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Abstract. This paper uses some basic notions and results on the Laguerre hypergroup K = [0,+∞) × R
to study some problems in the theory of approximation of functions in the space L2

α(K). Analogues of the
direct Jackson theorems of approximations for the modulus of smoothness (of arbitrary order) constructed
by using the generalized translation operators on K are proved. The Nikolskii-Stechkin inequality is also
obtained. In conclusion of this work, we show that the modulus of smoothness and the K-functionals
constructed from the Sobolev-type space corresponding to the Laguerre operator Lα are equivalent.

1. Introduction

The theory of approximation is one of the fields of mathematical analysis. Its main objective is to
approximate functions by other functions that are simpler and easier to study. In the classical theory of
approximation of functions onR, a central role is played by the translation operators f → f (x+ y), x, y ∈ R,
these operators are used to define the moduli of smoothness, which are the main elements of the direct
and inverse theorems of approximation theory. Some results on the approximation of functions using
generalized translations can be found in [4, 6, 8, 13, 15].

The modulus of smoothness play a basic role in approximation theory. For a given a positive real
number δ and a positive integer r, the classical modulus of smoothness is defined for a function f ∈ L2(R)
by

ωr( f , δ) = sup
0<u≤δ

∥∆r
u f ∥2,

where
∆r

u f = (Tu − I)r f ,

I being the unit operator in L2(R) and Tu stands for the usual translation operator given by Tu f (t) = f (t+u).

On the other side, the study of the K-functional is a classical and important topic in interpolation theory
and approximation theory. The classical K-functional introduced by Peetre in [21], is defined by

Kr( f , δ) = inf{∥ f − 1∥2 + δ∥Dr1∥2; 1 ∈Wr
2},
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where Wr
2 be the Sobolev space constructed by the operator D =

d
dx

, and

Wr
2 := { f ∈ L2(R) : D j f ∈ L2(R), j = 1, ..., r}.

An outstanding result of the theory of approximation of functions on R, which establishes the equivalence
between modulus of smoothness and K-functionals, can be formulated as follows:

Theorem 1.1. [5] There are two positive constants C1 and C2 such that for all f ∈ L2(R) and δ > 0, we have

C1ωr( f , δ) ≤ Kr( f , δr) ≤ C2ωr( f , δ). (1)

Considerable attention has been devoted to discovering generalizations to new contexts for Theorem 1.1,
This theorem has been proved in the multidimensional case by Peetre [22] and Butzer-Berens [2] by using
Steklov averages. Equivalences (1) for some weighted pairs (Lp,Wn

p ), were given by Ditzian [9], Löfström
[14], Löfström-Peeter [15], Timan [26], Platonov [23, 24], Belkina-Platonov [1], Daher-Tyr [6, 7, 27, 28], El
Ouadih [10, 11] and Ditzian-Totik [8].

In our current research, we are interested in the Laguerre hypergroup K = [0,+∞) × R which can be
seen as a deformation of the hypergroup of radial functions on the Heisenberg group [12]. Let α ≥ 0, K is
provided with the convolution product ∗α generalizing the convolution product of radial functions on the
(2n+ 1)-dimensional Heisenberg groupHn = Cn

×R. We recall that (K, ∗α) is a commutative hypergroup in
the sense of Jewett with the involution the homeomorphism (x, t)→ (x, t)− = (x,−t) and the Haar measure
dmα, given by

dmα(x, t) =
x2α+1

πΓ(α + 1)
dxdt.

The unity element of (K, ∗α) is given by e = (0, 0), i.e. δ(x,t) ∗α δ(0,0) = δ(0,0) ∗α δ(x,t) = δ(x,t) for all (x, t) ∈ K. The
convolution product of two bounded Radon measures µ and ν onK is defined by

⟨µ ∗α ν, f ⟩ =
∫
K×K

T
(α)
(x,t) f (y, s)dµ(x, t)dν(y, s),

where T (α)
(x,t), (x, t) ∈ K, are the generalized translation operators onK given for α = 0, by

T
(α)
(x,t) f (y, s) =

1
2π

∫ 2π

0
f
(√

x2 + y2 + 2xy cosθ, t + s + xy sinθ
)

dθ,

and, for α > 0, by

T
(α)
(x,t) f (y, s) =

α
π

∫ 2π

0

∫ 1

0
f
(√

x2 + y2 + 2xyr cosθ, t + s + xyr sinθ
)

r(1 − r2)α−1drdθ.

The dual of a hypergroup is the space of all bounded continuous and multiplicative functions χ such that

χ = χ. The dual of the Laguerre hypergroup K̂ can be topologically identified with the so-called Heisenberg
fan [12], i.e., the subset embedded in R2 given by⋃

m∈N

{
(λ, µ) ∈ R2 : µ = |λ|(2m + α + 1), λ , 0

}
∪

{
(0, µ) ∈ R2 : µ ≥ 0

}
.

Moreover, the subset
{
(0, µ) ∈ R2 : µ ≥ 0

}
is usually disregarded, since it has zero Plancherel measure.

Following [18], in this paper, we identify the dual of the Laguerre hypergroup by K̂ := R ×N (see Figure
1:).
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Figure 1: Heisenberg fan

The topology on K is given by the norm |(x, t)| = |(x, t)|K = (x4 + 4t2)1/4, while we assign to K̂ the topology
generated by the quasi-semi-norm |(λ,m)| = |(λ,m)|

K̂
= 4κm|λ|, where κm = m + α+1

2 .

One may naturally ask what are the analogous results for the Fourier-Laguerre transform of Theorem 1.1?
As far as we know, this question has not been answered yet. In this paper, we prove some approximation
theorems which will help us to give a generalization of Theorem 1.1 in Laguerre hypergroups. More
precisely, we use generalized translation operators to study problems of approximation of functions on K,
we prove analogues of Jackson’s direct theorems for the moduli of smoothness of all orders constructed by
generalized translations. We use as the approximation tool a class of functions with bounded spectrum, that
is a class of functions for which their Fourier-Laguerre transform FL are functions with compact support.
The moduli of smoothness are shown to be equivalent to the K-functionals constructed from Sobolev-type
spaces.

The outline of the content of this work is as follows: the next section contains some basic facts needed
in the sequel about the harmonic analysis in the Laguerre hypergroup and its dual, while the last section
deals with the main results of this paper.

2. Harmonic analysis on the Laguerre hypergroup

For the convenience of the reader, we collect here some basic results and notations in harmonic analysis
related to Laguerre hypergroups and useful in the sequel. For more information about the Laguerre hyper-
group, its dual we refer the reader to [3, 12, 17, 18, 25]. Throughout this paper, we use the following notations:

• Lp
α(K), 1 ≤ p ≤ ∞, the space of measurable functions onK, satisfying

∥ f ∥p,mα =


(∫
K

| f (x, t)|pdmα(x, t)
)1/p

< ∞ if 1 ≤ p < ∞,

ess sup
(x,t)∈K

| f (x, t)| < ∞ if p = ∞.

• L
(α)
m is the Laguerre function defined on [0,∞) by

L
(α)
m (x) = e−

x
2

Lαm(x)
Lαm(0)

, (2)

where Lαm is the Laguerre polynomial of degree m and order α, given by

Lαm(x) =
m∑

l=0

(−1)l Γ(m + α + 1)
Γ(l + α + 1)

1
l!(m − l)!

xl. (3)



O. Tyr, R. Daher / Filomat 37:6 (2023), 1959–1974 1962

• K̂ := R ×N equipped with the weighted Lebesgue measure γα on K̂ given by∫
K̂

1(λ,m)dγα(λ,m) =
∞∑

m=0

Lαm(0)
∫
R

1(λ,m)|λ|α+1dλ.

• Lp
α(K̂), 1 ≤ p ≤ ∞, the space of measurable functions 1 : K̂→ C, such that

∥1∥p,γα =


(∫
K̂

|1(λ,m)|pdγα(λ,m)
)1/p

< ∞ if 1 ≤ p < ∞,

ess sup
(λ,m)∈K̂

|1(λ,m)| < ∞ if p = ∞.

It was shown in [18] that for all (λ,m) ∈ K̂, the system
D1u(x, t) = iλu(x, t),

D2u(x, t) = −|(λ,m)|u(x, t),

u(0, 0) = 1,
∂u
∂x

(0, t) = 0 for all t ∈ R,

admits a unique solution φλ,m, given by

φλ,m(x, t) = eiλt
L

(α)
m (|λ|x2), (4)

whereD1 andD2 be the singular partial differential operators, given by
D1 =

∂
∂t
,

D2 =
∂2

∂x2 +
2α + 1

x
∂
∂x
+ x2 ∂

2

∂t2 , (x, t) ∈]0,∞[×R,

where α is a nonnegative number.
The harmonic analysis on the Laguerre hypergroupK is generated by the singular operator

Lα :=
∂2

∂x2 +
2α + 1

x
∂
∂x
+ x2 ∂

2

∂t2 , α ≥ 0.

For α = n − 1, n being a positive integer, the operator Ln−1 is the radial part of the sub-Laplacian on the
Heisenberg group Hn and the functions (z, t) 7→ φλ,m(∥z∥, t) are zonal spherical functions of the Gelfand
pairs (G,U(Cn)), where G is the semi-direct product of U(Cn) byHn (see [12]). For the general case α ≥ 0,
the functions φλ,m, (λ,m) ∈ K̂ are characters of the Laguerre hypergroup (K, ∗α).

Some other properties of the Laguerre kernel are given in the following results:

Proposition 2.1. (a) For all (λ,m) ∈ K̂, the function φλ,m is infinitely differentiable on R2, even with respect to the
first variable and satisfies

|φλ,m(x, t)| ≤ 1, ∀(x, t) ∈ K. (5)

(b) For all (λ,m) ∈ K̂, the kernel φλ,m verifies the following product formula

φλ,m(x, t)φλ,m(y, s) = T (α)
(x,t)φλ,m(y, s), (x, t), (y, s) ∈ K. (6)

Proof. See [18].
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Lemma 2.2. for all x > 0 and t ∈ R, we have

lim
|λ,m|→+∞

φλ,m(x, t) = 0. (7)

Proof. See [16, Lemma 4.3].

With the help of the following relations (2), (3) and (4), one can deduce the properties below (see also [16]):

|λ,m|x2

||φλ,m(x, t)| − 1|
→ 4α + 4 as |λ,m|x2

→ 0. (8)

The behavior in 0 of the characters φλ,m(x, t) could be deduced as follows:

|φλ,m(x, t) − 1|2 = |λt|2 +
|λ,m|2x4

16(α + 1)2 + o(|λ|2|x, t|4).

In consequence, there exist C > 0 and η > 0 such that for all (x, t) ∈ K,

|λ||x, t|2 < η⇒ |φλ,m(x, t) − 1|2 ≤ C|λ,m|2|x, t|4. (9)

We now recall the definition of the Fourier-Laguerre transform and its main properties (see [17, 18])

Definition 2.3. (i) The Fourier-Laguerre transform FL of a function f in L1
α(K) is given by

FL( f )(λ,m) =
∫
K

f (x, t)φ−λ,m(x, t)dmα(x, t) for all (λ,m) ∈ K̂.

(ii) The inverse of the Fourier-Laguerre transform F −1
L of a function 1 in L1

α(K̂) is defined by

F
−1

L (1)(x, t) =
∫
K̂

1(λ,m)φλ,m(x, t)dγα(λ,m) for all (x, t) ∈ K. (10)

Proposition 2.4. Let f be in L1
α(K). Then

(i) For all m ∈N, the function λ 7→ FL( f )(λ,m) is continuous on R.

(ii) The function FL( f ) is bounded on K̂ and satisfies

∥FL( f )∥∞,γα ≤ ∥ f ∥1,mα .

Proof. See [18, Proposition II.5].

Proposition 2.5. For all (λ,m) ∈ K̂ and f ∈ L2
α(K), we have

FL(Lα f )(λ,m) = −|λ,m|FL( f )(λ,m). (11)

Proof. See [18, Proposition II.8].

In their article [18], M.M. Nessibi and K. Trimèche determined and proved that the Fourier-Laguerre
transform FL extends to an isometric isomorphism from L2

α(K) onto L2
α(K̂) and we have the following

Plancherel’s formula∫
K̂

|FL( f )(λ,m)|2dγα(λ,m) =
∫
K

| f (x, t)|2dmα(x, t). (12)
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It is well known from [17, 18] that the translation T (α)
(x,t) is linear operator from Lp

α(K), 1 ≤ p ≤ ∞ onto itself
and satisfies

∥T
(α)
(x,t) f ∥p,mα ≤ ∥ f ∥p,mα . (13)

It also verifies, as a consequence of the product formula (6), the relation

FL(T (α)
(x,t) f )(λ,m) = φλ,m(x, t)FL( f )(λ,m). (14)

3. Main result

In this section, we give the main results of this work. To deal with these results, we will need some
important definitions and lemmas that will allow us to achieve the objectives.
Throughout this paper, we fix α ≥ 0 and for h > 0, we will denote by

(x, t)h := (hx, h2t),

the dilation of (x, t) ∈ K. Clearly, the dilations are compatible with the structure of the hypergroup.
For every f ∈ L2

α(K), we define the differences ∆k
(x,t)h

f of order k, k = 1, 2, ..., with step h > 0 by:

∆1
(x,t)h

f = ∆(x,t)h f := T (α)
(x,t)h

f − f ,

∆k
(x,t)h

f = ∆(x,t)h (∆k−1
(x,t)h

f ) for k ≥ 2.

Also, we can write that

∆k
(x,t)h

f = (T (α)
(x,t)h
− I)k f =

k∑
ν=0

(−1)k−ν
(
k
ν

)
T

(α)ν
(x,t)h

f , (15)

where I is the identity operator in L2
α(K).

Definition 3.1. For every natural number k, the modulus of smoothnessΩ(α)
k of order k is defined in the space L2

α(K)
by the following relation:

Ω(α)
k ( f , δ)2 = sup

0<h≤δ
∥∆k

(x,t)h
f ∥2,mα ,

where (x, t) ∈ K and δ > 0.

The Sobolev space Wk
2,α(K) on Laguerre hypergroupK is defined by

Wk
2,α(K) := { f ∈ L2

α(K) : L j
α f ∈ L2

α(K), j = 1, 2, ..., k},

where

L
0
α f = f , L j

α f = Lα(L j−1
α f ), j = 1, 2, ..., k.

Let us define the K-functional constructed by the pair (L2
α(K); Wk

2,α(K))

Definition 3.2. For all δ > 0, the K-functional for the pair (L2
α(K); Wk

2,α(K)) is defined by

K
(

f , δ; L2
α(K); Wk

2,α(K)
)
= inf

{
∥ f − 1∥2,mα + δ∥L

k
α1∥2,mα : 1 ∈Wk

2,α(K)
}
,

where f ∈ L2
α(K).
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For brevity, we denote

K(α)
k ( f , δ)2 = K

(
f , δ; L2

α(K); Wk
2,α(K)

)
.

In the following of this paper, let c, c1, c2, c3, ..., denote positive constants that are, generally speaking,
different in different places and can depend on k,m, α and other inessential parameters.

We now give some interesting lemmas that will help us in the rest of this paper.

Lemma 3.3. For f ∈Wk
2,α(K), we have

FL(Ls
α f )(λ,m) = (−1)s

|λ,m|sFL( f )(λ,m), (16)

for all s = 0, 1, 2, ..., k.

Proof. The proof follows immediately by recurrence from equation (11).

Lemma 3.4. Let h > 0 and (x, t) ∈ K. The inequality

|1 − φλ,m((x, t)h)| ≥ c (17)

is true with h|λ,m| ≥ 1, where c > 0 is a certain constant.

Proof. Let h > 0, from relation (4), we have

φλ,m((x, t)h) = φλ,m(hx, h2t) = φhλ,m(
√

hx, ht).

Therefore, in view of Lemma 2.2, we get

lim
h|λ,m|→+∞

φλ,m((x, t)h) = 0.

Consequently, a number A > 0 exists such that with h|λ,m| ≥ A, the inequality

|φλ,m((x, t)h)| ≤
1
2

is true. Let

a = min
1≤h|λ,m|≤A

|1 − φλ,m((x, t)h)|.

With h|λ,m| ≥ 1, we get the inequality

|1 − φλ,m((x, t)h)| ≥ c,

where c = min(a, 1
2 ).

Lemma 3.5. Let f ∈ L2
α(K), (x, t) ∈ K and h > 0. Then

∥∆k
(x,t)h

f ∥22,mα
=

∫
K̂

|1 − φλ,m((x, t)h)|2k
|FL( f )(λ,m)|2dγα(λ,m), (18)

where k = 0, 1, 2, ....
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Proof. By relation (15) and an iteration of relation (14), we obtain

FL(∆k
(x,t)h

f )(λ,m) =

k∑
ν=0

(−1)k−ν
(
k
ν

)
FL(T (α)ν

(x,t)h
f )(λ,m)

=

 k∑
ν=0

(−1)k−ν
(
k
ν

)
φνλ,m((x, t)h)

FL( f )(λ,m)

= (φλ,m((x, t)h) − 1)k
FL( f )(λ,m). (19)

Now, by Plancherel formula (12), we have (18).

Remark 3.6. Lets f ∈Wk
2,α(K) and h > 0, it follows from Lemmas 3.3 and 3.5 that

∥∆k
(x,t)h

(Ls
α f )∥22,mα

=

∫
K̂

|λ,m|2s
|1 − φλ,m((x, t)h)|2k

|FL( f )(λ,m)|2dγα(λ,m), (20)

where s = 0, 1, ..., k.

Lemma 3.7. The modulus of smoothness Ω(α)
k ( f , δ)2, k = 1, 2, ...., δ > 0 possesses the following properties.

(a) Ω(α)
k ( f , δ)2 is a non-decreasing function of δ.

(b) Ω(α)
k ( f , δ)2 is a continuous function of δ and Ω(α)

k ( f , δ)2 → 0 as δ→ 0.

(c) Ω(α)
k ( f ± 1, δ)2 ≤ Ω

(α)
k ( f , δ)2 +Ω

(α)
k (1, δ)2, f , 1 ∈ L2

α(K).

(d) Ω(α)
k ( f , δ1 + δ2)2 ≤ Ω

(α)
k ( f , δ1)2 +Ω

(α)
k ( f , δ2)2, δ1, δ2 > 0, f ∈ L2

α(K).

(e) Ω(α)
k ( f , δ)2 ≤ 2k

∥ f ∥2,mα .

(f) If l ≤ k, then Ω(α)
k ( f , δ)2 ≤ 2k−lΩ(α)

l ( f , δ)2.

(j) If f ∈Wk
2,α(K), then

Ω(α)
k ( f , δ)2 ≤ c1δ

2k
∥L

k
α f ∥2,mα , (21)

where c1 is a constant.

(h) If f ∈Wk
2,α(K) and l > k, then

Ω(α)
l ( f , δ)2 ≤ c2δ

2kΩ(α)
l−k(Lk

α f , δ)2, (22)

where c2 is a constant.

Proof. Properties (a), (c) and (d) follow from the definition of the modulus of smoothness Ω(α)
k ( f , δ)2. Prop-

erty (b) holds because the functionT (α)
(x,t)h

f depends continuously on h in the space L2
α(K) ( ∥T (α)

(x,t)h
f − f ∥2,mα →

0 as h→ 0+). Properties (e) and ( f ) follow from the fact that

∥T
(α)
(x,t)h

f ∥2,mα ≤ 2∥ f ∥2,mα for all f ∈ L2
α(K).

If f ∈Wk
2,α(K), then by relation (18), we have

∥∆k
(x,t)h

f ∥22,mα
=

∫
K̂

|1 − φλ,m((x, t)h)|2k
|FL( f )(λ,m)|2dγα(λ,m) = J1 +J2,
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where

J1 =

∫
|λ,m|< 4κmη

h2 |x,t|2

|1 − φλ,m((x, t)h)|2k
|FL( f )(λ,m)|2dγα(λ,m)

and

J2 =

∫
|λ,m|≥ 4κmη

h2 |x,t|2

|1 − φλ,m((x, t)h)|2k
|FL( f )(λ,m)|2dγα(λ,m).

Estimate the summands J1 and J2: From relations (9), (16) and Plancherel formula (12), we get

J1 =

∫
|λ,m|< 4κmη

h2 |x,t|2

|1 − φλ,m((x, t)h)|2k
|FL( f )(λ,m)|2dγα(λ,m)

≤ Ckh4k
|x, t|4k

∫
|λ,m|< 4κmη

h2 |x,t|2

|λ,m|2k
|FL( f )(λ,m)|2dγα(λ,m)

≤ Ckh4k
|x, t|4k

∫
K̂

|λ,m|2k
|FL( f )(λ,m)|2dγα(λ,m)

= Ckh4k
|x, t|4k

∫
K̂

|FL(Lk
α f )(λ,m)|2dγα(λ,m)

= Ckh4k
|x, t|4k

∥L
k
α f ∥22,mα

. (23)

To estimate J2, we use the inequality (5), relation (16) and Plancherel formula (12) and we get

J2 =

∫
|λ,m|≥ 4κmη

h2 |x,t|2

|1 − φλ,m((x, t)h)|2k
|FL( f )(λ,m)|2dγα(λ,m)

≤ 22k
∫
|λ,m|≥ 4κmη

h2 |x,t|2

|FL( f )(λ,m)|2dγα(λ,m)

≤
22kh4k

|x, t|4k

(4κmη)2k

∫
|λ,m|≥ 4κmη

h2 |x,t|2

|λ,m|2k
|FL( f )(λ,m)|2dγα(λ,m)

≤
22kh4k

|x, t|4k

(4κmη)2k

∫
K̂

|λ,m|2k
|FL( f )(λ,m)|2dγα(λ,m)

=
22kh4k

|x, t|4k

(4κmη)2k

∫
K̂

|FL(Lk
α f )(λ,m)|2dγα(λ,m)

=
22kh4k

|x, t|4k

(4κmη)2k
∥L

k
α f ∥22,mα

. (24)

Therefore, combining the relations (23) and (24), we get

∥∆k
(x,t)h

f ∥22,mα
≤

(
Ck +

1
(2κmη)2k

)
|x, t|4kh4k

∥L
k
α f ∥22,mα

.

Consequently,

∥∆k
(x,t)h

f ∥2,mα ≤

(
Ck +

1
(2κmη)2k

)1/2

|x, t|2kh2k
∥L

k
α f ∥2,mα .

Calculating the supremum with respect to all h ∈]0, δ], we obtain

Ω(α)
k ( f , δ)2 ≤ c1δ

2k
∥L

k
α f ∥2,mα .
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Then, the property ( j) is well verified.
If f ∈Wk

2,α(K) and l > k, it is not hard to check that

∥∆l
(x,t)h

f ∥2,mα ≤ c1δ
2k
∥∆l−k

(x,t)h
(Lk

α f )∥2,mα .

The above formula yields the proof of property (h).

Definition 3.8. For any function f ∈ L2
α(K) and any number σ > 0, we define the function

Pσ( f )(x, t) :=
∫
|λ,m|≤σ

FL( f )(λ,m)φλ,m(x, t)dγα(λ,m)

= F
−1

L
(
FL f (λ,m)χσ(λ,m)

)
,

where χσ(λ,m) is the function defined by χσ(λ,m) = 1 for |λ,m| ≤ σ and 0 otherwise and F −1
L is the inverse

Fourier-Laguerre transform.

One can easily prove that the function Pσ( f ) is infinitely differentiable and belongs to all classes Wk
2,α(K),

k ∈N.

Definition 3.9. A function f ∈ L2
α(K) is called a function with bounded spectrum of order σ > 0 if

FL f (λ,m) = 0 for |λ,m| > σ.

The set of all such functions is denoted by B(α)
σ (K).

The best approximation of a function f ∈ L2
α(K) by the functions in B(α)

σ (K) is defined by

E(α)
σ ( f )2 := inf

1∈B
(α)
σ (K)
∥ f − 1∥2,mα .

Lemma 3.10. The following assertions hold:

(i) For every function f ∈ L2
α(K), Pσ( f ) ∈ B(α)

σ (K).

(ii) For every function ψ ∈ B(α)
σ (K), Pσ(ψ) = ψ.

(iii) If f ∈ L2
α(K), then

∥Pσ( f )∥2,mα ≤ ∥ f ∥2,mα , (25)

∥ f − Pσ( f )∥2,mα ≤ c3E(α)
σ ( f )2. (26)

Proof. (i) Since
FL(Pσ( f ))(λ,m) = χσ(λ,m)FL( f )(λ,m) = 0

for |λ,m| > σ, then we have Pσ( f ) ∈ B(α)
σ (K).

(ii) If ψ ∈ B(α)
σ (K), hence FL(ψ)(λ,m) = 0 for |λ,m| > σ and since χσ(λ,m) = 1 for |λ,m| ≤ σ. Thus, by using

the inversion formula (10) we get

Pσ(ψ)(x, t) =

∫
K̂

FL(Pσ(ψ))(λ,m)φλ,m(x, t)dγα(λ,m)

=

∫
|λ,m|≤σ

FL(ψ)(λ,m)φλ,m(x, t)dγα(λ,m)

=

∫
K̂

FL(ψ)(λ,m)φλ,m(x, t)dγα(λ,m) = ψ(x, t).
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(iii) Suppose that f ∈ L2
α(K). By the Plancherel formula (12) and Definition 3.8, we have

∥Pσ( f )∥22,mα
= ∥FL(Pσ( f ))∥22,γα
= ∥χσ(λ,m)FL( f )(λ,m)∥22,γα

=

∫
|λ,m|≤σ

|FL( f )(λ,m)|2dγα(λ,m)

≤

∫
K̂

|FL( f )(λ,m)|2dγα(λ,m)

= ∥ f ∥22,mα
.

On the other hand, suppose that f ∈ L2
α(K). Take an arbitrary function ψ ∈ B(α)

σ (K) such that

∥ f − ψ∥2,mα ≤ 2E(α)
σ ( f )2.

By the equality Pσ(ψ) = ψ and inequality (25), we have

∥ f − Pσ( f )∥2,mα = ∥ f − ψ +Pσ(ψ − f )∥2,mα

≤ ∥ f − ψ∥2,mα + ∥ f − ψ∥2,mα

≤ 4E(α)
σ ( f )2,mα ,

which proves (26).

Lemma 3.11. If f ∈ L2
α(K) and σ > 0. Then

(i) Pσ( f ) ∈ C∞(K) and we have

L
k
α(Pσ( f ))(x, t) = (−1)k

∫
|λ,m|≤σ

|λ,m|kFL( f )(λ,m)φλ,m(x, t)dγα(λ,m), (27)

for all (x, t) ∈ K and k = 0, 1, ...

(ii) For all k = 0, 1, ..., Lk
α(Pσ( f )) ∈ L2

α(K) and

FL(Lk
α(Pσ( f ))(λ,m) = (−1)k

|λ,m|kFL( f )(λ,m)χσ(λ,m). (28)

Proof. The fact that Pσ( f ) ∈ C∞(K) follows from a derivation under the integral sign. Identity (27) follows
easily from (16). Assertion (ii) is a consequence of (27).

The following theorems are analogues of Jackson’s direct theorems in the classical approximation theory
(see [20, Chapter 5]):

Theorem 3.12. If f ∈ L2
α(K), then the following inequality holds for any σ > 0:

E(α)
σ ( f )2 ≤ c4Ω

(α)
k

(
f ,

1
σ

)
2
, (29)

where k ∈N and c4 is a positive constant.
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Proof. Suppose that f ∈ L2
α(K). The Plancherel formula (12) gives that

∥ f − Pσ( f )∥22,mα
=

∫
K̂

|FL( f − Pσ( f ))(λ,m)|2dγα(λ,m)

=

∫
K̂

|1 − χσ(λ)|2|FL( f )(λ,m)|2dγα(λ,m)

=

∫
|λ,m|≥σ

|FL( f )(λ,m)|2dγα(λ,m).

In view of Lemma 3.4, we get

|1 − φλ,m((x, t)1/σ)| ≥ c for |λ,m| ≥ σ.

Therefore, from (19) and the Plancherel formula (12), we deduce that

∥ f − Pσ( f )∥22,mα
≤ c−2k

∫
|λ,m|≥σ

|1 − φλ,m((x, t)1/σ)|2k
|FL( f )(λ,m)|2dγα(λ,m)

= c−2k
∫
|λ,m|≥σ

|FL(∆k
(x,t)1/σ

f )(λ,m)|2dγα(λ,m)

≤ c−2k
∫
K̂

|FL(∆k
(x,t)1/σ

f )(λ,m)|2dγα(λ,m)

= c−2k
∥FL(∆k

(x,t)1/σ
f )∥22,γα

= c−2k
∥∆k

(x,t)1/σ
f ∥22,mα

.

Therefore, as Pσ( f ) ∈ B(α)
σ (K), we get

E(α)
σ ( f )2 = inf

1∈B
(α)
σ (K)
∥ f − 1∥2,mα ≤ ∥ f − Pσ( f )∥2,mα

≤ c−k
∥∆k

(x,t)1/σ
f ∥2,mα ≤ c−kΩ(α)

k

(
f ,

1
σ

)
2
.

Then Theorem 3.12 is proved with c4 = c−k.

Theorem 3.13. Assume that f ,Lα f , ...,Ld
α f , d ∈N, belong to L2

α(K), where Lα is the Laguerre operator. Then

E(α)
σ ( f )2 ≤ c5σ

−2dΩ(α)
k

(
L

d
α f ,

1
σ

)
2
, (30)

where c5 is a positive constant.

Proof. Replacing k by k + d in the previous theorem, we get

E(α)
σ ( f )2 ≤ c6Ω

(α)
k+d

(
f ,

1
σ

)
2
, σ > 0, (31)

where c6 is a constant. It follows from the property of the modulus of smoothness (22) that

Ω(α)
k+d

(
f ,

1
σ

)
2
≤ c2σ

−2kΩ(α)
k

(
L

d
α f ,

1
σ

)
2
. (32)

Now (30) follows from (31) and (32).

Now, we will prove Nikolskii-Stechkin inequality [19] for Laguerre hypergroup.



O. Tyr, R. Daher / Filomat 37:6 (2023), 1959–1974 1971

Lemma 3.14. For any f ∈ L2
α(K) and σ > 0, we have

∥L
k
α(Pσ( f ))∥2,mα ≤ c7σ

2k
∥∆k

(x,t)1/σ
f ∥2,mα (33)

for all k = 0, 1, ...

Proof. From (16), (18) and the Plancherel formula (12), we deduce that

∥L
k
α(Pσ( f ))∥22,mα

=

∫
K̂

|FL(Lk
α(Pσ( f )))(λ,m)|2dγα(λ,m)

=

∫
|λ,m|≤σ

|λ,m|2k
|FL( f )(λ,m)|2dγα(λ,m)

=

∫
K̂

|λ,m|2kχ(λ,m)
|1 − φλ,m((x, t)1/σ)|2k

|1 − φλ,m((x, t)1/σ)|2k
|FL( f )(λ,m)|2dγα(λ,m).

We note that

sup
(λ,m)∈K̂

|λ,m|2kχ(λ,m)
|1 − φλ,m((x, t)1/σ)|2k

=
σ4k

x4k
sup

(λ,m)∈K̂

(|λ,m| x
2

σ2 )2kχ(λ,m)

|1 − φλ,m((x, t)1/σ)|2k

=
σ4k

x4k
sup
|λ,m|≤σ

(|λ,m| x
2

σ2 )2k

|1 − φλ,m((x, t)1/σ)|2k

≤
σ4k

x4k
sup
|λ,m|≤σ

(|λ,m| x
2

σ2 )2k

|1 − |φλ,m( x
σ ,

t
σ2 )||4k

=
c8

x4k
σ4k,

where

c8 = sup
|λ,m|≤σ

(|λ,m| x
2

σ2 )2k

|1 − |φλ,m( x
σ ,

t
σ2 )||2k

.

Note that if |λ,m| → 0, then by relation (8), we conclude that

(|λ,m| x
2

σ2 )2k

|1 − |φλ,m( x
σ ,

t
σ2 )||2k

→ 42k(α + 1)2k.

Hence c8 must be finite.
Therefore

∥L
k
α(Pσ( f ))∥22,mα

≤
c8

x4k
σ4k

∫
K̂

|1 − φλ,m((x, t)1/σ)|2k
|FL( f )(λ,m)|2dγα(λ,m)

=
c8

x4k
σ4k

∫
K̂

|FL(∆k
(x,t)1/σ

f )(λ,m)|2dγα(λ,m)

=
c8

x4k
σ4k
∥∆k

(x,t)1/σ
f ∥22,mα

.

Thus

∥L
k
α(Pσ( f ))∥2,mα ≤ c7σ

2k
∥∆k

(x,t)1/σ
f ∥2,mα ,
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and this proves (33).

As noted in Lemma 3.14 that Pσ(ψ) = ψ for any ψ ∈ B(α)
σ (K), the following corollary is immediate.

Corollary 3.15. There is a positive constant c7 such that

∥L
k
α(ψ)∥2,mα ≤ c7σ

2k
∥∆k

(x,t)1/σ
ψ∥2,mα (34)

for any ψ ∈ B(α)
σ (K), k ∈N and σ > 0.

The following corollary follows from the definition of modulus of smoothness.

Corollary 3.16. The inequality

∥L
k
α(Pσ( f ))∥2,mα ≤ c7σ

2kΩ(α)
k

(
f ,

1
σ

)
2

(35)

holds for any f ∈ L2
α(K), m ∈N and σ > 0.

Our main purpose will be shown here. We will prove in the following theorem that the K-functional
for the pair (L2

α(K); Wk
2,α(K)) and modulus of smoothness generated by Laguerre translation operators are

equivalent.

Theorem 3.17. for any f ∈ L2
α(K) and δ > 0, we have

Ω(α)
k ( f , δ)2 ∼ K(α)

k ( f , δ2k)2.

i.e., there are two positive constants C1 and C2 such that

C1Ω
(α)
k ( f , δ)2 ≤ K(α)

k ( f , δ2k)2 ≤ C2Ω
(α)
k ( f , δ)2, (36)

Proof. Take 1 ∈ Wk
2,α(K). Now by using the properties of modulus of continuity Ω(α)

k ( f , δ)2, we get (see
Lemma 3.7)

Ω(α)
k ( f , δ)2 ≤ Ω(α)

k ( f − 1, δ)2 +Ω
(α)
k (1, δ)2

≤ 2m
∥ f − 1∥2,mα + c1δ

2k
∥L

k
α f ∥2,mα

≤ c9

(
∥ f − 1∥2,mα + δ

2k
∥L

k
α f ∥2,mα

)
,

where c9 = max {2m, c1}. Taking the infimum over all 1 ∈ Wk
2,α(K), which proves the left-hand inequality in

(36).

Now we prove the right-hand inequality in (36). SincePσ( f ) ∈Wk
2,α(K), by the definition of K-functional

we obtain

K(α)
k ( f , δ2k)2 ≤ ∥ f − Pσ( f )∥2,mα + δ

2k
∥L

k
α(Pσ( f ))∥2,mα . (37)

It follows from relations (26), Corollary 3.16 and Theorem 3.12 that

K(α)
k ( f , δ2k)2 ≤ c3E(α)

σ ( f )2 + c7(σδ)2kΩ(α)
k

(
f ,

1
σ

)
2

≤ c3c4Ω
(α)
k

(
f ,

1
σ

)
2
+ c7(σδ)2kΩ(α)

k

(
f ,

1
σ

)
2

= (c3c4 + c7(σδ)2k)Ω(α)
k

(
f ,

1
σ

)
2
.
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Since σ is an arbitrary positive value, choosing δ = 1
σ , we obtain

K(α)
k ( f , δ2k)2 ≤ C2Ω

(α)
k ( f , δ)2,

where C2 = c3c4 + c7. This concludes the proof.

As a consequence of Theorem 3.17, we obtain another property of the modulus of smoothness.

Theorem 3.18. There is a constant c10 such that the inequality

Ω(α)
k ( f , νδ)2 ≤ c10 max{1, δ2k

}Ω(α)
k ( f , ν)2 (38)

holds for any f ∈Wk
2,α(K) and ν > 0.

Proof. If 0 < δ ≤ 1, then the definition of K-functional yields

K(α)
k ( f , (νδ)2k)2 = inf

{
∥ f − 1∥2,mα + (νδ)2k

∥L
k
α1∥2,mα : 1 ∈Wk

2,α(K)
}

≤ inf
{
∥ f − 1∥2,mα + ν

2k
∥L

k
α1∥2,mα : 1 ∈Wk

2,α(K)
}

= K(α)
k ( f , ν2k)2.

While for δ ≥ 1, we have

K(α)
k ( f , (νδ)2k)2 ≤ inf

{
δ2k
∥ f − 1∥2,mα + δ

2kν2k
∥L

k
α1∥2,mα : 1 ∈Wk

2,α(K)
}

= δ2k inf
{
∥ f − 1∥2,mα + ν

2k
∥L

k
α1∥2,mα : 1 ∈Wk

2,α(K)
}

= δ2kK(α)
k ( f , ν2k)2.

From this and Theorem 3.17, (38) follows.
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