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Abstract. In this paper, a class of complex-valued neural networks with time-varying delays is studied.
By employing an extension of Mawhin’s continuation theorem and an approximation technique, several
sufficient conditions of the new results on the existence of homoclinic solutions and periodic solutions are
established. Moreover, the asymptotic behavior of solutions via the Lyapunov function is also investigated.
Finally, for the purpose of validity, an example is given to illustrate the effectiveness of main results.

1. Introduction

In this paper, we consider the following complex-valued neural networks with time-varying delays:

dzp(t)
dt
= − dp(t)zp(t) +

n∑
q=1

apq(t) fq(zq(t)) +
n∑

q=1

bpq(t) fq(zq(t − τpq(t))) +Hp(t), (1.1)

where zp(t) = xp(t) + iyp(t) denotes the complex-valued state vector associated with the p-th neuron, p,
q = 1, 2, · · ·,n, n is the number of neurons. For convenience, zp(t), xp(t) and yp(t) are denoted as zp, xp and yp,
respectively. This model describes the continuous evolution process of the neural networks. dp(t) ∈ R is the
self-feedback connection weight, apq(t), bpq(t) are complex-valued connection weight matrices without and
with time delays respectively. fq(zq), 1q(zq) : C→ C are the activation functions of the neurons. Hp(t) ∈ C is
the external input vector. τpq(t) ≥ 0 correspond to the transmission delays.

The model (1.1) can be rewritten in vector form as follows,

ż(t) = −D(t)z(t) + A(t) f (z(t)) + B(t) f (z(t − τ(t))) +H(t), (1.2)

where z(t) = (z1(t), z2(t), ..., zn(t))⊤ ∈ Cn is the state vector, D(t) = diag(d1(t), d2(t), ..., dn(t)) ∈ Rn with
dp > 0(p = 1, 2, ...,n) is the self-feedback connection weight matrix, A(t) = (apq)n×n ∈ Cn×n and B(t) =
(bpq)n×n ∈ Cn×n are, respectively, the connection weight matrix without and with time delay, f (z) =
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( f1(z1(t)), f2(z2(t)), ..., fn(zn(t)))⊤ : Cn
→ Cn, and f (z(t − τ(t))) = ( f1(z1(t − τ1(t))), f2(z2(t − τ2(t))), ..., fn(zn(t −

τn(t))))⊤ : Cn
→ Cn are the vector-valued activation functions without and with time delays whose el-

ements consist of complex-valued nonlinear functions, τ(t) ≥ 0 correspond to the transmission delays,
H(t) = (H1(t),H2(t), ...,Hn(t))⊤ ∈ Cn is the external input vector-valued function.

A complex-valued neural network which can be regarded as the extension of real-valued neural net-
works in some sense is one that processes information in the complex plane; that is, its state, connection
weight, and activation function are complex-valued. It has been discovered essentially useful in extending
the scope of their applications in optoelectronics, filtering, imaging, speech synthesis, computer vision,
remote sensing, quantum devices, spatiotemporal analysis of physiological neural devices and systems,
and artificial neural information processing, see [2], [4], [6], [7], [8], [9], [13], [20], [28] and the references
therein.

Compared with the real-valued neural networks, it is more difficult to study the dynamic behaviors of
complex-valued neural networks since complex-valued neural networks are quite different and have more
complicated properties than the real-valued neural networks. Moreover, a source of instability for neural
networks is time delay which inevitably exists in the implementation of artificial neural networks due to
the finite switching speed of amplifiers or network congestion. Therefore, stability analysis for delayed
complex-valued neural networks has become an important research topic and various criteria have been
developed in the literature in recent years, see [5], [8], [16], [17], [19], [21], [22], [23], [25], [26], [27], [29]
and the references therein. For example, in [8], Hu and Wang studied global stability for the following
complex-valued recurrent neural networks with time-delays of the form:

ż(t) = −Dz + A f (z(t)) + B1(z(t − τ)) + u,

where z = (z1, z2, ..., zn)⊤ ∈ Cn is the state vector, D = dia1(d1, d2, ..., dn) ∈ Rn×n with d j > 0( j = 1, 2, ...,n) is
the self-feedback connection weight matrix, A = (a jk)n×n ∈ Cn×n and B = (b jk)n×n ∈ Cn×n are, respectively, the
connection weight matrix without and with time delays, f (z(t)) = ( f1(z1(t)), f2(z2(t)), ..., fn(zn(t)))⊤ : Cn

→ Cn

and 1(z(t − τ)) = (11(z1(t − τ1)), 12(z2(t − τ2)), ..., 1n(zn(t − τn)))⊤ : Cn
→ Cn are the vector-valued activation

functions without and with time delays whose elements consist of complex-valued nonlinear functions,
τ j( j = 1, 2, ...,n) are constant time delays, u = (u1,u2, ...,un)⊤ ∈ Cn is the external input vector. By considering
two classes of activation functions and different approaches, the authors systematically studied the stability
problem of the complex-valued recurrent neural networks.

In [17], Pan et al further discussed the exponential stability of a class of complex-valued neural networks
with time-varying delays of the form:

dzk(t)
dt
= − dkzk(t) +

n∑
j=1

(
wkj f j(z j(t)) + vkj1 j(z j(t − τ j(t))

)
+ Jk,

where zk(t) = xk(t) + iyk(t), k, j = 1, ...,n. n is the number of units in the neural networks, zk(t) corresponds
to the state variable, dk(dk > 0) represents the neuron charging time constant, f j(z j), 1 j(z j) : C → C are
the activation functions of the neurons, wkj, vkj ∈ C stand for the weights of the neuron interconnections,
Jk ∈ C is the external bias, and τ j(t)(0 ≤ τ j(t) ≤ τ) corresponds to the transmission delays. By using the
conjugate system of the complex-valued neural networks and the Brouwer’s fixed point theorem, sufficient
conditions to guarantee the existence and uniqueness of an equilibrium are obtained.

As we all know, the problem of existence of homoclinic solutions and periodic solutions is one of the most
important problems in qualitative theory of differential systems. However, to the best of our knowledge, the
corresponding theory of homoclinic solutions for the complex-valued neural networks with time-varying
delays is not investigated till now.

Motivated by the above discussion, in this paper, we aim to study the existence of homoclinic solutions
and periodic solutions of (1.2) by applying an extension of Mawhin’s continuation theorem and some
analysis techniques. Moreover, we also study the asymptotic behavior results of the solutions for (1.2). It
is worthy to point out that it is the first time to investigate the homoclinic solutions for the complex-valued
neural networks with time-varying delays.
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As is well known, a solution u(t) of (1.1) is named homoclinic (to 0) if u(t)→ 0 and u′(t)→ 0 as |t| → +∞.
In addition, if u , 0, then u is called a nontrivial homoclinic solution.

In order to study the existence of homoclinic solutions for the system (1.1), from the work in [12], [15],
[18], [24], we can know that the existence of a homoclinic solution of (1.1) is obtained as a limit of a certain
sequence of 2kT-periodic solutions for the following equation:

dzp(t)
dt
= − dp(t)zp(t) +

n∑
q=1

apq(t) fq(zq(t)) +
n∑

q=1

bpq(t) fq(zq(t − τpq(t))) +Hpk (t), (1.3)

where k ∈N, Hpk : R+ → C is a 2kT-periodic function such that

Hpk (t) =

Hp(t), t ∈ [−kT, kT − ε0),

Hp(kT − ε0) + Hp(−kT)−Hp(kT−ε0)
ε0

(t − kT + ε0), t ∈ [kT − ε0, kT],
(1.4)

where ε0 ∈ (0,T) is a constant independent of k. The existence of 2kT-periodic solutions to (1.3) is obtained
by applying an extension of Mawhin’s continuation theorem [14]. The contributions and novelties are
stated as following:

• The existence of 2kT-periodic solutions of time-varying delayed complex-valued neural networks has
been studied, which is more generalized than the previous T-periodic solutions.

• Homoclinic solutions is firstly considered for the time-varying delayed complex-valued neural net-
works, which has never been studied before.

• Asymptotic behavior of the solutions is also investigated, some previous stability results on the
complex-valued neural networks with constant delays can be extended.

The remainder of this paper is organized as follows. In Section 2, we will give some definitions and
some useful lemmas. Section 3 and 4 is devoted to establishing some criteria for the existence and globally
exponentially stability of homoclinic and periodic solution for (1.2). Finally, in section 5, an numerical
example is given to illustrate the effectiveness of the obtained results.

2. Preliminary

Throughout this paper, we define

apq = max
1≤p,q≤n

sup
t∈R
|apq(t)|, bpq = max

1≤p,q≤n
sup
t∈R
|bpq(t)|, dpq = max

1≤p,q≤n
sup
t∈R
|dpq(t)|,

apq = min
1≤p,q≤n

inf
t∈R
|apq(t)|, bpq = min

1≤p,q≤n
inf
t∈R
|bpq(t)|, dpq = min

1≤p,q≤n
inf
t∈R
|bpq(t)|.

Notations i denotes the imaginary unite, that is, i =
√
−1. z(t) represents the complex-valued function,

that is, z(t) = x(t)+ iy(t), where x(t), y(t) ∈ Rn. Rn and Cn denote the n-dimensional real spaces and complex
vector spaces respectively.

For convenience, throughout this paper, ∥ · ∥0 denotes the Euclidean norm on R. For each k ∈N, let

C2kT =
{
φp|φp ∈ C(R,R), φp(t + 2kT) ≡ φp(t), p = 1, 2, ...,n

}
,

C1
2kT =

{
φp|φp ∈ C1(R,R), φp(t + 2kT) ≡ φp(t), p = 1, 2, ...,n

}
and ∥φp∥0 = max

1≤p≤n
sup

t∈[0,2kT]
|zp(t)|. If the norms of C2kT and C1

2kT are defined by ∥ · ∥C2kT = ∥ · ∥0 and ∥φ∥C1
2kT
=

max{∥φp∥0, ∥φ′p∥0}, then C2kT and C1
2kT are all Banach spaces. Furthermore, forφp ∈ C2kT, ∥φp∥2 =

( ∫ kT

−kT |φp(t)|2dt
) 1

2 .
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Lemma 2.1. Ifφ : R→ R is continuously differentiable onR, a > 0 is a constant, then for every t ∈ R, the following
inequality holds:

|φ(t)| ≤(2a)−
1
2

( ∫ t+a

t−a
|φ(s)|2ds

) 1
2

+ a(2a)−
1
2

( ∫ t+a

t−a
|φ′(s)|pds

) 1
2

.

This lemma is a special case of Lemma 2.2 in [24].

Lemma 2.2. [24] Let φk ∈ C1
2kT be a 2kT-periodic function for each k ∈N with

∥φk∥0 ≤ A0, ∥φ
′

k∥0 ≤ A1, ∥φ
′′

k ∥0 ≤ A2,

where A0, A1 and A2 are constants independent of k ∈ N. Then there exists a function φ ∈ C1(R,R) such that for
each interval [c, d] ⊂ R, there is a subsequence {φk j } of {φk}k∈N with φ′k j

(t)→ φ′0(t) uniformly on [c, d].

By separating the state, the connection weight, the activation function and the external input into its
real and imaginary part, then system (1.3) can be rewritten as follows for p = 1, 2, · · ·,n,

dxp(t)
dt

= −dp(t)xp(t) +
n∑

q=1

aR
pq(t) f R

q (zq(t)) −
n∑

q=1

aI
pq(t) f I

q (zq(t)) +
n∑

q=1

bR
pq(t) f R

q (zq(t − τpq(t)))

−

n∑
q=1

bI
pq(t) f I

q (zq(t − τpq(t))) +HR
pk

(t),

(2.1)

and

dyp(t)
dt

= −dp(t)yp(t) +
n∑

q=1

aR
pq(t) f I

q (zq(t)) +
n∑

q=1

aI
pq(t) f R

q (zq(t)) +
n∑

q=1

bR
pq(t) f I

q (zq(t − τpq(t)))

+

n∑
q=1

bI
pq(t) f R

q (zq(t − τpq(t))) +HI
pk

(t),

(2.2)

where xp(t) = Re(zp(t)), yp(t) = Im(zp(t)), aR
pq(t) = Re(apq(t)), aI

pq(t) = Im(apq(t)), bR
pq(t) = Re(bpq(t)), bI

pq(t) =
Im(bpq(t)), HR

p (t) = Re(Hp(t)), HI
R(t) = Im(Hp(t)), f R

q (zq(t)) = Re( fq(zq(t))), f I
q (zq(t)) = Im( fq(zq(t))), f R

q (zq(t −
τpq(t))) = Re( fq(zq(t − τpq(t)))) f I

q (zq(t − τpq(t))) = Im( fq(zq(t − τpq(t)))).

Define Uk = Vk =
{
zp(t) = xp(t) + iyp(t), xp ∈ C2kT, yp ∈ C2kT, p = 1, 2, ...,n

}
with the norm

∥zp∥Uk =max
1≤p≤n

sup
t∈[0,2kT]

|zp(t)| = max
1≤p≤n

sup
t∈[0,2kT]

|xp(t)| + max
1≤p≤n

sup
t∈[0,2kT]

|yp(t)|.

Then Uk and Vk are Banach spaces when they are endowed with above norm.
For p = 1, 2, · · ·,n, we denote

Φp,x(t) = − dp(t)xp(t) +
n∑

q=1

aR
pq(t) f R

q (zq(t)) −
n∑

q=1

aI
pq(t) f I

q (zq(t)) +
n∑

q=1

bR
pq(t) f R

q (zq(t − τpq(t)))

−

n∑
q=1

bI
pq(t) f I

q (zq(t − τpq(t))) +HR
pk

(t),

(2.3)

and

Ψp,y(t) = − dp(t)yp(t) +
n∑

q=1

aR
pq(t) f I

q (zq(t)) +
n∑

q=1

aI
pq(t) f R

q (zq(t)) +
n∑

q=1

bR
pq(t) f I

q (zq(t − τpq(t)))

+

n∑
q=1

bI
pq(t) f R

q (zq(t − τpq(t))) +HI
pk

(t).

(2.4)
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Now, define the operator

L : D(L) ⊂ Uk → Vk, Lzp = z′p,

and define the nonlinear operator

N : Ω ⊂ Uk → Vk, Nzp =

(
Φp,x(t)
Ψp,y(t)

)
, zp ∈ Uk.

where Ω is an open bounded subset of Uk. Clearly, the problem of the existence of a 2kT-periodic solution
to (1.3) is equivalent to the problem of the existence of a solution in Ω for the equation Lzp = Nzp.

By simply calculating, we have

ker L =
{
zp ∈ Uk|zp ≡ c ∈ R

}
, ImL =

{
zp ∈ Vk,

∫ 2kT

0
zp(s)ds = 0

}
.⋄

Therefore, L is a Fredholm operator of index zero.
Define

P : Uk → ker L, Pzp =
1

2kT

∫ 2kT

0
zp(s)ds, Q : Vk → Vk/ImL, Qzp =

1
2kT

∫ 2kT

0
zp(s)ds.

It is easy to verify that P and Q are two continuous projections such that ImP = ker L, ImL = ker Q = Im(I−Q).
It follows that L|D(L)∩ker P : D(L) ∩ ker P → ImL is invertible, and the generalized inverse KP : ImL →

D(L) ∩ ker P can be written by

(Kpzp)(t) =
∫ 2kT

0
Gk(t, s)zp(s)ds, Gk(t, s) =

{
s−2kT

2kT , 0 ≤ t ≤ s;
s

2kT , s ≤ t ≤ 2kT.

For all Ω such that Ω ⊂ Uk, we can see that Kp(I − Q)N(Ω) is a relative compact set of Uk and QN(Ω) is a
bounded set of Vk, so the operator N is L-compact in Ω.

Lemma 2.3. [14] Assume that Ω is an open bounded set in Uk such that the following conditions are satisfied:

(i) For each λ ∈ (0, 1), the equation

dzp(t)
dt
+ λdp(t)zp(t) − λ

n∑
q=1

apq(t) fq(zq(t)) − λ
n∑

q=1

bpq(t) fq(zq(t − τpq(t))) − λHpk (t) = 0

has no solution on ∂Ω.

(ii) The equation

∆(cp) :=
1

2kT

∫ 2kT

0

(
− dp(ξ)cp +

n∑
q=1

apq(t) fq(cq) +
n∑

q=1

bpq(t) fq(cq) +Hpk (ξ)
)
dξ = 0

has no solution on ∂Ω ∩R.

(iii) The Brouwer degree
dB{∆,Ω ∩R, 0} , 0.

Then (1.3) has a 2kT-periodic solution in Ω
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Definition 2.4. [8] If z∗(t) = (z∗1(t), z∗2(t), ..., z∗n(t))⊤ is a periodic solution of (1.1) and z(t) = (z1(t), z2(t), ..., zn(t))⊤

is any solution of (1.1) satisfying

lim
t→+∞

n∑
i=1

|zp(t) − z∗p(t)| = 0, p = 1, 2, · · ·.

We call z∗(t) is globally asymptotic stable.

For the sake of convenience, we list the following assumptions which will be used by us in studying the
existence of homoclinic solutions and periodic solutions to the (1.2) in Section 3.

(H1) There exists constant Mq ≥ 0 such that

| fq(zq)| ≤Mq, zq ∈ C, q = 1, 2, ...,n.

(H2) For p = 1, 2, · · ·,n, t ∈ R, dp(t) are positive continuous periodic real-functions and d′p(t) < 0, apq(t), bpq(t),
Hp(t) are all continuous periodic functions.

(H3) Hp ∈ C is a bounded function, Hp(t) , 0 for all t , 0 and

B :=
(∫
R

|Hp(t)|2dt
)2

+ ε1/2
0 sup

t∈R
|Hp(t)| < +∞,

where ε0 is determined by (1.4).

(H4) Hp ∈ C is a bounded function, Hp(t) , 0 for all t , 0 and(∫ T

−T
|Hp(t)|2dt

)2

+ ε1/2
0 sup

t∈R
|Hp(t)| < +∞.

where ε0 is determined by (1.4).

Remark 2.5. It follows from (1.4) that |Hpk (t)| ≤ sup
t∈R
|Hp(t)|. So if assumption (H3) holds, then for each k ∈ N,(∫ kT

−kT |Hpk (t)|
2dt

)1/2
< B.

3. Homoclinic and periodic solutions

In order to investigate the existence of 2kT-periodic solutions to (1.3), we need to study some properties
of all the possible 2kT-periodic solutions to the following equations:

dxp(t)
dt

= λ
[
− dp(t)xp(t) +

n∑
q=1

aR
pq(t) f R

q (zq(t)) −
n∑

q=1

aI
pq(t) f I

q (zq(t)) +
n∑

q=1

bR
pq(t) f R

q (zq(t − τpq(t)))

−

n∑
q=1

bI
pq(t) f I

q (zq(t − τpq(t))) +HR
pk

(t)
]
, λ ∈ (0, 1],

(3.1)

and

dyp(t)
dt

= λ
[
− dp(t)yp(t) +

n∑
q=1

aR
pq(t) f I

q (zq(t)) +
n∑

q=1

aI
pq(t) f R

q (zq(t)) +
n∑

q=1

bR
pq(t) f I

q (zq(t − τpq(t)))

+

n∑
q=1

bI
pq(t) f R

q (zq(t − τpq(t))) +HI
pk

(t)
]
, λ ∈ (0, 1].

(3.2)

For each k ∈N, let Γ ⊂ Uk represents the set of all the 2kT-periodic solutions to (1.3).
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Theorem 3.1. Suppose that the assumptions (H1)-(H3) hold, for each k ∈ N, if zp ∈ Γ, then there are positive
constants A1, A2, A3 and A4, which are independent of k and λ, such that

∥zp∥2 ≤ A1, ∥z′p∥2 ≤ A2, ∥zp∥Uk ≤ A3, ∥z′p∥Uk ≤ A4, p = 1, 2, ...n.

Proof Multiplying both sides of (3.1) by x′p(t) and integrating on the interval [−kT, kT], we have∫ kT

−kT
(x′p(t))2dt = − λ

∫ kT

−kT
x′p(t)dp(t)xp(t)dt + λ

n∑
q=1

∫ kT

−kT
x′p(t)aR

pq(t) f R
q (zq(t))dt

− λ
n∑

q=1

∫ kT

−kT
x′p(t)aI

pq(t) f I
q (zq(t))dt + λ

n∑
q=1

∫ kT

−kT
x′p(t)bR

pq(t) f R
q (zq(t − τpq(t)))dt

− λ
n∑

q=1

∫ kT

−kT
x′p(t)bI

pq(t) f I
q (zq(t − τpq(t)))dt + λ

∫ kT

−kT
x′p(t)HR

pk
(t)dt.

(3.3)

Note that∫ kT

−kT
x′p(t)dp(t)xp(t)dt =

1
2

∫ kT

−kT
dp(t)dx2

p(t) = −
1
2

∫ kT

−kT
d′p(t)x2

p(t)dt. (3.4)

Substituting (3.4) into (3.3) and by (H1) and (H3), we have

∥x′p∥
2
2 +
δ
2
∥xp∥

2
2 ≤

n∑
q=1

(
∥aR

pqMq∥2 + ∥a
I
pqMq∥2

)
· ∥x′p∥2 +

n∑
q=1

(
∥b

R
pqMq∥2 + ∥b

I
pqMq∥2

)
· ∥x′p∥2 + B∥x′p∥2. (3.5)

where δ = min
t∈R+
−d′p(t).

From the inequality above, we can see that

∥x′p∥
2
2 ≤

n∑
q=1

(
∥aR

pqMq∥2 + ∥a
I
pqMq∥2

)
· ∥x′p∥2 +

n∑
q=1

(
∥b

R
pqMq∥2 + ∥b

I
pqMq∥2

)
· ∥x′p∥2 + B∥x′p∥2, (3.6)

and

δ
2
∥xp∥

2
2 ≤

n∑
q=1

(
∥aR

pqMq∥2 + ∥a
I
pqMq∥2

)
· ∥x′p∥2 +

n∑
q=1

(
∥b

R
pqMq∥2 + ∥b

I
pqMq∥2

)
· ∥x′p∥2 + B∥x′p∥2. (3.7)

It follows from (3.6) that

∥x′p∥2 ≤
n∑

q=1

(
∥aR

pqMq∥2 + ∥a
I
pqMq∥2 + ∥b

R
pqMq∥2 + ∥b

I
pqMq∥2 + B

)
:= ŵp. (3.8)

Substituting (3.8) into (3.7), we can have

∥xp∥2 ≤

√
2
δ

[ n∑
q=1

(
∥aR

pqMq∥2 + ∥a
I
pqMq∥2 + ∥b

R
pqMq∥2 + ∥b

I
pqMq∥2 + B

)
· ŵp

]1/2

:= w̃p. (3.9)

Furthermore, it follows from Lemma 2.1 that

|xp(t)| ≤(2T)−
1
2

( ∫ t+kT

t−kT
|xp(s)|2ds

) 1
2

+ T(2T)−
1
2

( ∫ t+kT

t−kT
|x′p(s)|2ds

) 1
2

=(2T)−
1
2

( ∫ kT

−kT
|xp(s)|2ds

) 1
2

+ T(2T)−
1
2

( ∫ kT

−kT
|x′p(s)|2ds

) 1
2

,
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which together with (3.8) and (3.9) yields

|xp(t)| ≤(2T)−
1
2

(∫ kT

−kT
|xp(s)|2ds

) 1
2

+ T(2T)−
1
2

(∫ kT

−kT
|x′p(s)|2ds

) 1
2

≤ (2T)−
1
2 w̃p + T(2T)−

1
2 ŵp.

thus, we can obtain

∥xp∥0 =max
1≤p≤n

sup
t∈[0,2kT]

|xp(t)| ≤ max
1≤p≤n

sup
t∈[0,2kT]

{
(2T)−

1
2 w̃p + T(2T)−

1
2 ŵp

}
:= ρ̂p. (3.10)

Clearly, ρ̂p is independent of k and λ.
Moreover, from (3.1), we can see that

|x′p(t)| ≤|dp(t)||xp(t)| +
n∑

q=1

|aR
pq(t)|| f R

q (zq(t))| +
n∑

q=1

|aI
pq(t)|| f I

q (zq(t))| +
n∑

q=1

|bR
pq(t)|| f R

q (zq(t − τpq(t)))|

+

n∑
q=1

|bI
pq(t)|| f I

q (zq(t − τpq(t)))| + |HR
pk

(t)|,

which together with (H1), (H3) and (3.10) gives

∥x′p∥0 =max
1≤p≤n

sup
t∈[0,2kT]

|x′p(t)| ≤ max
1≤p≤n

sup
t∈[0,2kT]

{
dpρ̂p +

n∑
q=1

(
aR

pq + aI
pq + b

R
pq + b

I
pq

)
Mq + B

}
:= ρ̃p. (3.11)

Clearly, ρ̃p is independent of k and λ.
By using the same methods as above, we can see that there exists four positive constants σ̂p, σ̃p, δ̂p and

δ̃p, which are independent of k and λ such that

∥y′p∥2 ≤ σ̂p, ∥yp∥2 ≤ σ̃p. (3.12)

and

∥yp∥0 ≤ δ̂p, ∥y′p∥0 ≤ δ̃p. (3.13)

Note that zp(t) = xp(t) + iyp(t), then by (3.10), (3.11) and (3.13), we get

∥zp∥Uk =max
1≤p≤n

sup
t∈[0,2kT]

|zp(t)| = max
1≤p≤n

sup
t∈[0,2kT]

|xp(t)| + max
1≤p≤n

sup
t∈[0,2kT]

|yp(t)| ≤ ρ̂p + δ̂p := A3, (3.14)

and

∥z′p∥Uk =max
1≤p≤n

sup
t∈[0,2kT]

|z′p(t)| ≤ ∥x′p∥0 + ∥y
′

p∥0 ≤ ρ̃p + δ̃p := A4. (3.15)

Moreover, by (3.8), (3.9) and (3.12), we have

∥zp∥2 =
( ∫ kT

−kT
|zp(t)|2dt

)1/2

=
( ∫ kT

−kT
|xp(t) + iyp(t)|2dt

)1/2

≤

( ∫ kT

−kT
|xp(t)|2dt

)1/2

+
( ∫ kT

−kT
|yp(t)|2dt

)1/2

≤ w̃p + σ̃p := A1,

(3.16)

and

∥z′p∥2 =
( ∫ kT

−kT
|z′p(t)|2dt

)1/2

=
( ∫ kT

−kT
|x′p(t) + iy′p(t)|2dt

)1/2

≤

( ∫ kT

−kT
|x′p(t)|2dt

)1/2

+
( ∫ kT

−kT
|y′p(t)|2dt

)1/2

≤ ŵp + σ̂p := A2,

(3.17)

Therefore, from (3.14)-(3.17), we know that all the conclusions of Theorem 3.1 hold.
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Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied, then for each k ∈ N, (1.3) has at least one
2kT-periodic solution zpk (t) in Γ ⊂ Uk such that

∥zpk∥2 ≤ A1, ∥z′pk
∥2 ≤ A2, ∥zpk∥Uk ≤ A3, ∥z′pk

∥Uk ≤ A4, p = 1, 2, ...,n. (3.18)

where A1, A2, A3 and A4 are constants defined in Theorem 3.1.

Proof In order to apply Lemma 2.3, for each k ∈N, we consider the following equation:

dzp(t)
dt
= −λdp(t)zp(t) + λ

n∑
q=1

apq(t) fq(zq(t)) + λ
n∑

q=1

bpq(t) fq(zq(t − τpq(t))) + λHpk (t), λ ∈ (0, 1]. (3.19)

LetΩ1 ⊂ Uk represent the set of all 2kT-periodic solutions to (3.19). Since (0, 1) ⊂ (0, 1], then we can see that
Ω1 ⊂ Γ, where Γ is defined by Theorem 3.1. If zp ∈ Ω1, then by applying Theorem 3.1, we can have

∥zp∥Uk ≤ A3, ∥z′p∥Uk ≤ A4.

Let
Ω2 =

{
zp : zp ∈ ker L,QNzp = 0

}
.

If zp ∈ Ω2, then zp = cp ∈ R and

QNzp =
1

2kT

∫ kT

−kT

(
− dp(ξ)cp +

n∑
q=1

apq(t) fq(cq) +
n∑

q=1

bpq(t) fq(cq) +Hpk (ξ)
)
dξ,

i.e.,

∆(cp) :=
1

2kT

∫ 2kT

0

(
− dp(ξ)cp +

n∑
q=1

apq(t) fq(cq) +
n∑

q=1

bpq(t) fq(cq) +Hpk (ξ)
)
dξ = 0.

Now, if we set

Ω =
{
zp : zp ∈ Uk, ∥zp∥0 ≤ A3, ∥z′p∥0 ≤ A4 + 1

}
,

then Ω1 ∪Ω2 ⊂ Ω. So the condition (i) and (ii) of Lemma 2.3 are satisfied.
In order to verifying the condition (iii) in Lemma 2.3, we define

H(zp, µ) : (Ω ∩R) × [0, 1]→ R, H(zp, µ) = −µzp + (1 − µ)∆(zp),

where

∆(zp) :=
1

2kT

∫ 2kT

0

(
− dp(s)zp(s) +

n∑
q=1

apq(s) fq(zq(s)) +
n∑

q=1

bpq(s) fq(zq(s)) +Hpk (s)
)
ds.

From assumption (H1)-(H3), it is easy to see that

H(zp, µ) , 0, ∀(zp, µ) ∈ [∂(Ω ∩R)] × [0, 1].

Hence,

dB(∆,Ω ∩R, 0) =deg(H(zp, 0),Ω ∩R, 0) = deg(H(zp, 1),Ω ∩R, 0) , 0.

Therefore, by applying Lemma 2.3, we can see that (3.19) has a 2kT-periodic solution zpk ∈ Ω. Obviously,
zpk (t) is a 2kT-periodic solution to (1.3) for the case of λ , 1, so zpk ∈ Γ. Thus, by using Theorem 3.1, we get

∥zpk∥2 ≤ A1, ∥z′pk
∥2 ≤ A2, ∥zpk∥Uk ≤ A3, ∥z′pk

∥Uk ≤ A4, p = 1, 2, ...,n.
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Theorem 3.3. Assume conditions (H1), (H2) and (H4) hold, then (1.2) has at least one 2T-periodic solution.

Proof From the assumption (H3), we see that Hp ∈ C is a continuous 2T-periodic function, Hp(t) , 0 for
all t , 0, T > 0 is a given constant, and( ∫ T

−T
|Hp(t)|2dt

)2

+ ε1/2
0 sup

t∈R
|Hp(t)| < +∞.

So by using Theorem 3.2, we know that (1.1) has at least one 2T-periodic solution. Thus, (1.2) has at least
one 2T-periodic solution.

Theorem 3.4. Assume that f (0) = 0, lim
|t|→+∞

Hp(t) = 0 and conditions (H1) holds, then (1.2) has at least one

homoclinic solution.

Proof From Theorem 3.2, we see that for each k ∈ N, there exists a 2kT-periodic solution zpk (t) to (1.3).
So for every k ∈N, zpk (t) is satisfied

dzpk (t)
dt

= − dp(t)zpk (t) +
n∑

q=1

apq(t) fq(zqk (t)) +
n∑

q=1

bpq(t) fq(zqk (t − τpq(t))) +Hp(t). (3.20)

Furthermore, it follows from Theorem 3.2 that

∥zpk∥Uk ≤ A4.

Then by (3.20) and (H1), we have

∥z′pk
∥Uk ≤max

1≤p≤n

{
dpA4 +

n∑
q=1

apqMq +

n∑
q=1

bpqMq + B
}

:= ρ, p = 1, 2, · · ·,n.

Clearly, ρ is a constant independent of k. By applying Lemma 2.2, we can see that there exists a zp0 ∈ C
and a subsequence {zpkj

} of {zpk } such that for each interval [c, d] ∈ R, zpkj
(t) → zp0 (t) and z′pkj

(t) → z′p0
(t)

uniformly on [c, d]. For all a, b ∈ R with a < b, there must exist a positive integer j0 such that for j > j0,[
a− ∥τpq∥0, b+ ∥τpq∥0

]
⊂ [−k jT, k jT − ε0]. So for t ∈

[
a− ∥τpq∥0, b+ ∥τpq∥0

]
, it follows from (1.4) and (3.20) that

dzpkj
(t)

dt
= − dp(t)zpkj

(t) +
n∑

q=1

apq(t) fq(zqkj
(t)) +

n∑
q=1

bpq(t) fq(zqkj
(t − τpq(t))) +Hp(t). (3.21)

In view of zpkj
(s)→ zp0 (s), zpkj

(s − τpq(s))→ zp0 (s) uniformly on [a, b], and by (3.21), we see that

z′pkj
(t) =

dzpkj
(t)

dt
= −dp(t)zpkj

(t) +
n∑

q=1

apq(t) fq(zqkj
(t)) +

n∑
q=1

bpq(t) fq(zqkj
(t − τpq(t))) +Hp(t)

→− dp(t)zp0 (t) +
n∑

q=1

apq(t) fq(zp0 (t)) +
n∑

q=1

bpq(t) fq(zp0 (t − τpq(t))) +Hp(t) := ϖ(t),

uniformly on [a, b]

which together with the fact that z′pkj
(t) is the continuous differential for zpkj

(t) on (a, b) for every j > j0, and

z′pkj
(t) → ϖ(t) uniformly on [a, b], then we can obtain ϖ(t) = d

dt [zp0 (t)] on (a, b). Since a, b are arbitrary and

a < b, we get ϖ(t) = d
dt [zp0 (t)], t ∈ R, that means zp0 (t) is a solution of (1.1) .
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In the following, we will prove that zp0 (t)→ 0 and z′p0
(t)→ 0 as |t| → +∞.

Since ∫ +∞

−∞

(|zp0 (t)|2 + |z′p0
(t)|2)dt = lim

n→+∞

∫ nT

−nT
(|zp0 (t)|2 + |z′p0

(t)|2)dt = lim
n→+∞

lim
j→+∞

∫ nT

−nT
(|zpkj

(t)|2 + |z′pkj
(t)|2)dt,

clearly, for every n ∈N if k j > n, then it follows from Theorem 3.2 that ,∫ nT

−nT
(|zpkj

(t)|2 + |z′pkj
(t)|2)dt ≤

∫ k jT

−k jT
(|zpkj

(t)|2 + |z′pkj
(t)|2)dt ≤ A2

1 + A2
2.

Let n→ +∞ and j→ +∞, then we have∫ +∞

−∞

(|zp0 (t)|2 + |z′p0
(t)|2)dt ≤ A2

1 + A2
2,

and as r→ +∞, then we get∫
|t|≥r

(|zp0 (t)|2 + |z′p0
(t)|2)dt→ 0. (3.22)

By applying the Lemma 2.1, we obtain

|zp0 (t)| ≤(2T)−
1
2

( ∫ t+T

t−T
|zp0 (ξ)|2dξ

) 1
2

+ T(2T)−
1
2

( ∫ t+T

t−T
|z′p0

(ξ)|2dξ
) 1

2

≤

[
(2T)−

1
2 + T(2T)−

1
2

]
·

[ ∫ t+T

t−T
(|zp0 (ξ)|2 + |z′p0

(ξ)|2)dξ
] 1

2

→ 0, as |t| → +∞.

(3.23)

Finally, we will prove that

|z′p0
(t)| → 0, as |t| → +∞. (3.24)

From f (0) = 0 and lim
|t|→+∞

Hp(t) = 0, it follows that

z′p0
(t) = − dp(t)zp0 (t) +

n∑
q=1

apq(t) fq(zq0 (t)) +
n∑

q=1

bpq(t) fq(zq0 (t − τpq(t))) +Hp(t)→ 0, as |t| → +∞.

Therefore, (3.24) holds. So there exist a homoclinic solution for (1.1).
Furthermore, since z0(t) = (z10 (t), z20 (t), ..., zn0 (t))⊤, then from (3.23), we can see that z0(t)→ 0 = (0, 0, ..., 0)⊤

as |t| → +∞. Similar, by (3.24), we can have z′0(t)→ 0 = (0, 0, ..., 0)⊤ as |t| → +∞. Thus, (1.2) has at least one
homoclinic solution. Therefore, the prove of Theorem 3.3 is completed.

Remark 3.5. Although, the existence of homoclinic solutions of the real systems have been widely studied, see, to
name a few, [12], [15], [18], [24], there is no result on homoclinic solutions of the complex-valued neural networks.
As we all known, the problem of existence of homoclinic solutions is one of the most important problems in qualitative
theory of differential systems. Theorem 3.3 and Theorem 3.4 have provided the new results on homoclinic solutions of
the complex-valued neural networks. They can be regarded as the first results on such problem.

4. Asymptotic behaviours of solution z(t) = 0

In order to obtain globally asymptotic stability, let Hp(t) = 0 and fp(0) = 0. Then (1.1) is changed into

dzp(t)
dt
= − dp(t)zp(t) +

n∑
q=1

apq(t) fq(zq(t)) +
n∑

q=1

bpq(t) fq(zq(t − τpq(t))), (4.1)

and z = 0 is the equilibriun point of (4.1).
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Theorem 4.1. Assume that the conditions of Theorem 3.1 are satisfied, further that

(H5) there exists a positive constant Lq, and η > 0 such that

| fq(x) − fq(y)| ≤ Lq|x − y|, ∀x, y ∈ C, q = 1, 2, · · ·,n,

and
xq fq(xq) < −η|xq|

2, q = 1, 2, · · ·,n.

(H6) Let ξp > 0, where
ξp = lim

t→+∞
inf

[
2dp + 2appη − αp − βp − γp(t)

]
where αp =

∑n
q=1,p,q apqLq, βp =

∑n
q=1 bpqLq, γp(t) :=

∑n
q=1

(
apqLq + bpqLqωpq(t)

)
, ωpq(t) = 1

1−τ′pq (̃τpq(t)) ,

τ̃pq(t) is inverse function of t − τpq(t).

Then (4.1) has unique periodic wave solution z∗(t) = (z∗1(t), z∗2(t), ..., z∗n(t))⊤ which is globally asymptotic stable.

Proof Suppose x(t) be any solution of (4.1). Let

Vp(t) = (zp(t))2, p = 1, 2, · · ·,n.

Derivation of it along the solution of (4.1) gives

V′p(t) =2zp(t)z′p(t) = 2zp(t)
[
− dp(t)zp(t) +

n∑
q=1

apq(t) fq(zq(t)) +
n∑

q=1

bpq(t) fq(zq(t − τpq(t)))
]

= − 2dpz2
p(t) + 2zp(t)

n∑
q=1

apq(t) fq(zq(t)) + 2zp(t)
n∑

q=1

bpq(t) fq(zq(t − τpq(t)))

≤ − 2dpz2
p(t) − 2appη|zp(t)|2 + 2|zp(t)|

n∑
q=1,p,q

apqLq|zq(t)| + 2|zp(t)|
n∑

q=1

bpqLq|zq(t − τpq(t))|

≤ − 2dpz2
p(t) − 2appη|zp(t)|2 + αp|zp(t)|2 +

n∑
q=1,p,q

apqLq|zq(t)|2 + βp|zp(t)|2 +
n∑

q=1

bpqLq|zq(t − τpq(t))|2

= −
(
2dp + 2appη − αp − βp

)
|zp(t)|2 +

n∑
q=1,
p,q

apqLq|zq(t)|2 +
n∑

q=1

bpqLq|zq(t − τpq(t))|2.

Define

Vτpq (t) =
n∑

q=1

bpqLq

∫ t

t−τpq(t)
ωpq(s)z2

q(s)ds.

Then we have

V′τpq
(t) =

n∑
q=1

bpqLq

[
ωpq(t)z2

q(t) − z2
p(t − τpq(t))

]
.

Choose the Lyapunov function for (4.1) in the following form:

V(t) =
n∑

p=1

[
Vp(t) + Vτpq (t)

]
.
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Derivating it along the solution of (4.1) gives

V′(t) ≤
n∑

p=1

{
−

(
2dp + 2appη − αp − βp

)
|zp(t)|2 +

n∑
q=1,p,q

apqLq|zq(t)|2 +
n∑

q=1

bpqLq|zq(t − τpq(t))|2

+

n∑
q=1

bpqLq

[
ωpq(t)z2

q(t) − z2
p(t − τpq(t))

]}
=

n∑
p=1

{
−

(
2dp + 2appη − αp − βp

)
|zp(t)|2 +

n∑
q=1,p,q

apqLq|zq(t)|2 +
n∑

q=1

bpqLq|zq(t − τpq(t))|2

+

n∑
q=1

bpqLqωpq(t)z2
q(t) −

n∑
q=1

bpqLqz2
p(t − τpq(t))

}
=

n∑
p=1

{
−

(
2dp + 2appη − αp − βp

)
|zp(t)|2 +

n∑
q=1,p,q

apqLq|zq(t)|2 +
n∑

q=1

bpqLqωpq(t)z2
q(t)

}
= −

n∑
p=1

{(
2dp + 2appη − αp − βp

)
|zp(t)|2 −

n∑
q=1

(
apqLq + bpqLqωpq(t)

)
|zq(t)|2

}
≤ −

n∑
p=1

(
2dp + 2appη − αp − βp − γp(t)

)
|zp(t)|2.

(4.2)

Assumption (H6) yields, for any ε > 0 and ξp − ε > 0, there exists a positive constant T (enough large) such
that

2dp + 2appη − αp − βp − γp(t) ≥ ξp − ε, for all t > T,

which together with (4.2) gives

V′(t) ≤ −
n∑

p=1

(ξp − ε)|zp(t)|2 < 0, for all t > T. (4.3)

Integrating both sides of (4.3) from T to +∞ gives

V(t) +
∫ +∞

T

n∑
p=1

(ξp − ε)|zp(s)|2ds ≤ V(0).

By applying the Barbalat’s Lemma [1], we can have

lim
t→+∞

n∑
p=1

|zp(t)| = 0.

Therefore, the prove of Theorem 4.1 is completed.

5. An illustrative example

Example 5.1. Consider the following two-neuron complex-valued recurrent neural networks with time-varying
delays:

ż(t) = −D(t)z(t) + A(t) f (z(t)) + B(t) f (z(t − τ(t))) +H(t), (5.1)
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where

D(t) =
(

2
3 + e−t, 0
0, 2

3 + e−t

)
, A(t) =

(
1
5 −

i
5 sin t, 2

5 −
i
5 cos t

2
5 −

i
5 cos t, 1

5 −
i
5 sin t

)
B(t) =

(
1
6 −

i
6 cos t, 1

6 −
i
6 sin t

1
6 −

i
6 sin t, 1

6 −
i
6 cos t

)
,

H(t) =
(
−

1
3 + 2i sin t
−

1
3 + 3i cos t

)
, τ(t) = 2t, fq(zq) = −

1
2

xq +
i
2

yq,

where zq = xq + iyq ∈ C and p, q = 1, 2. Then we can see that the conditions (H1)-(H4) are satisfied. Thus,
by applying Theorem 3.1-3.4, (5.1) has at least one periodic solution and one homoclinic solution .

Furthermore, for any xq = xR
q + ixI

q ∈ C, yq = yR
q + iyI

q ∈ C, and q = 1, 2, we have

| fq(xq) − fq(yq)| =
∣∣∣∣∣−1

2
xR

q +
i
2

xI
q +

1
2

yR
q −

i
2

yI
q

∣∣∣∣∣ ≤ 1
2

√
|xR

q − yR
q |

2 + |xI
q − yI

q|
2 =

1
2
|xq − yq|,

and

fq(zq)zq =
(
−

1
2

xq +
i
2

yq

)
· (xq + iyq) = −

1
2

(
|xq|

2 + |yq|
2
)
= −

1
2
|zq|

2.

Then, we have Lq =
1
2 and η = 1

2 , which implies that (H5) holds. Moreover, we can get

dp =
2
3
, app =

√
2

5
, apq =

√
5

5
, bpq =

√
2

6
, αp =

2∑
q=1,p,q

apqLq =

√
5

10
, βp =

2∑
q=1

bpqLq =

√
2

12
,

ωpq(t) = −1, γp(t) :=
2∑

q=1

(
apqLq + bpqLqωpq(t)

)
=

√
5

10
−

√
2

12
,

thus we have

ξp = lim
t→+∞

inf
[
2dp + 2appη − αp − βp − γp(t)

]
= lim

t→+∞
inf

[
4
3
+

√
2

5
−

√
5

10
−

√
2

12
−

√
5

10
+

√
2

12

]
=

4
3
+

√
2

5
−

√
5

5
> 0.

Therefore, it follows from Theorem 4.1 that the solution of (5.1) is globally asymptotic stable.

Remark 5.2. Though [5], [17], [21], [22], [28] the complex-valued neural networks with time-varying delays are
studied, the methods using in [5], [17], [21], [22], [28] to obtain the periodic solutions are Matrix measure method,
different approaches or Brouwer’s fixed point theorem, which are different from the methods using in this paper. In
this paper, we use an extension of Mawhin’s continuation theorem. Moreover, the problem of existence of homoclinic
solution is not touched in the references and hence the results there cannot directly be applied to (5.1) either.

6. Conclusion

In this paper, we are concerned with the complex-valued neural networks with time-varying delays.
The results on the existence of at least one homoclinic solution and periodic solution have been completely
established by means of an extension of Mawhin’s continuation theorem and an approximation technique,
the global exponential stability of the solutions are further obtained by applying the Lyapunov function. It
must be mentioned that it is the first time to discuss the existence of homoclinic solutions for the complex-
valued neural networks with time-varying delays and the methods of obtaining the periodic solutions in
this paper are different from the corresponding ones in the literature. So, the results established in the
present paper are essentially new and can improve and extend previous works.

The proposed results in the paper can be applied to the impulsive or stochastic complex-valued neural
networks and further consider the fixed-time stability of the homoclinic solutions and periodic solutions,
some related papers can be referred, such as [3], [10], [11]. These are the further researches.
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4 (1959) 267–270.

[2] M. Bohner, V. S. H. Rao, S. Sanyal, Global stability of complex-valued neural networks on time scales, Differential Equations and
Dynamical Systems 19 (2011) 3–11.

[3] Z. W. Cai, L. H. Huang, Z. Y. Wang, Finite-/fixed-time stability of nonautonomous functional differential inclusion: lya-
punov approach involving indefinite derivative, IEEE Transactions on Neural Networks and Learning Systems (2021) doi:
10.1109/TNNLS.2021.3083396.

[4] R. Ceylan, M. Ceylan, Y. Ozbay, S. Kara, Fuzzy clustering complex-valued neural network to diagnose cirrhosis disease, Expert
Systems with Applications 38 (2011) 9744–9751.

[5] W. Q. Gong, J. L. Liang, J. D. Cao, Matrix measure method for global exponential stability of complex-valued recurrent neural
networks with time-varying delays, Neural Networks 70 (2015) 81–89.

[6] A. Hirose, Complex-Valued Neural Networks: Theories and Applications, World Scientific Publishing Co. In.c, River Edge, NJ,
2003.

[7] A. Hirose, Recent progress in applications of complex-valued neural networks, in: Proceedings of 10th International Conference
on Artificial Intelligence and Soft Computing II, 2010, pp.42–46.

[8] J. Hu, J. Wang, Global stability of complex-valued recurrent neural networks with time-delays, IEEE Transactions on Neural
Networks and Learning Systems 23 (2012) 853–865.

[9] G. Huseyin, A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means
clustering feature weighting method, Neural Computing and Applications 28 (2017) 1657–1666.

[10] F. C. Kong, Q. X. Zhu, T. W. Huang, New fixed-time stability lemmas and applications to the discontinuous fuzzy inertial neural
networks, IEEE Transactions on Fuzzy Systems 29 (2021) 3711–3722.

[11] F. C. Kong, Q. X. Zhu, New fixed-time synchronization control of discontinuous inertial neural networks via indefinite Lyapunov-
Krasovskii functional method, International Journal of Robust and Nonlinear Control 31 (2021) 471–495.

[12] M. Lzydorek, J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems. Journal of Differential
Equations 219 (2005) 375–389.

[13] X. Liu, K. Fang, B. Liu, A synthesis method based on stability analysis for complex-valued Hopfield neural network, in:
Proceeding of 7th Asian Control Conference, Hongkong China, (2009) 1245–1250.

[14] S. P. Lu, Homoclinic solutions for a class of second-order p-Laplacian differential systems with delay, Nonlinear Analysis: Real
World Applications 12 (2011) 780–788.

[15] S.P. Lu, F.C. Kong, Homoclinic solutions for n-dimensional prescribed mean curvature p-Laplacian equations, Bound Value
Problem 2015 (2015) 105.

[16] X. W. Liu, T. P. Chen, Global exponential stability for complex-valued recurrent neural networks with asynchronous time delays,
IEEE Transactions on Neural Networks and Learning Systems 27 (2016) 593–606.

[17] J. Pan, X. Liu, W. Xie, Exponential stability of a class of complex-valued neural networks with time-varying delays, Neurocom-
puting 164 (2015) 293–299.

[18] P. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proceedings of the Royal Society of Edinburgh, Section: A
Mathematics 114 (1990) 33–38.

[19] R. Rakkiyappan, G. Velmurugan, X. Li, Complete stability analysis of complex-valued neural networks with time delays and
impulses, Neural Processing Letters 41 (2015) 435–468.

[20] K. Subramanian, P. Muthukumar, Global asymptotic stability of complex-valued neural networks with additive time-varying
delays, Cognitive Neurodynamics 11 (2017) 293–306.

[21] Q. K. Song, Stability analysis of complex-valued neural networks with probabilistic time-varying delays, Neurocomputing 159
(2015) 96–104.

[22] Q. K. Song, Z. Zhao, Y. Liu, Impulsive effects on stability of discrete-time complex-valued neural networks with both discrete
and distributed time-varying delays, Neurocomputing 168 (2015) 1044–1050.

[23] Q. K. Song, Q. Q. Yu, F. E. Alsaadi, Dynamics of complex-valued neural networks with variable coefficients and proportional
delays, Neurocomputing 275 (2018) 2762–2768.

[24] X. H. Tang, L. Xiao, Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential, Nonlinear Analysis 71
(2009) 1124–1322.

[25] Z. Y. Wang, J. D. Cao, Z.W. Cai, L. H. Huang, Periodicity and finite-time periodic synchronization of discontinuous complex-
valued neural networks, Neural Networks 119 (2019) 249–260.



L. Sun, F.C. Kong / Filomat 37:7 (2023), 1997–2012 2012

[26] Z. Y. Wang, X. Z. Liu, Exponential stability of impulsive complex-valued neural networks with time delay, Mathematics and
Computers in Simulation 156 (2019) 143–157.

[27] X. Xu, J. Zhang, J. Shi, Exponential stability of complex-valued neural networks with mixed delays, Neurocomputing 128 (2014)
483–490.

[28] Y. Zhang, Z. Li, K. Li, Complex-valued Zhang neural network for online complex-valued time varying matrix inversion, Applied
Mathematics and Computation 217 (2011) 10066–10073.

[29] Z. Q. Zhang, D. L. Hao, Global asymptotic stability for complex-valued neural networks with time-varying delays via new
Lyapunov functionals and complex-valued inequalities, Neural Processing Letters 48 (2018) 995–1017.


	Introduction
	Preliminary
	Homoclinic and periodic solutions
	Asymptotic behaviours of solution z(t)=0
	An illustrative example
	Conclusion

