} \int_{\mathbb{D}} S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right)(z) \overline{g(z)} k_{a}^{1+\frac{\alpha}{2}}(z) d A_{\alpha}(z) d A_{\alpha}(a) \\
& =\int_{\mathbb{D}} \int_{\mathbb{D}} S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right)(z) \overline{g(z)} \overline{k_{a}^{1+\frac{\alpha}{2}}}\left(\phi_{a}(z)\right)\left|k_{a}^{1+\frac{\alpha}{2}}(z)\right|^{2} d A_{\alpha}(z) d A_{\alpha}(a)
\end{aligned}
$$

Finally, as $\left(\phi_{a} \circ \phi_{a}\right)(z) \equiv z$ and $J_{\phi_{a}(z)}=\frac{\left(1-\left||a|^{2}\right)^{2}\right.}{(1-\bar{a})^{4}}$, we obtain using Lemma 2.1 that

$$
\langle S f, g\rangle=\int_{\mathbb{D}} \int_{\mathbb{D}} S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right)\left(\phi_{a}(z)\right) \overline{k_{a}^{1+\frac{\alpha}{2}}(z)} \overline{g\left(\phi_{a}(z)\right)} d A_{\alpha}(z) d A_{\alpha}(a) .
$$

By our hypothesis, and using (3) we have $\langle S f, g\rangle=\int_{\mathbb{D}}\left\langle S U_{a}^{\alpha} f, U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a)$. Using Lemma 2.1, we obtain

$$
\begin{aligned}
\left\langle S U_{a}^{\alpha} f, U_{a}^{\alpha} g\right\rangle & =\left\langle S\left(\frac{f \circ \phi_{a}}{k_{a}^{1+\frac{\alpha}{2}} \circ \phi_{a}}\right),\left(g \circ \phi_{a}\right) k_{a}^{1+\frac{\alpha}{2}}\right\rangle \\
& =\left\langle S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}} \circ \phi_{a}\right),\left(g \circ \phi_{a}\right) k_{a}^{1+\frac{\alpha}{2}}\right\rangle \\
& =\int_{\mathbb{D}} S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}} \circ \phi_{a}\right)(z) \overline{g\left(\phi_{a}(z)\right)} \overline{k_{a}^{1+\frac{\alpha}{2}}(z)} d A_{\alpha}(z) .
\end{aligned}
$$

Thus we obtain for all $f, g \in L_{a}^{2}\left(d A_{\alpha}\right)$,

$$
\int_{\mathbb{D}} S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}} \circ \phi_{a}\right)(z) \overline{g\left(\phi_{a}(z)\right)} k_{a}^{1+\frac{\alpha}{2}}(z) d A_{\alpha}(z)=\int_{\mathbb{D}} S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right)\left(\phi_{a}(z) \overline{k_{a}^{1+\frac{\alpha}{2}}(z)} \overline{g\left(\phi_{a}(z)\right)} d A_{\alpha}(z)\right.
$$

Hence for all $f, g \in L_{a}^{2}\left(d A_{\alpha}\right), a \in \mathbb{D}$, we have

$$
\left\langle S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}} \circ \phi_{a}\right), U_{a}^{\alpha} g\right\rangle=\left\langle S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right) \circ \phi_{a}, U_{a}^{\alpha} g\right\rangle .
$$

Since $U_{a}^{\alpha} \in \mathcal{L}\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)$ is unitary, we obtain $S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}} \circ \phi_{a}\right)=S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right) \circ \phi_{a}$ for all $f \in L_{a}^{2}\left(d A_{\alpha}\right)$ and $a \in \mathbb{D}$.
Thus $S C_{a}^{(\alpha)}\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right)=C_{a}^{(\alpha)} S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right)$. Since $\left(k_{a}^{1+\frac{\alpha}{2}}\right)^{-1} \in H^{\infty}(\mathbb{D})$, hence $S C_{a}^{(\alpha)}=C_{a}^{(\alpha)} S$ for all $a \in \mathbb{D}$. Now to prove the converse, assume that $C_{a}^{(\alpha)} S=S C_{a}^{(\alpha)}$ for all $a \in \mathbb{D}$. That is, for all $f \in L_{a}^{2}\left(d A_{\alpha}\right), a \in \mathbb{D}$, we have $(S f) \circ \phi_{a}=S\left(f \circ \phi_{a}\right)$. Hence by Lemma 2.1, we obtain for all $f \in L_{a}^{2}\left(d A_{\alpha}\right)$,

$$
S U_{a}^{\alpha} f=S\left(\left(f \circ \phi_{a}\right) k_{a}^{1+\frac{\alpha}{2}}\right)=S\left(\frac{f \circ \phi_{a}}{k_{a}^{1+\frac{\alpha}{2}} \circ \phi_{a}}\right)=S\left(\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right) \circ \phi_{a}\right)=S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right) \circ \phi_{a} .
$$

Now since $k_{a}^{1+\frac{\alpha}{2}}(z)=\frac{K^{(a)}(z, a)}{\sqrt{K^{(a)}(a, a)}}$ for all $a, z \in \mathbb{D}$ and by using Lemma 2.1, we get for all $f, g \in L_{a}^{2}\left(d A_{\alpha}\right)$,

$$
\begin{aligned}
\left\langle S U_{a}^{\alpha} f, U_{a}^{\alpha} g\right\rangle & =\int_{\mathbb{D}} S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right)\left(\phi_{a}(z)\right) \overline{\left(g \circ \phi_{a}\right)(z)} \overline{k_{a}^{1+\frac{\alpha}{2}}(z)} d A_{\alpha}(z) \\
& =\int_{\mathbb{D}} S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right)(z) \overline{g(z)} \overline{\left(k_{a}^{1+\frac{\alpha}{2}} \circ \phi_{a}\right)(z)}\left|k_{a}^{1+\frac{\alpha}{2}}(z)\right|^{2} d A_{\alpha}(z) \\
& =\int_{\mathbb{D}} S\left(\frac{f}{k_{a}^{1+\frac{\alpha}{2}}}\right)(z) \overline{g(z)} k_{a}^{1+\frac{\alpha}{2}} d A_{\alpha}(z) \\
& =\int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot, a)}\right)(z) \overline{g(z)} K^{(\alpha)}(z, a) d A_{\alpha}(z) .
\end{aligned}
$$

By using Fubini's theorem, we obtain

$$
\begin{aligned}
\int_{\mathbb{D}}\left\langle S U_{a}^{\alpha} f, U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a) & =\int_{\mathbb{D}} \int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot, a)}\right)(z) \overline{g(z)} K^{(\alpha)}(z, a) d A_{\alpha}(z) d A_{\alpha}(a) \\
& =\int_{\mathbb{D}} \overline{g(z)} d A_{\alpha}(z) \int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot, a)}\right)(z) K^{(\alpha)}(z, a) d A_{\alpha}(a)
\end{aligned}
$$

In the first part of the proof, we have already checked that for all $z \in \mathbb{D}, \int_{\mathbb{D}} S\left(\frac{f}{K^{(\alpha)}(\cdot, a)}\right)(z) K^{(\alpha)}(z, a) d A_{\alpha}(a)=$ $S\left(\frac{f}{K^{(\alpha)}(\cdot, 0)}\right)(z) K^{(\alpha)}(z, 0)=S f(z)$. Thus $\int_{\mathbb{D}}\left\langle S U_{a}^{\alpha} f, U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a)=\int_{\mathbb{D}} S f(z) \overline{g(z)} d A_{\alpha}(z)=\langle S f, g\rangle$. Taking $f=g=$ $k_{z}^{1+\frac{\alpha}{2}}, z \in \mathbb{D}$, we obtain by Lemma 2.1 that

$$
\begin{align*}
\left(B_{\alpha} S\right)(z) & =\left\langle S k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}}\right\rangle=\int_{\mathbb{D}}\left\langle S U_{a}^{\alpha} k_{z}^{1+\frac{\alpha}{2}}, U_{a}^{\alpha} k_{z}^{1+\frac{\alpha}{2}}\right\rangle d A_{\alpha}(a) \\
& =\int_{\mathbb{D}}\left\langle S k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}}, k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}}\right\rangle d A_{\alpha}(a)=\int_{\mathbb{D}}\left(B_{\alpha} S\right)\left(\phi_{a}(z)\right) d A_{\alpha}(a) \tag{4}
\end{align*}
$$

This completes the proof.
Example 3.2. The operator B_{α} defined on $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ commutes with the composition operators $C_{a}^{(\alpha)}, a \in \mathbb{D}$. To verify this, let $f \in L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$. By a change of variable,

$$
\begin{aligned}
\left(B_{\alpha} f\right)\left(\phi_{a}(z)\right) & =\int_{\mathbb{D}} f(w)\left|k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}}(w)\right|^{2} d A_{\alpha}(w) \\
& =\int_{\mathbb{D}} f\left(\phi_{a}(w)\right)\left|k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}} \circ \phi_{a}(w)\right|^{2}\left|k_{a}^{1+\frac{\alpha}{2}}(w)\right|^{2} d A_{\alpha}(w)
\end{aligned}
$$

Applying Lemma 2.1, we obtain an unitary U with $\phi_{\phi_{a}(z)} \circ \phi_{a}=U \phi_{\phi_{a} \circ \phi_{a}(z)}=U \phi_{z}$. Taking the real Jacobian determinants of the above equation, we obtain $\left|k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}} \circ \phi_{a}(w)\right|^{2}\left|k_{a}^{1+\frac{\alpha}{2}}(w)\right|^{2}=\left|k_{z}^{1+\frac{\alpha}{2}}(w)\right|^{2}$ for all a, z and w in \mathbb{D}. Therefore,

$$
\left(B_{\alpha} f\right)\left(\phi_{a}(z)\right)=\int_{\mathbb{D}} f\left(\phi_{a}(w)\right)\left|k_{z}^{1+\frac{\alpha}{2}}(w)\right|^{2} d A_{\alpha}(w)=B_{\alpha}\left(f \circ \phi_{a}\right)(z)
$$

This implies that $B_{\alpha} C_{a}^{(\alpha)}=C_{a}^{(\alpha)} B_{\alpha}$ on $L^{2, \alpha}(\mathbb{D})$ and hence $\widehat{B_{\alpha}}=B_{\alpha}$.
For $\phi \in L^{\infty}(\mathbb{D})$, define the functions

$$
\left(D_{\alpha} \phi\right)(z)=\int_{\mathbb{D}} \phi\left(\phi_{a}(z)\right) d A_{\alpha}(a),
$$

and

$$
\left(B_{\alpha} \phi\right)(z)=\int_{\mathbb{D}} \phi\left(\phi_{z}(w)\right) d A_{\alpha}(w)
$$

Now we present some applications of our main result Theorem 3.1.
Corollary 3.3. If $\phi \in L^{\infty}(\mathbb{D})$, then there exists a constant δ of modulus 1 such that

$$
\int_{\mathbb{D}} \int_{\mathbb{D}} \phi\left(\phi_{\phi_{a}(z)}(w)\right) d A_{\alpha}(w) d A_{\alpha}(a)=\int_{\mathbb{D}} \int_{\mathbb{D}} \phi\left(\delta \phi_{\phi_{z}(a)}(w)\right) d A_{\alpha}(a) d A_{\alpha}(w)
$$

Proof. From (4) it follows that

$$
\begin{aligned}
\int_{\mathbb{D}}\left(B_{\alpha} T_{\phi}^{(\alpha)}\right)\left(\phi_{a}(z)\right) d A_{\alpha}(a) & =\int_{\mathbb{D}}\left\langle T_{\phi}^{(\alpha)} k_{\phi_{a}(z)^{\prime}}^{1+\frac{\alpha}{2}}, k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}}\right\rangle d A_{\alpha}(a) \\
& =\int_{\mathbb{D}}\left\langle\phi k_{\phi_{a}(z)^{\prime}}^{1+\frac{\alpha}{2}} k_{\phi_{a}(z)}^{1+\frac{\alpha}{2}}\right\rangle d A_{\alpha}(a) \\
& =\int_{\mathbb{D}}\left(B_{\alpha} \phi\right)\left(\phi_{a}(z)\right) d A_{\alpha}(a) \\
& =\int_{\mathbb{D}} \int_{\mathbb{D}} \phi\left(\phi_{\phi_{a}(z)}(w)\right) d A_{\alpha}(w) d A_{\alpha}(a) .
\end{aligned}
$$

Let $f, g \in L_{a}^{2}\left(d A_{\alpha}\right)$. Then by Lemma 2.1 and Fubini's theorem, we obtain

$$
\begin{aligned}
\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} T_{\phi}^{(\alpha)} U_{a}^{\alpha} f, g\right\rangle & d A_{\alpha}(a)=\int_{\mathbb{D}} d A_{\alpha}(a) \int_{\mathbb{D}} \phi(z)\left(f \circ \phi_{a}\right)(z) k_{a}^{1+\frac{\alpha}{2}}(z) \overline{\left(g \circ \phi_{a}\right)(z)} \overline{k_{a}^{1+\frac{\alpha}{2}}}(z) d A_{\alpha}(z) \\
& =\int_{\mathbb{D}} d A_{\alpha}(a) \int_{\mathbb{D}} \phi\left(\phi_{a}(w)\right) f(w) \overline{g(w)}\left|\left(k_{a}^{1+\frac{\alpha}{2}} \circ \phi_{a}\right)(w)\right|^{2}\left|k_{a}^{1+\frac{\alpha}{2}}(w)\right|^{2} d A_{\alpha}(w) \\
& =\int_{\mathbb{D}} d A_{\alpha}(a) \int_{\mathbb{D}} \phi\left(\phi_{a}(w)\right) f(w) \overline{g(w)} d A_{\alpha}(w) \\
& =\int_{\mathbb{D}} f(w) \overline{g(w)} d A_{\alpha}(w) \int_{\mathbb{D}} \phi\left(\phi_{a}(w)\right) d A_{\alpha}(a) \\
& =\int_{\mathbb{D}}\left(D_{\alpha} \phi\right)(w) f(w) \overline{g(w)} d A_{\alpha}(w)
\end{aligned}
$$

$$
\text { Thus } \begin{aligned}
\int_{\mathbb{D}}\left(B_{\alpha} T_{\phi}^{(\alpha)}\right) & \left(\phi_{a}(z)\right) d A_{\alpha}(a)=\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} T_{\phi}^{(\alpha)} U_{a}^{\alpha} k_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}}\right\rangle d A_{\alpha}(a) \\
& =\int_{\mathbb{D}}\left(D_{\alpha} \phi\right)(w)\left|k_{z}^{1+\frac{\alpha}{2}}(w)\right|^{2} d A_{\alpha}(w)=\int_{\mathbb{D}}\left(D_{\alpha} \phi\right)\left(\phi_{z}(w)\right) d A_{\alpha}(w) \\
& =\int_{\mathbb{D}} \int_{\mathbb{D}}\left(\phi \circ \phi_{a} \circ \phi_{z}\right)(w) d A_{\alpha}(a) d A_{\alpha}(w) .
\end{aligned}
$$

Hence by Theorem 3.1, we obtain

$$
\int_{\mathbb{D}} \int_{\mathbb{D}} \phi\left(\phi_{\phi_{a}(z)}(w)\right) d A_{\alpha}(w) d A_{\alpha}(a)=\int_{\mathbb{D}} \int_{\mathbb{D}} \phi\left(\phi_{a} \circ \phi_{z}\right)(w) d A_{\alpha}(a) d A_{\alpha}(w)
$$

Let $U=\phi_{a} \circ \phi_{z} \circ \phi_{\phi_{z}(a)}$. Then $U \in A u t(\mathbb{D})$ and $U(0)=\phi_{a} \circ \phi_{z}\left(\phi_{z}(a)\right)=\phi_{a}(a)=0$ and $U \phi_{\phi_{z}(a)}=\phi_{a} \circ \phi_{z}$. It is well known [9] that if $\phi \in \operatorname{Aut}(\mathbb{D})$, then $\phi(z)=e^{i \theta} \frac{z-p}{1-\bar{p} z}$ for some $\theta \in \mathbb{R}$ and $p \in \mathbb{D}$. Furthermore, $\phi(0)=0$ if and only if $\phi(z)=e^{i \theta} z$. Thus $U z=e^{i \theta} z$ and $\phi_{a} \circ \phi_{z}=U \phi_{\phi_{z}(a)}=e^{i \theta} \phi_{\phi_{z}(a)}=\delta \phi_{\phi_{z}(a)}$, where $\delta=e^{i \theta}, \theta \in \mathbb{R}$. Hence it follows that $\int_{\mathbb{D}} \int_{\mathbb{D}} \phi\left(\phi_{\phi_{a}(z)}(w)\right) d A_{\alpha}(w) d A_{\alpha}(a)=\int_{\mathbb{D}} \int_{\mathbb{D}} \phi\left(\delta \phi_{\phi_{z}(a)}(w)\right) d A_{\alpha}(a) d A_{\alpha}(w)$.

Notice that one can define U_{a}^{α} on $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ also. Suppose $\phi \in L^{\infty}(\mathbb{D}), f, g \in L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$. Then by using

Fubini's theorem and making a change of variable, we obtain

$$
\begin{align*}
\int_{\mathbb{D}}\left\langle\phi U_{a}^{\alpha} f, U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a) & =\int_{\mathbb{D}} d A_{\alpha}(a) \int_{\mathbb{D}} \phi(z)\left(f \circ \phi_{a}\right)(z) k_{a}^{1+\frac{\alpha}{2}} \overline{\left(g \circ \phi_{a}\right)(z)} \overline{k_{a}^{1+\frac{\alpha}{2}}(z)} d A_{\alpha}(z) \\
& =\int_{\mathbb{D}} d A_{\alpha}(a) \int_{\mathbb{D}} \phi\left(\phi_{a}(w)\right) f(w) \overline{g(w)} d A_{\alpha}(w) \\
& =\int_{\mathbb{D}} f(w) \overline{g(w)} d A_{\alpha}(w) \int_{\mathbb{D}} \phi\left(\phi_{a}(w)\right) d A_{\alpha}(a) \\
& =\int_{\mathbb{D}}\left(D_{\alpha} \phi\right)(w) f(w) \overline{g(w)} d A_{\alpha}(w)=\left\langle\left(D_{\alpha} \phi\right) f, g\right\rangle . \tag{5}
\end{align*}
$$

$\underline{\text { Define } J_{\alpha}}: L^{2}\left(\mathbb{D}, d A_{\alpha}\right) \rightarrow L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ as $J_{\alpha} f(z)=f(\bar{z})$. The map J_{α} is an unitary operator and $J_{\alpha}^{*}=J_{\alpha}$. Let $\overline{L_{a}^{2}\left(d A_{\alpha}\right)}=\left\{\bar{f}: f \in L_{a}^{2}\left(d A_{\alpha}\right)\right\}$. Define $h_{\phi}^{(\alpha)}: L_{a}^{2}\left(d A_{\alpha}\right) \rightarrow \overline{L_{a}^{2}\left(d A_{\alpha}\right)}$ such that $h_{\phi}^{(\alpha)} f=\overline{P_{\alpha}}(\phi f)$, where $\overline{P_{\alpha}}$ is the orthogonal projection from $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ onto $\overline{L_{a}^{2}\left(d A_{\alpha}\right)}$. The operator $h_{\phi}^{(\alpha)}$ is called the little Hankel operator on $L_{a}^{2}\left(d A_{\alpha}\right)$.

In Corollary 3.4, we show that $\widehat{H}_{\phi}^{(\alpha)}=H_{D_{\alpha} \phi^{\prime}}^{(\alpha)} \widehat{h}_{\phi}^{(\alpha)}=h_{D_{\alpha} \phi^{\prime}}^{(\alpha)} \widehat{T}_{\phi}^{(\alpha)}=T_{D_{\alpha} \phi}^{(\alpha)}$. Thus $T_{\phi}^{(\alpha)}, H_{\phi}^{(\alpha)}, h_{\phi}^{(\alpha)}$ commutes with all $C_{\alpha}^{(\alpha)}, a \in \mathbb{D}$ if and only if $D_{\alpha} \phi=\phi$.
Corollary 3.4. If $\phi \in L^{\infty}(\mathbb{D}), f \in L_{a}^{2}\left(d A_{\alpha}\right)$, then
(i) $\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} H_{\phi}^{(\alpha)} U_{a}^{\alpha} f, g\right\rangle d A_{\alpha}(a)=\left\langle H_{\left(D_{\alpha} \phi\right)}^{(\alpha)} f, g\right\rangle$ for all $g \in\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)^{\perp}$.
(ii) $\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} h_{\phi}^{(\alpha)} U_{a}^{\alpha} f, g\right\rangle d A_{\alpha}(a)=\left\langle h_{\left(D_{\alpha} \phi\right)}^{(\alpha)} f, g\right\rangle$ for all $g \in \overline{L_{a}^{2}\left(d A_{\alpha}\right)}$.
(iii) $\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} T_{\phi}^{(\alpha)} U_{a}^{\alpha} f, g\right\rangle d A_{\alpha}(a)=\left\langle T_{\left(D_{\alpha} \phi\right)}^{(\alpha)} f, g\right\rangle$ for all $g \in L_{a}^{2}\left(d A_{\alpha}\right)$.

Proof. (i) If $f \in L_{a}^{2}\left(d A_{\alpha}\right), g \in\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)^{\perp}$, then from (5), it follows that

$$
\int_{\mathbb{D}}\left\langle\phi U_{a}^{\alpha} f, U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a)=\left\langle\left(D_{\alpha} \phi\right) f, g\right\rangle .
$$

This implies that $\int_{\mathbb{D}}\left\langle\phi U_{a}^{\alpha} f, U_{a}^{\alpha}\left(I-P_{\alpha}\right) g\right\rangle d A_{\alpha}(a)=\left\langle\left(D_{\alpha} \phi\right) f,\left(I-P_{\alpha}\right) g\right\rangle$. Hence since $U_{a}^{\alpha} P_{\alpha}=P_{\alpha} U_{a}^{\alpha}$, we obtain

$$
\begin{aligned}
\int_{\mathbb{D}}\left\langle U_{a}^{\alpha}\left(I-P_{\alpha}\right)\left(\phi U_{a}^{\alpha} f\right), g\right\rangle d A_{\alpha}(a) & =\int_{\mathbb{D}}\left\langle\phi U_{a}^{\alpha} f,\left(I-P_{\alpha}\right) U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a) \\
& =\left\langle\left(I-P_{\alpha}\right)\left(\left(D_{\alpha} \phi\right) f\right), g\right\rangle
\end{aligned}
$$

Therefore, we get $\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} H_{\phi}^{(\alpha)} U_{a}^{\alpha} f, g\right\rangle d A_{\alpha}(a)=\left\langle H_{\left(D_{\alpha} \phi\right)}^{(\alpha)} f, g\right\rangle$.
(ii) If $f \in L_{a}^{2}\left(d A_{\alpha}\right), g \in \overline{L_{a}^{2}\left(d A_{\alpha}\right)}$, then from the above discussion it follows that $\int_{\mathbb{D}}\left\langle\phi U_{a}^{\alpha} f, U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a)=$ $\left\langle\left(D_{\alpha} \phi\right) f, g\right\rangle$. This implies

$$
\int_{\mathbb{D}}\left\langle\phi U_{a}^{\alpha} P_{\alpha} f, U_{a}^{\alpha} \overline{P_{\alpha}} g\right\rangle d A_{\alpha}(a)=\left\langle\left(D_{\alpha} \phi\right) P_{\alpha} f, \overline{P_{\alpha}} g\right\rangle .
$$

Since $\overline{P_{\alpha}}=J_{\alpha} P_{\alpha} J_{\alpha}$, hence we obtain $\int_{\mathbb{D}}\left\langle\phi U_{a}^{\alpha} P_{\alpha} f, U_{a}^{\alpha} J_{\alpha} P_{\alpha} J_{\alpha} g\right\rangle d A_{\alpha}(a)=\left\langle\left(D_{\alpha} \phi\right) P_{\alpha} f, J_{\alpha} P_{\alpha} J_{\alpha} g\right\rangle$. Now $U_{a}^{\alpha} P_{\alpha}=$ $P_{\alpha} U_{a}^{\alpha}$. Thus we obtain

$$
\begin{aligned}
\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} J_{\alpha} P_{\alpha} J_{\alpha} \phi P_{\alpha} U_{a}^{\alpha} f, g\right\rangle d A_{\alpha}(a) & =\int_{\mathbb{D}}\left\langle\phi U_{a}^{\alpha} P_{\alpha} f, J_{\alpha} P_{\alpha} J_{\alpha} U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a) \\
& =\left\langle J_{\alpha} P_{\alpha} J_{\alpha}\left(D_{\alpha} \phi\right) P_{\alpha} f, g\right\rangle
\end{aligned}
$$

Thus $\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} h_{\phi}^{(\alpha)} U_{a}^{\alpha} f, g\right\rangle d A_{\alpha}(a)=\left\langle h_{D_{\alpha} \phi}^{(\alpha)} f, g\right\rangle$.
(iii) If $f, g \in L_{a}^{2}\left(d A_{\alpha}\right)$, then from equation (5), it follows that

$$
\int_{\mathbb{D}}\left\langle\phi U_{a}^{\alpha} f, U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a)=\left\langle\left(D_{\alpha} \phi\right) f, g\right\rangle
$$

Hence we obtain $\int_{\mathbb{D}}\left\langle\phi U_{a}^{\alpha} f, P_{\alpha} U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a)=\left\langle\left(D_{\alpha} \phi\right) f, P_{\alpha} g\right\rangle$. Thus

$$
\begin{aligned}
\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} P_{\alpha}\left(\phi U_{a}^{\alpha} f\right), g\right\rangle d A_{\alpha}(a) & =\int_{\mathbb{D}}\left\langle P_{\alpha}\left(\phi U_{a}^{\alpha} f\right), U_{a}^{\alpha} g\right\rangle d A_{\alpha}(a)=\left\langle\left(D_{\alpha} \phi\right) f, P_{\alpha} g\right\rangle \\
& =\left\langle P_{\alpha}\left(\left(D_{\alpha} \phi\right) f\right), g\right\rangle
\end{aligned}
$$

It follows therefore that $\int_{\mathbb{D}}\left\langle U_{a}^{\alpha} T_{\phi}^{(\alpha)} U_{a}^{\alpha} f, g\right\rangle d A_{\alpha}(a)=\left\langle T_{\left(D_{\alpha} \phi\right)}^{(\alpha)} f, g\right\rangle$.
Example 3.5. Let $\alpha=0$ and consider the Berezin transform B_{0}. Notice that if g is harmonic on \mathbb{D}, then g is the sum of an analytic function and the conjugate of another analytic function. It follows from [1], [10], [13] that $B_{0} g=g$ and $D_{0} g=g(0)-\frac{1}{2} \frac{\partial g}{\partial z}(0) z-\frac{1}{2} \frac{\partial g}{\partial z}(0) \bar{z}$. Let $g(z)=\sum_{n=0}^{\infty} c_{n} z^{n} \in H^{\infty}(\mathbb{D})$. Then from [1], [13], [10] that $B_{0} g=g$ and $D_{0} g=c_{0}-\frac{c_{1}}{2} z$. Hence if $g(z)=3-2 z+7 z^{2}-5 z^{3}, z \in \mathbb{D}$, then $B_{0} g=$ gbut $D_{0} g=3-z$. Hence $\widehat{T}_{g}^{(0)}=T_{D_{0} g}^{(0)} \neq T_{g}^{(0)}$. By Theorem 3.1, $T_{g}^{(0)}$ does not commute with all $C_{a}^{(0)}, a \in \mathbb{D}$. Now let $f(z)=-2 \bar{z}-7 \bar{z}^{2}$. Then $B_{0} f=f$ but $\left(D_{0} f\right)(z)=\bar{z}$. Thus $\widehat{H}_{f}^{(0)}=H_{D_{0} f}^{(0)}=H_{\bar{z}}^{(0)} \neq H_{f}^{(0)}$ and similarly $\widehat{h}_{f}^{(0)}=h_{D_{0} f}^{(0)}=h_{\bar{z}}^{(0)} \neq h_{f}^{(0)}$. By Theorem 3.1, $H_{f}^{(0)}$ and $h_{f}^{(0)}$ does not commute with all $C_{a}^{(0)}, a \in \mathbb{D}$.

4. Bounded analytic functions and composition operators

It is not difficult to verify that $M_{\phi}^{(\alpha)} L_{a}^{2}\left(d A_{\alpha}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)$ if and only if $\phi \in H^{\infty}(\mathbb{D})$. In section 3, we considered the weighted composition operator $U_{a}^{\alpha} f=\left(f \circ \phi_{a}\right) k_{a}^{1+\frac{\alpha}{2}}, f \in L_{a}^{2}\left(d A_{\alpha}\right)$. Here $\phi_{a}^{\prime}=-k_{a} \in H^{\infty}(\mathbb{D})$ and observe that the inducing function of the weighted composition operator belongs to $A u t(\mathbb{D})$ and the weight function belongs to $H^{\infty}(\mathbb{D})$. Now consider the weighted composition operator $W_{\psi, q}$ on $L_{a}^{2}\left(d A_{\alpha}\right)$ where $q \in L_{a}^{2}\left(d A_{\alpha}\right)$ and $\psi \in A u t(\mathbb{D})$. If $W_{\psi, q} L_{a}^{2}\left(d A_{\alpha}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)$ then what will be the relation between q and ψ. In this section we have shown that $q \in H^{\infty}(\mathbb{D})$ if and only if ψ is a finite Blaschke product. More specifically, we established the following. We showed that if \mathcal{M} is a subspace of $L^{\infty}(\mathbb{D})$ and if for $\phi \in \mathcal{M}$, the Toeplitz operator $T_{\phi}^{(\alpha)}$ represents a multiplication operator on a closed subspace $\mathcal{S} \subset L_{a}^{2}\left(d A_{\alpha}\right)$, then ϕ is bounded analytic on \mathbb{D}. Similarly if $q \in L^{\infty}(\mathbb{D})$ and \mathcal{B}_{n} is a finite Blaschke product and $M_{q}^{(\alpha)}\left(\operatorname{Range} C_{\mathcal{B}_{n}}^{(\alpha)}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)$, then $q \in H^{\infty}(\mathbb{D})$. Further, we have shown that if $\psi \in \operatorname{Aut}(\mathbb{D})$ and $q \in L_{a}^{2}\left(d A_{\alpha}\right)$, then $\mathcal{N}=\left\{q \in L_{a}^{2}\left(d A_{\alpha}\right): M_{q}^{(\alpha)}\left(\operatorname{Range} C_{\psi}^{(\alpha)}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)\right\}=$ $H^{\infty}(\mathbb{D})$ if and only if ψ is a finite Blaschke product. Akeroyd and Ghatage (2008,[2]) showed that if ϕ is univalent, analytic self-map of the disk, then C_{ϕ} has closed range on the Bergman space $L_{a}^{2}(\mathbb{D})$ if and only if ϕ is a conformal automorphism of the disk.

Theorem 4.1. (i) Let \mathcal{M} be a subspace of $L^{\infty}(\mathbb{D})$ such that for $\phi \in \mathcal{M}$, there exists a closed subspace \mathcal{S} of $L_{a}^{2}\left(d A_{\alpha}\right)$ for which $T_{\phi}^{(\alpha)} f=\phi f$, for all $f \in \mathcal{S}$. Then $\mathcal{M} \subset H^{\infty}(\mathbb{D})$.
(ii) Let $q \in L^{\infty}(\mathbb{D})$ and \mathcal{B}_{n} is a finite Blaschke product as defined in (1). If $M_{q}^{(\alpha)}\left(\right.$ Range $\left.C_{\mathcal{B}_{n}}^{(\alpha)}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)$, then $q \in H^{\infty}(\mathbb{D})$.

Proof. (i) Suppose $T_{\phi}^{(\alpha)} f=\phi f, f \in \mathcal{S} \subset L_{a}^{2}\left(d A_{\alpha}\right)$. Then $\phi(z)=\frac{T_{\phi}^{(\alpha)} f(z)}{f(z)}$. Hence ϕ is analytic on $\mathbb{D} \backslash\{z e r o s$ of $f\}$. Thus each isolated singularity of ϕ in \mathbb{D} is removable since ϕ is assumed to be bounded. Thus ϕ is analytic on \mathbb{D}. Since $\phi \in L^{\infty}(\mathbb{D})$, hence $\phi \in H^{\infty}(\mathbb{D})$.
(ii) Since $M_{q}^{(\alpha)}\left(C_{\mathcal{B}_{n}}^{(\alpha)} L_{a}^{2}\left(d A_{\alpha}\right)\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)$, hence $M_{q}^{(\alpha)} C_{\mathcal{B}_{n}}^{(\alpha)}$ is bounded (see [3],[24]). Let $f \in L_{a}^{2}\left(d A_{\alpha}\right)$. Then

$$
\begin{aligned}
\left\langle\left(C_{\mathcal{B}_{n}}^{(\alpha)}\right)^{*} M_{\bar{q}}^{(\alpha)} K^{(\alpha)}(\cdot, z), f\right\rangle & =\left\langle K^{(\alpha)}(\cdot, z), M_{q}^{(\alpha)} C_{\mathcal{B}_{n}}^{(\alpha)} f\right\rangle=\overline{q(z)} \overline{f\left(\mathcal{B}_{n}(z)\right)} \\
& =\overline{q(z)}\left\langle K^{(\alpha)}\left(\cdot, \mathcal{B}_{n}(z)\right), f\right\rangle .
\end{aligned}
$$

Hence $\left(C_{\mathcal{B}_{n}}^{(\alpha)}\right)^{*} M_{\bar{q}}^{(\alpha)} K^{(\alpha)}(\cdot, z)=\overline{q(z)} K^{(\alpha)}\left(\cdot, \mathcal{B}_{n}(z)\right)$. Since $M_{q}^{(\alpha)} C_{\mathcal{B}_{n}}^{(\alpha)}$ is bounded, so is $\left(C_{\mathcal{B}_{n}}^{(\alpha)}\right)^{*} M_{\bar{q}}^{(\alpha)}$ as $\left(M_{q}^{(\alpha)}\right)^{*}=M_{\bar{q}}^{(\alpha)}$ (for details see [24]). Thus there exists $R>0$ such that $\left\|\left(C_{\mathcal{B}_{n}}^{(\alpha)}\right)^{*} M_{\bar{q}}^{(\alpha)} K^{(\alpha)}(\cdot, z)\right\|_{2} \leq R\left\|K^{(\alpha)}(\cdot, z)\right\|_{2}$. Hence $|q(z)|\left\|K^{(\alpha)}\left(\cdot, \mathcal{B}_{n}(z)\right)\right\|_{2} \leq R\left\|K^{(\alpha)}(\cdot, z)\right\|_{2}$ and we obtain from Lemma 2.4 that

$$
|q(z)| \frac{1}{\left(1-\left|\mathcal{B}_{n}(z)\right|^{2}\right)^{1+\frac{\alpha}{2}}} \leq R \frac{1}{\left(1-|z|^{2}\right)^{1+\frac{\alpha}{2}}} .
$$

That is,

$$
|q(z)| \leq R\left(\frac{1-\left|\mathcal{B}_{n}(z)\right|^{2}}{1-|z|^{2}}\right)^{1+\frac{\alpha}{2}}
$$

Let $l=\max _{1 \leq i \leq n}\left\{\left|\alpha_{i}\right|\right\}$ and $p=\min _{1 \leq i \leq n}\left\{\left|\alpha_{i}\right|\right\}$. It follows from [8] that for $l<|z|<1$, we have

$$
\frac{1-\left|\mathcal{B}_{n}(z)\right|^{2}}{1-|z|^{2}} \leq m+2 n \frac{1+p}{1-p}
$$

Hence $q \in H^{\infty}(\mathbb{D})$.
Theorem 4.2. Let $\psi \in \operatorname{Aut}(\mathbb{D})$ and $\mathcal{N}=\left\{q \in L_{a}^{2}\left(d A_{\alpha}\right): M_{q}^{(\alpha)}\left(\right.\right.$ Range $\left.\left.C_{\psi}^{(\alpha)}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)\right\}$. If $\mathcal{N}=H^{\infty}(\mathbb{D})$, then there exist constants $L>0$ and $R>0$ such that

$$
L\left\|M_{q}^{(\alpha)} C_{\psi}^{(\alpha)}\right\| \leq\|q\|_{\infty} \leq R\left\|M_{q}^{(\alpha)} C_{\psi}^{(\alpha)}\right\|
$$

Proof. The set \mathcal{N} is a vector space. Define for $q \in \mathcal{N}$, the norm $\|q\|_{\mathcal{N}}:=\left\|M_{q}^{(\alpha)} C_{\psi}^{(\alpha)}\right\|$. The space \mathcal{N} is complete with respect to the metric induced from $\|\cdot\|_{\mathcal{N}}$. Let Ξ_{n} be a sequence in \mathcal{N} which is Cauchy. Then $M_{\Xi_{n}}^{(\alpha)} C_{\psi}^{(\alpha)}$ is a Cauchy sequence in $\mathcal{L}\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)$. Since the space $\mathcal{L}\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)$ is complete, hence there exists $S \in \mathcal{L}\left(L_{a}^{2}\left(d A_{\alpha}\right)\right)$ such that $\lim _{n \rightarrow \infty} M_{\Xi_{n}}^{(\alpha)} C_{\psi}^{(\alpha)}=S$. For $f \in L_{a}^{2}\left(d A_{\alpha}\right), \lim _{n \rightarrow \infty} M_{\Xi_{n}}^{(\alpha)} C_{\psi}^{(\alpha)} f=S f$. That is, $\lim _{n \rightarrow \infty} \Xi_{n}(f \circ \psi)=S f$ and for $z \in \mathbb{D}, \lim _{n \rightarrow \infty} \Xi_{n}(z) f(\psi(z))=(S f)(z)$. For $f=1$, we obtain $\lim _{n \rightarrow \infty} \Xi_{n}=S 1$. Let $q=S 1$. Then for $q \in L_{a}^{2}\left(d A_{\alpha}\right), z \in \mathbb{D}$, we have $\lim _{n \rightarrow \infty} \Xi_{n}(z) f(\psi(z))=q(z) f(\psi(z))$. Hence we get $(S f)(z)=q(z) f(\psi(z))$. It follows therefore that $S=M_{q}^{(\alpha)} C_{\psi}^{(\alpha)}$ and $q \in \mathcal{N}$ and $\lim _{n \rightarrow \infty}\left\|\Xi_{n}-q\right\|_{\mathcal{N}}=\lim _{n \rightarrow \infty}\left\|M_{\Xi_{n}}^{(\alpha)} C_{\psi}^{(\alpha)}-M_{q}^{(\alpha)} C_{\psi}^{(\alpha)}\right\|=0$ and \mathcal{N} is complete with respect to the metric induced from the norm $\|\cdot\|_{\mathcal{N}}$. Since $\mathcal{N}=H^{\infty}(\mathbb{D})$, we obtain by inverse mapping theorem [20] that there exist constants $L>0$ and $R>0$ such that $L\|q\|_{\mathcal{N}} \leq\|q\|_{\infty} \leq R\|q\|_{\mathcal{N}}$. Thus $L\left\|M_{q}^{(\alpha)} C_{\psi}^{(\alpha)}\right\| \leq\|q\|_{\infty} \leq R\left\|M_{q}^{(\alpha)} C_{\psi}^{(\alpha)}\right\|$. The theorem follows.

Theorem 4.3. Let $\psi \in A u t(\mathbb{D})$ and $q \in L_{a}^{2}\left(d A_{\alpha}\right)$. Then

$$
\mathcal{N}=\left\{q \in L_{a}^{2}\left(d A_{\alpha}\right): M_{q}^{(\alpha)}\left(\text { Range } C_{\psi}^{(\alpha)}\right) \subset L_{a}^{2}\left(d A_{\alpha}\right)\right\}=H^{\infty}(\mathbb{D})
$$

if and only if ψ is a finite Blaschke product.

Proof. The sufficiency part follows from Theorem 4.1. For the necessary part, define for $z, w \in \mathbb{D}$, the function $K_{w}^{(\alpha)}(z)=\left(\frac{1}{1-z \bar{w}}\right)^{\alpha+2}$. Then for any $f \in L_{a}^{2}\left(d A_{\alpha}\right)$, it follows from Lemma 2.4 that

$$
\begin{aligned}
\left\|M_{K_{w}^{(\alpha)}}^{(\alpha)} C_{\psi}^{(\alpha)} f\right\|_{2}^{2} & =\int_{\mathbb{D}}\left|K_{w}^{(\alpha)}(z)\right|^{2}|f(\psi(z))|^{2} d A_{\alpha}(z) \\
& =\int_{\mathbb{D}} \frac{1}{|1-z \bar{w}|^{2(\alpha+2)}}|f(\psi(z))|^{2} d A_{\alpha}(z) \\
& =\frac{1}{\left(1-|w|^{2}\right)^{\alpha+2}} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{\alpha+2}}{|1-z \bar{w}|^{2(\alpha+2)}}|f(\psi(z))|^{2} d A_{\alpha}(z) \\
& =\frac{1}{\left(1-|w|^{2}\right)^{\alpha+2}} \int_{\mathbb{D}}|f(\psi(z))|^{2}\left|k_{z}^{1+\frac{\alpha}{2}}\right|^{2} d A_{\alpha}(z) \\
& =\frac{1}{\left(1-|w|^{2}\right)^{\alpha+2}} \int_{\mathbb{D}}\left|f\left(\left(\psi \circ \phi_{w}\right)(z)\right)\right|^{2} d A_{\alpha}(z) \\
& \leq \frac{1}{\left(1-|w|^{2}\right)^{\alpha+2}}\left(\frac{1+|\psi(w)|}{1-|\psi(w)|}\right)^{\alpha+2}\|f\|_{2}^{2} .
\end{aligned}
$$

The last inequality follows from [16]. So

$$
\left\|M_{K_{w}^{(\alpha)}}^{(\alpha)} C_{\psi}^{(\alpha)}\right\| \leq \frac{1}{\left(1-|w|^{2}\right)^{1+\frac{\alpha}{2}}}\left(\frac{1+|\psi(w)|}{1-|\psi(w)|}\right)^{1+\frac{\alpha}{2}}
$$

From Theorem 4.2, it follows that there exists a constant $R^{\prime}>0$ such that

$$
\left\|K_{w}^{(\alpha)}\right\|_{\infty} \leq R^{\prime} \frac{1}{\left(1-|w|^{2}\right)^{1+\frac{\alpha}{2}}}\left(\frac{1+|\psi(w)|}{1-|\psi(w)|}\right)^{1+\frac{\alpha}{2}}
$$

Since $\left\|K_{w}^{(\alpha)}\right\|_{\infty}=\left(\frac{1}{1-|w|}\right)^{\alpha+2}$, we obtain $\left(\frac{1}{1-|w|}\right)^{\alpha+2} \leq R^{\prime} \frac{1}{\left(1-|w|^{2}\right)^{1+\frac{\alpha}{2}}}\left(\frac{1+|\psi(w)|}{1-|\psi(w)|}\right)^{1+\frac{\alpha}{2}}$. That is,

$$
\left(\frac{1+|w|}{1-|w|}\right)^{1+\frac{\alpha}{2}} \leq R^{\prime}\left(\frac{1+|\psi(w)|}{1-|\psi(w)|}\right)^{1+\frac{\alpha}{2}} \leq R^{\prime}\left(\frac{2}{1-|\psi(w)|}\right)^{1+\frac{\alpha}{2}}
$$

Thus when $|w| \rightarrow 1$, then $|\psi(w)| \rightarrow 1$ and the function ψ is a finite Blaschke product.

5. Conclusion

(i) In this work, we only dealt with the weights $\left(1-|z|^{2}\right)^{\alpha} d A(z), z \in \mathbb{D}, \alpha>-1$ which is a Möbius invariant. Whether such result holds for other weights like $(i) \frac{1}{\Gamma(\alpha+1)}\left(\log \frac{1}{|z|^{2}}\right)^{\alpha}, \alpha>-1$ (ii) $\exp \left(\frac{-c}{(1-|z|)^{\alpha}}\right), \alpha, c>$ 0 (iii) $\exp \left(-\gamma \exp \left(\frac{\beta}{(1-\mid z)^{\alpha}}\right)\right) \alpha, \beta, \gamma>0$ defined on \mathbb{D} and in the weighted Bergman spaces $L_{a}^{2}(\Omega)$ where Ω is any bounded symmetric domain in \mathbb{C} ?
(ii) De Leeuw [17] showed that the isometries in the Hardy space $H^{1}(\mathbb{D})$ are weighted composition operators and Forelli [15] obtained the same result for the Hardy spaces $H^{p}, 1<p<\infty, p \neq 2$. Further, it is well-known [17] that if T is any Banach space isometry of $H^{\infty}(\mathbb{D})$ onto $H^{\infty}(\mathbb{D})$, then T has the form $(T f)(\lambda)=\alpha f(\tau(\lambda)), f \in H^{\infty}(\mathbb{D})$ and where α is a complex constant of modulus 1 and τ is a conformal map of the open unit disk onto itself. Bourdon and Narayan [5] gave a characterization of the unitary weighted composition operators on $H^{2}(\mathbb{D})$ in 2010. They showed that if the weighted composition operator $W_{\phi, \psi}$ from $H^{2}(\mathbb{D})$ into itself is unitary, then $\phi \in A u t(\mathbb{D})$. Further in 2014, Matache [21] proved that if $W_{\phi, \psi}$ is isometric on $H^{2}(\mathbb{D})$ then ϕ must be an inner function and ψ must belong to $H^{2}(\mathbb{D})$ and $\|\psi\|=1$. In this context it is also important to analyse what are all the isometries from $L_{a}^{p}\left(d A_{\alpha}\right), 1 \leq p<\infty$ into itself?
(iii) In section 2, we have seen that the map $U_{a}^{\alpha}=\left(f \circ \phi_{a}\right) k_{a}^{1+\frac{\alpha}{2}}, a \in \mathbb{D}$ is bounded, unitary and self-adjoint. Notice that, $\phi_{a}^{\prime}=-k_{a}$. That is, if the inducing function of the composition operator is ϕ_{a} then the weight function is $k_{a}^{1+\frac{\alpha}{2}}$ and the resulting operator is unitary. In section 4, we have shown that if the inducing function of the composition operator is a finite Blaschke product if and only if the weight function belong to $H^{\infty}(\mathbb{D})$. Now we ask if the inducing function is an infinite Blaschke product or an inner function then to which class the weight function ψ must belong to, so that $W_{\phi, \psi}$ will be bounded and unitary.

References

[1] P. Ahern, M. Flores, W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993) 380-397.
[2] J. Akeroyd, P. Ghatage, Closed-range composition operators on A^{2}, Illinois J. Math. 52(2) (2008) 533-549.
[3] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, Monogr. Stud. Mat. 9, Pitman, USA, 1981.
[4] C. A. Berger, L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987) 813-829.
[5] P. S. Bourdon, S. K. Narayan, Normal weighted composition operators on the Hardy space $H^{2}(\mathbb{U})$, J. Math. Anal. Appl. 367(1) (2010) 278--286.
[6] O. Bratteli, D. Robinson, Operator Algebra and Quantum Statistical Mechanics I, Springer, New York, 1979.
[7] O. Bratteli, D. Robinson, Operator Algebra and Quantum Statistical Mechanics II, Springer, New York, 1981.
[8] M. D. Contreras, A. G. Hernández Diáz, Weighted composition operators between different Hardy spaces, Integral Equations Operator Theory 46 (2003) 165--188.
[9] J. B. Conway, Functions of One Complex Variable, Second Edition, Springer-Verlag, New York, 1978.
[10] N. Das, Fredholm Toeplitz operators on the Bergman space, Recent trends in Mathematical sciences, Narosa 1 (2000) 94-106.
[11] N. Das, J. K. Behera, On a class of unitary operators on the Bergman space of the right half plane, Turk. J. Math. 42 (2018) 471-486.
[12] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
[13] M. Engliš, Functions invariant under Berezin transform, J. Funct. Anal. 121 (1994) 233-254.
[14] M. Engliš, Toeplitz operators on Bergman-type spaces, Ph.D. thesis (Kandidátská dissertačni práce), MU CSAV, Praha, 1991.
[15] F. Forelli, The isometries of H^{p}, Canad. J. Math. 16 (1964) 721--728.
[16] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Graduate texts in Mathematics 199, Springer- Verlag, New York, 2000.
[17] K. Hoffman, Banach spaces of analytic functions, Dover Publications, Inc., New York, 1988.
[18] T. Le, Self-adjoint, unitary, and normal weighted composition operators in several variables, J. Math. Anal. Appl. 395(2) (2012) 596-607.
[19] J. Lee, Iterates of weighted Berezin transform under invariant measure in the unit ball, Korean J. Math. 28 (2020) No $3449-457$.
[20] B. V. Limaye, Functional analysis, New Age International Limited, New Delhi, 1996.
[21] V. Matache, Isometric weighted composition operators, New York J. Math. 20 (2014) 711-726.
[22] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
[23] K. Zhu, On certain unitary operators and composition operators, Proc. Symp. Pure Math. Part 251 (1990) 371-385.
[24] K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990.

[^0]: 2020 Mathematics Subject Classification. Primary 47B38; Secondary 47B32
 Keywords. Weighted Bergman spaces, reproducing kernel, Toeplitz operator, little Hankel operator, weighted composition operator Received: 21 February 2022; Revised: 23 July 2022; Accepted: 05 September 2022
 Communicated by Dragan S. Djordjević
 Email addresses: namitadas440@yahoo.co.in (Namita Das), swarupa.roy@gmail.com (Swarupa Roy)

