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Abstract. In this paper, we study the existence and uniqueness of solutions for a multiple system of frac-
tional differential equations with nonlocal integro multi pointboundary conditions by using the p—Laplacian
operator and the ¢—Caputo derivatives. The presented results are obtained by the two fixed point theorems
of Banach and Krasnoselskii. An illustrative example is presented at the end to show the applicability of
the obtained results. To the best of our knowledge, this is the first time where such problem is considered.

1. Introduction

The fractional calculus has many significant roles in various scientific fields of research, see for instance
[14, 25, 27, 28, 31]. As applied results, the fractional order differential equations have attired attention
of several scientists in different fields of research [9, 24]. However, most of the published works have
been achieved by using the fractional derivatives of type Riemann-Liouville, Hadamard, Katugampola,
Atangana-Baleanu, Grunwald Letnikov and Caputo. The fractional derivatives of functions with respect to
some other functions [19] are different from the others since their kernels appear in terms of other functions
(called ¢). Recently, some fractional differential results have been considered in [3, 4, 13, 15].

In most of the present articles, Schauder, Krasnoselskii, Darbo, or Monch theories have been used to
prove existence of solutions of nonlinear fractional differential equations with some restrictive conditions
[2, 7,8, 23, 26]. Some authors have worked on the solutions for fractional problems with p—Laplacian
operators. We cite, for example [5, 6, 11, 17, 18, 22, 30] where it has been studied nonlinear fractional
equation with p—Laplacian operator for the solutions.

Here, we will mention some other research works for the reader. We beginby A. Devi, A. Kumar, D. Baleanu
and A. Khan [11] where they worked on the stability results, for the following nonlinear FDEs involving
Caputo derivatives of distinct orders and ¢, Laplacian operator:
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Oy, [FD” (u(t) — LiZy vi(t)] = —w(t, u(t)), t € (0,1]
Uy [<D (u(t) = L2y 0], = 0,
u(0) = XiZ, vi(0),
w'(1) = XiZy v/(1),
w(0) = Y2, 0/(0), for j=2,3,.,n—1
where 0 < r < 1,n—-1<r <nmn >4, and v;,w are continuous functions. ‘9" and ‘D™ denotes
the derivative of fractional order r; and r; in Caputo’s sense, respectively, and ¢,(z) = |z’ 2z denotes the

-1
p—Laplacian operator and satisfies % + % =1, (ll)p) =y,
We can cite also the paper of A. Mahdjouba et al. [21] where they have investigated the study the

existence and multiplicity of positive solutions of the following problem:

(¢ [D5. ®)]) +m(®)f (w(OL1), 0(62(8) = 0,0 <t <1,
(w5 [D5. @O)]) +aa(t)f (O1(1), 0(62(8) = 0,0 <t <1,
Dp.u(0) = u(0) = w'(0), Dptu(l) =y DYbu(y),
D;.0(0) = v(0) = (0), DyLo(l) =y Dikon),
where 1 € (0,1),y € (0, n,,lw) Dy,
r € (2,3),m € (1,2) such that r > m + 1, p—Laplacian operator is defined as 1,(z) = z|zI’ 2 ,p > 1, and the
functions f,g € C (]RZ, IR).
Then, S. Etemad with his co authors [12] have been concerned with the existence study for the following
tripled impulsive fractional problem

Dy, are the standard Riemann-Liouville fractional derivatives with

CZ)gi’xm(t) = fu(t,x(t)),m=1,2,3, and te]
Xm(a) = Opx, x,,(a) = Opx,
Axm|t=tk = m,k(x(tk))/ Ax;n =t = Im,k(x(tk))/

where | = [a,b],]) = ] = {ti, b, ., tpha = tg <t < ... < t, <ty =b, Dy,
fractional derivatives such that x,, € (1,2], i : J X R} 5 R,

x(t) = (x1(t), x2(8), x3(8)), Ly Lx : R> = R, k = 1,2, ..., p, are given functions, ®,,, ©,, are given operators,
Axplp=y, = x(t]) — x(t), Axy, = x'(E) —x'(t), and

m = 1,2,3, are the Caputo

t=t,
X() = Him (b + 1), 2(6) = Jimoxu(t+ )

In the present research work, we study the existence and uniqueness of solutions for the following
problem:

Dgim;(plppm [Z)Sim;(p (”m(t) - Igprm(t/ ui(h), ..., un(t)))] = Hpy(t, ur(t), ..., un(t)),
m=1,n, and te€ [ =(0,1]

P [ D57 (1) = T5F Gt 118, ., wa0)]|_ =0, 1)
n0) =0, 14y(1) = Aoty Can), Con € 0,1]
(1) —p0)=K>0.

Here, we take Z)gﬁ’; ? i,m=1,nasthe @—Caputo fractional derivatives of orders iy, 0 < r1,, <1 < 3, < 2,
and 7 gfp, 0 < g, the fractional integral of order g, A;,, € RY, and ¢ : | — R is an increasing function such

-1
that ¢’(t) # 0, and ¢, (z) = |zIP"~% z denotes the p,,—Laplacian operator and satisfies pim + qln =1, (‘/’pm) =

V4, G@m 2 2). Forallt € |, Gy, Hy - ] X R" — Ris a given functions satisfying some assumptions that will be
specified later.
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2. p—Caputo Derivatives

In this section, we introduce some notations and definitions of p—Caputo approach, for details, see
[4, 19, 24, 29].

Let ¢ : | — R be an increasing function with ¢’(t) # 0, for all t € J.

And throughout the paper, let C =C(J, R) denotes the Banach space of all continuous mappings from

[0,1] to R endowed with the norm [[u]| = sup u(t). It is clear that the space C" endowed with the norm
te[0,1]

n
I(u1, ..., un)ll = X lluill is a Banach space.
i=1
We pose forall ¥ > 0,and t € [0, 1], (t > s)
¢’ () (@(t) ~ ()
I'(r) '
Where the Gamma function I'(z)(for z € R, such that R(z) > 0) is defined by the following integral:

+00
I'(z) = f e ' dt.
0

Definition 2.1. Fora > 0, the left-sided ¢—Riemann Liouville fractional integral of order a for an integrable function
u : | = R with respect to another function ¢ : | — R that is an increasing differentiable function such that ¢’ (t) # 0,
forall t € | is defined as follows

t

Pu(h) = f(pa (t,5) u(s)ds, )

a

©r (t,s) =

Note that equation (2) is reduced to the Riemann Liouville and Hadamard fractional integrals when @(t) = t and
(1) = Int, respectively.

Definition 2.2. Let n —1 < o < nand let u € C" (]) be two functions such that ¢ is increasing and ¢’(t) # 0, for
all t € |. The left-sided o—Riemann Liouville fractional derivative of a function u of order « is defined by

oty < (L4 preogy - (L d)" |
D u(t)—(@/(t) dt) I (Pu(t)_(go’(t) dt) f(pn_a (t,5) u(s)ds,

a

where n = [a] + 1.and [a] denotes the integer part of the real number a.

Definition 2.3. Let n — 1 < a < nand let u € C" () be two functions such that ¢ is increasing and ¢’ (t) # 0, for
all t € |. The left-sided p—Caputo fractional derivative of a function u of order « is defined by

o o = Mg(] (a) k
"D ut) = D ut) = )~ o) - (@]
k=0

where ufff](t) = (ﬁ%)n u(tyandn = [a] + 1 fora ¢ N, and n = a for « € N. Further, ifu € C"(J) and a ¢ N,
then

at

O u(t) I”“W’( i) u(t), 3)

@’ (t) dt

t
f Pralt, )l (s)ds

Thus, if a = n € IN, one has

O u(t) = ull ).
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2.1. Auxiliary Lemma
Lemma 2.4. Let a,f > 0, and u € L'(]). Then

T5° 0% u() = 157PPu(h), ae te]

In particular,
Ifu € C()), then I°¥ TP u(t) = 10P%u(t), t e .

Next, werecall the property describing the composition rules for fractional p-integrals and p-derivatives.

Lemma 2.5. Let a > 0 The following holds:
Ifu € C([a, b)), then

O TPut) = u(t),t € [a,b].
IfueC'(J),n-1<a<n,then

—1 M

:
<=

ISP D5 u(t) = u(t) -
k=0

k, o) - gt

forallt € [a,b]. In particular, if 0 < a < 1, we have
T5P°DYPu(t) = u(t) — ua).

Lemma 2.6. Lett>a,a > 0;and p > 0. Then
o % [p) - p@ " = 4O [p(t) - p@)]*!
a* r(p+a) ’

« <D [p(t) — (@) = r@(fl) [p(t) - p@) ",

o <D [p(t) - @] =0, forall k €1{0,...,n—1},n € N.

Lemma 2.7. Let a > 0,n € IN; such that n — 1 < g < n. Then:
o <D TP (t) = D Pu(t); if g > o
o O TP u(tyu(t) = I, " u(t); ifa > q.

Lemma 2.8. Given a function u € C" [a,b] and 0 < g < 1, we have

2I|u||

|73 u(ta) = TP u(h)| < - Tl s D) ) =@ p(h))’.

Finally, we recall the fixed point theorems that will be used to prove the main results. (We have C a
Banach space in each theorem).

Lemma 2.9. (Banach fixed point theorem [10]) Let U be a closed set in C and T : U — U satisfies
Tu—-Tv <alu—uv|, for somea € (0,1),and for u,v € UL
Then T admits one fixed point in U.

Lemma 2.10. (Krasnoselskii fixed point theorem [20]) Let M be a closed, bounded, convex and nonempty subset of a
Banach space U. Let A, B be operators such that

(i) Ax + By € M where x,y € M,

(ii) A is compact and continuous and

(iii) B is a contraction mapping. Then there exists z € M such that z = Az + Bz.



H. Beddani et al. / Filomat 37:6 (2023), 1879-1892 1883

Lemma 2.11. ([16]) For the p—Laplacian operator y,,, the following conditions hold true:
(1) If|51|,|52| >p>0,1<p<2,616, >0, then

[4(61) = $p(@2)] < (p = 1) p" 2161 = 62
(2)Ifp > 2,161,102 < p. > 0, then
[0(61) = ¥p(62)] < (P = 1) pL " 161 = 82l
Lemma 2.12. [14] For nonnegative a;,i = 1,..., k,
ko k
[Zai\] <kt [Za?],q >1
i=1 i=1

Now, we pass to prove the following result.

Lemma 2.13. For a given hy, g, € L'(J,,R®)(m = 1,_n), the unique solution of the linear fractional initial value
problem

DY, [DF (sn(®) = I3 gu(®))] = hn(8),
m=1,n, and te]—(O,l]
¥, [D ’”’(uma) I gu)]_, =0
n(0) = 0, 1,(1) = mmu, (Cin), G € (0,1]
o(1) - (p(O) K> 0.

is given by
um(t) (4)

t S t
= ‘fo(prm (t,8) 1y [L Prire (s,e)hm(e)de] dS+L Q5 (t,5) gu(s)ds

1
~@01-90) [ 9 0, [ f: P <s,e>hm<e>de]ds

n mo
+(p(t) —(p<0>>[ A () - 28 )J.

i=1

Proof. For 0 < 1y, <1 < 1y <2, Lemma 2.5 yields
g, [ DG () = T3 gun()] = 52 hn(t) + 1

by conditions 1, [ D2 () — gm(t)” =0, we gat ¢y, = 0. Then

[Drzm (um(t) - Io; gm(t)] qu [ I)"%h (t)]

SO

th(t) = T077 [, [T (D] + T3 gu(®) + can (0(5) = 9(0)) ,

by conditions u,,(0) = 0, and u,,(1) = Z/\imui (Cim) , we gat
i=1

C2m-Z R L e [ F ) | 5




H. Beddani et al. / Filomat 37:6 (2023), 1879-1892 1884
3. Main Results
Taking into account Lemma 2.13, we define an operator 7 : C" — C”
Ty, . ug) ()= T2, o un) @), .., T (U, ..., uy) (1), (6)
where
T (U1, ... uy) () (7)
= j: Pry (,5) Uy, [fos ©r,,, (5,€) Hu(e,ui(e), ..., un(e))de] ds

+ fo‘ @5 (t,5) Gp(s, ua(s), . .., uu(s))ds

1 S
= (o) — 9(0) j; @ry (1,5) g, [ fo Prin (s,e)Hm(e,m(E),..-,un(e))dE]ds

(P - (P(O))[ %Mi (Cim) — W] )

i=1

m=1,n,

and
@' () ((t) — p(s))™!
r (er)

@ ) (p(t) — p(s)"
ING)) '

_ @’ (s) (p(t) - (p(s))m,—l
r (rlm) ’

(Pl’z,y, (tl S) 4 (Prlm (tl S)

and @, (t,5)

For the sake of convenience, we use the following notations (for m = 1,n):

% 2qm=2 (K + 1) K" K, KT =1
Lm T(1+7ry) \L(1L+71m)
K1, -
7(Zm - [r(1+0) +;M1m|]/
202 (K+ 1)K [ NKm \"™ KoM
Ko T(L+72) (F(l n r1m)) razo M
s~ (K (pFn+N) 2
dm T (1+ im) ’
- 1)1 + K) K2t A Ky, KB, n
7<‘5m = (q ) ( ) 4 + 5 + Z |Aim| .
I +72) T (A +710) I'l+o) &

3.1. An Existence and Uniqueness Result

Here, by using the Banach contraction mapping principle, we prove an existence and uniqueness result.

Theorem 3.1. Let Hy,, Gy, : [0,1] x R" — R two continuous functions which satisfy the condition
(A1) there exist positive real constants Ay, By, such that, for all t € [0, 1] and u;, v; € R,i,m = 1,n, we have

n
|Hm(t/ 1/[1, e /ui’l) - Hm(t/ Ul/ . '/Un)l S ﬂm [Z |ui - Uil]/

i=1
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i=1

|Gﬂ1(tl Ui, ... /un) - Gm(t/ [VEEE /UVI)| S BWI

Then, system (1) admits a unique solution on [0, 1] provided that

Z«Zm , and 27(5'" <1 )

is valid.

Proof. We transform system (1) into a fixed point problem, (u1,...,u,)(z) = T (u1,...,u,)(z), where the
operator 7 is defined as in (6). Applying the Banach contraction mapping principle (Lemma 2.9), we show
that the operator 7 has a unique fixed point, which is the unique solution of system (1).

Let sup Hy(t,0,...,0) = N < oo, and sup G,(t,0,...,0) = M < oo. Next, we set Up = {(uy,...,u,) €

te[0,1] te[0,1]
C‘rl/ ||(u1/ cery un)” S P}/
in which
n ﬁ n
p > max [(n +2) qum] (1 +2) Z«Sm .
m=1 m=1

Observe that Up is a bounded, closed, and convex subset of C. First, we show that 7Up c Up.
For any (uy,...,u,) € Up, t € [0,1], using the condition (A;), we have

|Hﬂ1(t/u1/'-'/un)| S |Hm(t/u1/~~-/un)_Hln(e/01-~-/0)| + |Hm(t/0/10)|

n
ki, [Z |ui|] +N < pA,+ N,

i=1

IA

and
|Gt u1, ..., uy)l < pBy + M.
Then, we obtain

|Tm (ulr ceey u‘rl) (t)l
t S
‘f Pran (t/ S) qum [f Prim (Sr E) Hm(er ul(e)r ety un(e))de] ds
0 0

t

Qo (t,5) Gu(s, u1(s), - . ., un(s))ds
0

|((p(t) (prm (1,5) Yy, [fo ©Qry,, (5,€) Hyle,ui(e), ..., un(e))de] ds
|/\im| |Gm(0/. . '101 O)|
+ |((P(t) - (P(O))‘ (;T [wi (Cin)| + T]’
by Lemma 2.8 we get
|Tm (er cecy un) (t)l
K+ 1)K s
| [ om0t @ o]

Ko (pBn+ M) (v
TTavo *[;P'M”M]'
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and by 1,(z) = |z17* z, we have

|Tm (ulr ceey u‘rl) (t)l

(pAy + N) K\ L (K4 1)K K (pBr + M) (v
( T(L+ ) T(A+rm)  T+o0) ;M’“HM

(K + 1) K"Zm Krlm
I (1 + er) T (1 + rlm)

KB, - KM
Td+o) ;M’”’l]p - (r(1 +o) +M)'

qm—1
) (P + N)™™!

+

Thanks to Lemma 2.12, for all m = 1,1 we get

|Tm (ul/ cery ul’l) (t)l
2‘7m*2 (K + 1) KrZW ( Krlm

%—1
qm_l qul qul
T (1 + 2 F(1+r1m)) (A~ ot A7)

K'8Bu N,y KM
* r(1+a>+;'A1m']P+m+M

2qm=2 (K+ 1)K ( A,K'm m—1 B KB n
Im 1 m + A
TA+rm) \TQ+trmm) P T|TA+o) ;' il [

212 (K+ 1)K [ NKm \"70 KOM
+—+M
T+ rm) T+ rm) r'd+o)
< 7(‘1mpqm—1 + Komp + Kom.
Hence,
N7 (u, ..o, )l )

n

< Z (’Kmpq'"_l + 7(sz + 7<‘3m) < P

m=1

which gives us 7 Uo C Uo.

Next, we show that 7 : C" — C" is a contraction.
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Using condition (A,), for any (1, ..., uy), (v1,...,v,) € C" and for each t € [0, 1], we have

[To(ut1, - - un) = T(01, ., On)|
t S

‘ f Pry, (t,5) Py [ f Ory (S,e)Hm(e,ul(e),...,un(e))de] ds—
0 0

t S
f Pry (,8) Py [ f Pri, (s,e)Hm(e,vl(e),--.,vn(e))de}ds
0 0

. fo o (5) G5, 11(5)s - 1n(6)) = Gon(5,01(5) ., 0n(6))) s

1 S
+Kf(; Prare (1,s)¢q[j; o (s,e)Hm(e,ul(e),...,un(e))de]ds

1 S
—f Py (1,8) 1y [f Prn (s,e)Hm(e,vl(e),...,vn(e))de]ds
0 0
+ Y Wil 2 (Ci) = 01 S,
im1

by Lemma 2.8 and Lemma 2.11, we get

[T(u1, - un) = Tn(01, - .., )]

< S | [ o GO, o] -

llqu [f Prim (S/ e) Hm(e/ (%1 (E), ceny U,,(e))de]

r(1+ ZI/MI]ZI%-UI

(1+K)K™ (g, — 1) Kay
- I'(1+rm)

f ©r,, (s,€) Hule, ui(e), . .., un(e))de—

r(1 Z'“l v

(G = 1) A (1 + K0 Ky KB,
[ T+ ) T+ 1) "Ti+0 ZM”’" Z'”Z_v

fs Pri (S/ e) Hm(el (%1 (6), ooy Uﬁ(@))d@
0

n

7(5mZ lu; —vil.

i=1

IN

[T (1, .. un) =T (V1. .., )

n

Since( Y. Ksm| < 1, by (8), the operator 7 is a contraction. Therefore, using the Banach contraction
m=1

mapping principle (Lemma 2.9), the operator 7 has a unique fixed point. Hence, system (1) has a unique

solution on [0, 1]. The proof is completed. [
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3.2. An Existence Result

Now we apply Krasnoselskii fixed point theorem (Lemma 2.10) to prove our second existence result.
So, consider the following operator

T(ul/- '-/un))(t) = (73(1/[1,...,Mn)(t),...,%(ul,.. '/ul’l)(t))
= ¢>1(1’11/' . '/uﬂ)(t) +P2(u1/' "/ui’l)(t)/
where

Pr(ug, ..., u)(t) Pri(ur, ..., un)@), ..., P1a(us, ..., u,))
Po(ur, ..., ug)t) = Poaur, ..., un)®), ..., Pouus, ..., us)t))

and
le(”l/ ey un)(t)
t S
= f Pry (,5) Py, [f ©r,, (5,€) Hyle, ul(e),...,un(e))de] ds
0 0
1 S
—(p(t) — 9(0) fo ®ro (1,8) g, [ fo ®ry, (5,€) Hule, us(e), - .. ,Mn(e))dE} ds
and

7)2711(”1/ ceey un)(t)
= f @5 (t,5) Gu(s, u1(s), . . ., uy(s))ds
0

+(p(t) - (p<0>>[ B o)~ 22 “1“)}('“"”"(0”].

i=1

Theorem 3.2. Let Hy,, Gy, : [0,1] X R" — IR be continuous functions which satisfy condition (A1) in Theorem 3.1.
In addition, we assume that there exist two positive constants Y1y, Yon such that, for all t € [0,1] and u;,v; €

R,i,m = 1,n, we have.
|Hm(t/ 1/[1, cecy un)|
|Gt uy, ..., uy)l

Tlml
Yo

INIA

Moreover, assume that
n n n
(qm — 1) ﬂm (1 + K) Kr2m+71m'7(4m
Aim| £ 1, and 1.
2.0 Wil <1, an (mz:l T(1+ o) T (1 + r1) <

i=1m=1

Then, problem (1) admits at least one solution on [0, 1]

Proof. The proof will be given in several steps. Let Us = {(u1,...,u,) € C", [|(u1, ..., u,)ll < 0}, in which

n -1
Y1 KT T (K+1)K"2m Koo
Zl ((ramm)) () * T+o) M)

m=

1- Z Z |/\im|

i=lm=1
First step: We prove that

(T (u, ..., un)))| < 0.
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Let (u1,...,u,) € Us. Asin the proof of Theorem 3.1, we have
[Prm(u, .., un)(t) + Pom(ut, ..., un) (Bl
m—1
( Y, K )q K+ DK™ Ko 0 (Z I Alml]

I'(l+rm) T'(1+7r) F 1+o0)
Hence

N7 (ua, ..., un) (O

T3, (B, Tan, - ) O
Y TG, - w)Ol
i=1

n

IN

IN

sup [Pim(us, ..., un)(t) + Pom(ui, - . ., 1) (t)]

mzlte[o,l]

5 ([ YK\ K+ 1)K KO
<
= Z[(ru +r1m)) TA+ry Taze M
* (ZZ MM]@
m=1i=1
< o

Accordingly, 7Us ¢ Us and the condition (i) of Lemma 2.10 is satisfied.
Second Step : #; is a contraction.
Let (u1,...,uy), (v1,...,7,) € Us, we have the following estimate

[Prm(tt1, - -, un)(t) = Prm(01, - .., 0n)(B)]
t S

‘ f Pry, (t,5) Py [ f O,y (S,e)Hm(e,ul(e),...,un(e))de] ds
0 0

- f Prom (t’ S) qu,,, [f Prim (S, 6) Hm(er U1 (8), ceey vn(e))dej| ds
0 0

1 S
Pry (1,8) Py, [ f @Oy, (5,€) Hy(e, u1(e), . .. ,un(e))de] ds
0 0

1 S
- f Pry (1,8) Yy, [ f ©ry (s,e)Hm(e,vl(e),...,vn(e))de]ds
0 0

(1+K) K™
T (1 + sz)

Vg [ fo ©ri,, (s,) Hule, v1(e), - .., vn (e))de]

(qm — 1)*?{711 (1 + K) Kr2m+rlr)17(4m i | ‘
T +72) T (1 +710) l

IN

lpqm [L Prin (Sr 8) Hm(er 51 (E), ceey u,,(e))de] -

IA

—Uil.

So
[Pr(ur, ..., un)(t) = P1(v1,..., ) @)
- (q’" - 1) A, (1 + K) Kzt GGy n | |
) [; T (1+72m) T (1 +71) Y i

i=1

1889

(10)
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n ( - Tom
. Gm 1)~7[1v1(1+K)K 2m 7 1m Ky, ) )
Since ( Z T(A+72,)T(A+7 1) <1, the operator %P is a contraction.

m=1

Third Step : $; is compact and continuous.

Since Hy,, G, are a continuous functions, this implies that the operator $; is continuous on U . Moreover,
Po(us, ..., uy,) is uniformly bounded by (9). Next, we show equicontinuity. Let (uy,...,u,) € Us, we have

Pom(ur, ..., un)(B)l

< Of Po (£,5) Gu(s, ur(s), . .., un(s))ds
+1<[ _ Mli'”' o)+ 15 ul(ozé. . .,un(O))l]
S
So
P, ... un)(t)l_Z[r(1+ Z|/\lm|+M) (11)

Moreover, P5(u, . .., uy,) is uniformly bounded by (11). Next, we show equicontinuity.
and t1, £, € [0,1] such that , #; < £, we have

[Pom(ur, ..., un)(t2) = Pom(uis, - . ., 1tn)(t1)]

ty ty
< Qo (t2,5) Gu(s, ur(s), . . ., un(s))ds — f @o (t1,8) Gu(s, u1(5), - .., Un(s))ds
0
< F(1+ (p(t)—@(t)’.
So
|p2(u1/ ceey uﬂ)(tz) - (Pz(ulr sy un)(t1)|
ty ty
< o (t2,8) Gu(s, u1(s), . . ., un(s))ds — f @o (t1,8) Gu(s,u1(s), - .., un(s))ds
0
< V(-2 e - oy
S Li\Ta+o) P00
Consequently,

|p2(u1/ e /un)(t2) - P2(“1/ e /un)(tl)l - O/ as tl - t2-

This shows that $,Us is equicontinuous. Hence, by Arzelia-Ascoli theorem $, is completely continuous
on U . As a consequence of Krasnoselskii’s fixed point theorem, we conclude that has a fixed point which
is a solution of (1). The proof of Theorem 3.2 is thus completely achieved. [
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An llustrative example

Example 3.3. Consider the following nonlinear equation for all t € (0,1],n = 3,p,, =2

cz)%;lep cz)%}tz (u(t) _ [%?tz ( e'+1 )) = L( )
o+ 1+(u(t)) 1 1+(M(t
L

1.2 5

c 4 cqy2” +1 o(t)

Do % Do (U(t) (1+(v(t) (1+(v(t)
it it w(t)

cqyt cq)t

DOJr ¢2I: DO+ (W(t) I ( T+(w(b))’ )) - (1+(w(t) )

Uy [CZ){;*P (u(t) I 3 (HL’(’:(;) ;;]t ) (12)

va| o (o - 13 (i )|
i) [CD”ZJ@ (w(t) - Iz;t (1+(w(t ) ))][t 0
u(0) = 0(0) = w(0) =
u(l) = Z7(u>u(C) o(1) = 219(1*1)”(51)’7”(1) B gﬁw(Ci), e

and
K =1,
Y = A= l,le =HA, = 1,Y13 =As = g,
Yo = 81—1+6T22—Bz—1Y23—B3——

2 2
Thus, the assumptions (A1) are satisfied and Theorem 3.1-3.2 implies that (12) has a unique solution on [0, 1].

References

(1]
[2]
13
[4]
(5]

[6]
(71

(8]
1]
[10]
[11]
[12]
[13]

[14]
[15]

[16]

M. Alshammari, N. Igbal, D.B. Ntwiga, A comparative study of fractional-order diffusion model within Atangana-Baleanu-
Caputo operator, Journal of Function Spaces, vol. 2022, art.n.9226707, (2022).

A. Aghajani, E. Pourhadi, J. J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional differential
equations in Banach spaces, Fract. Calc. Appl. Anal. 16 (2013) 962-977.

O. P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Fract Calc Anal Appl
15,4 (2012).

R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer.
Simul. 44 (2017) 460-481.

H. Beddani and Z. Dahmani, Solvability for nonlinear differential problem of Langevin type via phi-Caputo approch, Eur. J.
Math. Appl. (2021)1:11, DOI: 10.28919/ejma.2021.1.11

H. Beddani and M. Beddani, Solvability for a differential systems via Phi-Caputo approach. J. Sci. Arts. 56(3)2021

A. Benzidane and Z. Dahmani, A class of nonlinear singular differential equations, Journal of Interdisciplinary Mathematics
Volume 22, 2019 - Issue 6.

M. Bezziou, Z. Dahmani and A. Ndiyae, Langevin differential equation of fractional order in non compactness Banach space,
Journal of Interdisciplinary Mathematics, Volume 23, 2020 - Issue 4.

K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, (2010).
K. Deimling, Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985.

A. Devi, A. Kumar, D. Baleanu and A. Khan, On stability analysis and existence of positive solutions for a general non-linear
fractional differential equations. Advances in Difference Equations (2020) 2020:300 https://doi.org/10.1186/s13662-020-02729-3

S. Etemad, M. M. Matar, M. A. Ragusa, S. Rezapour, Tripled Fixed Points and Existence Study to a Tripled Impulsive Fractional
Differential System via Measures of Noncompactness, Mathematics 2022,10,25. doi.org/10.3390/math10010025

M. Fe¢kan, and Y. Zhou and J. Wang, On the concept and existence of solution for impulsive fractional differential equations.
Commun. Nonlinear Sci. Numer. Simul,2012(17) (3050-3060)DOI:1007570411006356

R. Herrmann, Fractional Calculus for Physicist, world scientific publ. (2014).

M. D. Kassim, N.E. Tatar, Stability of logarithmic type for a Hadamard fractional differential problem, J. Pseudo-Differ. Oper.
Appl. 11(2020), 447466.

H. Khan, W. Chen, H. Sun, Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential
equations with p-Laplacian in Banach space. Math. Methods Appl. Sci. 41(9), 3430-3440 (2018)



[17]

[18]

[19]

[20]
[21]

[22]
[23]
[24]
[25]
[26]

[27]
[28]

[29]
[30]

[31]

H. Beddani et al. / Filomat 37:6 (2023), 1879-1892 1892

A.Khan, M. 1. Syam, A.,Zada, H. Khan, Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-
Liouville derivatives. Eur. Phys. J. Plus 133, 26 (2018). https://doi.org/10.1140/epjp/i2018-12119-6

H. Khan, T. Abdeljawad, M. Aslam, R. A. Khan and A. Khan, Existence of positive solution and Hyers-Ulam sta-
bility for a nonlinear singular-delay-fractional differential equation. Advances in Difference Equations (2019) 2019:104.
https://doi.org/10.1186/513662-019-2054-z

A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathe-
matics Studies, vol. 204. Elsevier Science, Amsterdam, 2006.

M. A. Krasnoselskii, Two remarks on the method of successive approximations. UspekhiMat. Nauk 1955, 10, 123-127.

A. Mahdjouba, ].J. Nieto, and A. Ouahab, System of fractional boundary value problem with p-Laplacian and advanced argu-
ments. Advances in Difference Equations (2021) 2021:352 https://doi.org/10.1186/s13662-021-03508-4

Y. Li, Existence of positive solutions for fractional differential equation involving integral boundary conditions with p— Laplacian
operator. Adv. Differ. Equ. 2017(1), 135 (2017)

T. J. Osler, Fractional derivatives of a composite function. SIAMJ Math Anal 1 (1970), 288-293..

L. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

H. Qin, X. Zuo and ]J. Liu, Existence and controllability results for fractional impulsive integrodifferential systems in Banach
spaces, Abs. Appl. Anal. Vol. 2013, Article ID 295837, 12 pages, (2013).

M.A. Ragusa, A.Razani, Weak solutions for a system of quasilinear elliptic equations. Contrib. Math. (Shahin Digital
Publisher)1(11-16),2020, DOI:10.47443/cm.2020.0008.

M.A. Ragusa, Parabolic Herz spaces and their applications, Applied Mathematics Letters 25 (10), 1270-1273, (2012).

S. G. Samko, A. A. Kilbas and O. I. Mariche, Fractional integrals and derivatives, translated from the 1987 Russian original.
Yverdon: Gordon and Breach, (1993).

A. Seemab, J. Alzabut, M. Rehman, Y. Adjabi, M.S. Abdo, Langevin equation with nonlocal boundary conditions involving a
y—Caputo fractional operator: arXiv:2006.00391v1 [math.AP] 31 May 2020.

Y. Wang, Existence and nonexistence of positive solutions for mixed fractional boundary value problem with parameter and
p—Laplacian operator. J. Funct. Spaces 2018, Article ID 1462825 (2018).

M. Alshammari, N. Igbal, D.B. Ntwiga, A comparative study of fractional-order diffusion model within Atangana-Baleanu-
Caputo operator, Journal of Function Spaces, vol. 2022, art.n.9226707, (2022).



