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Abstract. In this article, we give some results for fractional-order delay differential equations. In the first
result, we prove the existence and uniqueness of solution by using Bielecki norm effectively. In the second
result, we consider a constant delay form of this problem. Then we apply Burton’s method to this special
form to prove that there is only one solution. Finally, we prove a result regarding the Hyers-Ulam stability
of this problem. Moreover, in these results, we omit the conditions for contraction constants seen in many
papers.

1. Introduction

Fractional differential equations appear in various fields. For examples, it’s handled in engineering with
physical processes such as thermodynamics, polymer rheology, and mechanics as well as control theory and
technical sciences like biophysics [10, 11, 13, 21, 27, 28]. The biggest factor in fractional differentiations being
more popular than classical ones lately is that it is effective in explaining real-world problems. But since
there is no general technique for obtaining solutions of the dynamic systems specified by fractional calculus,
existence and uniqueness theorems have an important place in the literature [1, 3, 8, 9, 16, 22, 35, 36].

The concept of stability for functional equations was first introduced by Ulam at a conference in 1940.
After Hyers’ first contribution to Ulam’s work in 1941, this type of stability concept came to be known
as Hyers-Ulam stability. Obloza is the first author to study the this type of stability of linear differential
equations [18]. Later, the concept of Hyers-Ulam stability is discussed in many topics such as ordinary
differential equations, partial differential equations, and delay differential equations [14, 17, 19, 23, 30]. This
type stability for fractional-order differential equations with respect to Caputo derivative are investigated by
many authors [31–33]. In particular, existence-uniqueness and Hyers-Ulam type stability results regarding
delay differential equations were investigated in the papers [4, 7, 19, 29]. In [19], results for the delayed form
of differential equations in the classical sense were obtained by the Picard operator method, and inspired
by this paper, existence-uniqueness and stability results for fractional Caputo derivative were obtained in
[29].
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In this article, we investigate the existence and uniqueness of solutions and Hyers-Ulam type stability for
the following fractional-order delay differential equation in the sense of Caputo, motivated by [5–7, 19, 29].cDαυ(t) = f (t, υ(t), υ(1(t))) t ∈ [0,T]

υ(t) = ϕ(t) t ∈ [−h, 0].
(1)

where f ∈ C([0,T] ×R2,R), ϕ ∈ C([−h, 0],R), 1 ∈ C([0,T], [−h,T]) verifying 1(t) ≤ t and cDα is the fractional
derivative of order α ∈ (0, 1) in the sense of Caputo.

The paper is structured as follows: Section 2 introduces the general notion of Caputo fractional-order
derivative and Hyers-Ulam stability. We state here basic properties of Caputo fractional-order derivative
and useful inequalities. In Section 3, we investigate the existence and uniqueness of the solution to this
problem. In the existence and uniqueness theorems, contractivity constants are one of the most important
tools to prove main theory. For this reason, some conditions are put on these constants as a hypothesis
before main results are given. In Theorem 3.1, we obtain the existence and uniqueness of the solution under
the hypothesis that the function on the righthand side of our problem satisfies the Lipschitz condition with
respect to the second and third variables. Here, we omit some of the conditions in the article [29] and
give the proof of the existence and uniqueness theorem by using the Bielecki norm more effectively. In
other words, we obtain our result without the need for contraction constants. Later, we give the existence
and uniqueness theorem for a special case of the problem (1) by applying the technique named progressive
contractions, which is introduced by Burton [5–7]. In Burton’s progressive contractions, the interval studied
is divided into n-equal parts of a certain length. For the first interval, contraction mapping defining through
the hypothesis, and a unique solution is obtained. Then, this solution is considered as the initial function
and a new contraction mapping is defined for the second interval, and a solution is obtained here. By
continuing this process n-steps, we have a unique solution for the whole domain. For more details and
other applications of it, see also [20, 26] and references therein. This technique allows us to omit the
Lipschitz condition stated in Theorem 3.1 with respect to the third variable. In Section 4.1, we focus our
attention on Hyers-Ulam stability for the problem. Here we obtain the Hyers-Ulam stability result for the
equation (1) using Picard operators theory, and then we give an alternative proof without using techniques
such as Picard operator theory and Gronwall type inequalities. Finally, we give examples to illustrate our
results in Section 5.

2. Preliminaries

In this section, we present some notations, definitions, and preliminary facts used throughout this paper.

Definition 2.1. [15, 21] The Riemann–Liouville integral of order α > 0 for the function υ is defined as

Iαυ(t) =
1
Γ(α)

∫ t

0
(t − s)α−1υ(s)ds, t ∈ [0,T],

where Γ(·) is the Gamma function.

Definition 2.2. [15, 21] The Caputo derivative of fractional-order α for the function υ is defined as

Dαυ(t) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1υ(n)(s)ds, t ∈ [0,T],

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3. The equation (1) is Hyers-Ulam stable if there exists a real number c > 0 such that for each ϵ > 0
and for each solution ϑ ∈ C([−h,T],R) to the inequality∣∣∣Dαϑ(t) − f (t, ϑ(t), ϑ(1(t)))

∣∣∣ ≤ ϵ, t ∈ [0,T], (2)

there exists a solution υ ∈ C([−h,T],R) to the equation (1) with∣∣∣ϑ(t) − υ(t)
∣∣∣ ≤ cϵ, t ∈ [−h,T].
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Remark 2.4. A function ϑ ∈ C([0,T],R) is a solution of inequality (2) if and only if there exists a function
Ψ ∈ C([0,T],R) such that

i)
∣∣∣Ψ(t)

∣∣∣ ≤ ϵ for all t ∈ [0,T],
ii) cDαϑ(t) = f (t, ϑ(t), ϑ(1(t))) +Ψ(t) for all t ∈ [0,T].

Remark 2.5. If ϑ ∈ C([0,T],R) is a solution of the inequality (2), then it is a solution to the following integral
inequality:∣∣∣∣∣ϑ(t) − ϑ(0) −

1
Γ(α)

∫ t

0
(t − s)α−1 f (s, ϑ(s), ϑ(1(s))ds

∣∣∣∣∣ ≤ ϵTα

Γ(α + 1)

for all t ∈ [0,T].

Now we give the following simple inequality which is useful for our results. For α, τ > 0,∫ t

0
(t − s)α−1eτsds ≤

eτt

τα
Γ(α). (3)

Actually, by substituting z = t − s in the integral expression above, we get∫ t

0
(t − s)α−1eτsds = eτt

∫ t

0
zα−1e−τzdz

=
eτt

τα

∫ τt

0
xα−1e−xdx substituting x = τz

≤
eτt

τα

∫
∞

0
xα−1e−xdx =

eτt

τα
Γ(α).

Definition 2.6. [24, 25] Let (X, d) be a metric space. AnA : X→ X is a Picard operator if there exists x∗ ∈ X such
that (i) FA = {x∗} where FA = {x ∈ X : A(x) = x} is the fixed point set ofA; (ii) the sequence (An(x0))n∈N converges
to x∗ for all x0 ∈ X.

Lemma 2.7. [24, 25] Let (X, d,≤) be an ordered metric space and A : X → X be an increasing Picard operator
(FA = {x∗}). Then, for x ∈ X, x ≤ A(x) implies x ≤ x∗ while x ≥ A(x) implies x ≥ x∗.

Lemma 2.8. [12] Let ϑ : [0,T] → [0,∞) be a real function and w be nonnegative, locally integrable function on
[0,T]. If there are constants k > 0 and 0 < α < 1 such that

ϑ(t) ≤ ω(t) + k
∫ t

0
(t − s)−αϑ(s)ds,

then there exists a constant δ = δ(α) such that

ϑ(t) ≤ ω(t) + δk
∫ t

0
(t − s)−αω(s)ds.

3. Existence and Uniqueness results

In this section, by overcoming the limitations like contractivity constants, we present the existence and
uniqueness results of solution for the problem (1).

Theorem 3.1. Suppose that

(C1) f ∈ C([0,T] ×R2,R), 1 ∈ C([0,T], [−h,T]) verifying 1(t) ≤ t on [0,T].
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(C2) There is a constant L > 0 such that∣∣∣ f (t, υ1, ϑ1) − f (t, υ2, ϑ2)
∣∣∣ ≤ L (|υ1 − υ2| + |ϑ1 − ϑ2|)

for all υi, ϑi ∈ R (i = 1, 2) and t ∈ [0,T].

Then the problem (1) has a unique solution.

Proof. We first convert the problem (1) into a fixed point problem. In this sequel, we consider the operator

F : C([−h,T],R)→ C([−h,T],R)

defined by

F υ(t) =

ϕ(t), t ∈ [−h, 0]

ϕ(0) +
∫ t

0
(t−s)α−1

Γ(α) f (s, υ(s), υ(1(s))ds, t ∈ [0,T].

Then our aim is reduced to finding a unique fixed point of F . Let consider the Banach space X :=
C([−h,T],R) endowed with the following Bielecki norm

∥υ∥B = max
t∈[−h,T]

|υ(t)| e−τt. (4)

To achieve our aim, we show thatF is a contraction mapping on (X, ∥·∥B). For all υ(t), ϑ(t) ∈ X,F υ(t) = F ϑ(t)
if t ∈ [−h, 0], then we take t ∈ [0,T]. Hence∣∣∣F υ(t) − F ϑ(t)

∣∣∣
≤

1
Γ(α)

∫ t

0
(t − s)α−1

∣∣∣ f (s, υ(s), υ(1(s))) − f (s, ϑ(s), ϑ(1(s)))
∣∣∣ds

≤
L
Γ(α)

∫ t

0
(t − s)α−1eτs

(
max
−h≤s≤T

∣∣∣υ(s) − ϑ(s)
∣∣∣e−τs

+ max
−h≤s≤T

∣∣∣υ(1(s)) − ϑ(1(s))
∣∣∣e−τs)ds

≤
2L
Γ(α)

∥∥∥υ − ϑ∥∥∥B ∫ t

0
(t − s)α−1eτsds

≤
2L
τα
∥∥∥υ − ϑ∥∥∥Beτt (by the inequality (3)).

Then we obtain that

∥F υ − F ϑ∥B ≤ λ ∥υ − ϑ∥B where λ =
2L
τα
.

If we choose τ > 0 large enough so that λ < 1, then there exists a unique fixed point of F by the Banach
Contraction Principle. Thus the proof is complete.

Remark 3.2. If we take the following special version of the problem (1) by considering 1(t) = t − r, where r > 0 is a
constant delay then,cDαυ(t) = f (t, υ(t), υ(t − r)) t ∈ [0,T]

υ(t) = ϕ(t) t ∈ [−r, 0].
(5)

Then we prove the existence and uniqueness of solution for the above fractional-order differential equation under
the following Lipschitz condition unlike the Lipschitz condition as stated in Theorem 3.1 by applying progressive
contractions.
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Now we state our result as follows.

Theorem 3.3. Let f : [0,T] ×R2
→ R be continuous function. Assume that there exist a positive constant L such

that ∣∣∣ f (t, υ1, ϑ) − f (t, υ2, ϑ)
∣∣∣ ≤ L |υ1 − υ2|

for all υi, ϑ ∈ R (i = 1, 2) and t ∈ [0,T]. Then the problem (5) has a unique solution.

Proof. It is obvious that the problem (5) is equivalent to the following integral form:

υ(t) =

ϕ(t) −r ≤ t ≤ 0

ϕ(0) +
∫ t

0
(t−s)α−1

Γ(α) f (s, υ(s), υ(s − r))ds 0 ≤ t ≤ T.

To apply progressive contractions, we divide the interval [0,T] into n equal parts which have length S where
0 < S < r and nS = T. That is, the partition is as follows:

0 = S0 < S1 < · · · < Sn = T, Si − Si−1 = S.

Also we observe that t ≤ Si+1 ⇒ t − r ≤ Si by the following argument:

t ≤ Si+1 ⇒ t − r ≤ Si+1 − r ≤ Si+1 − S = Si.

Step 1: Let (M1, ∥·∥1) be complete normed space of continuous functions υ : [−r,S1]→ R with the
following norm

∥υ∥1 = max
t∈[−r,S1]

|υ(t)| e−τt,

and we take υ(t) = ϕ(t) for −r ≤ t ≤ 0. Define a mapping F1 : M1 →M1 given by

F1υ(t) =

ϕ(t) −r ≤ t ≤ 0

ϕ(0) +
∫ t

0
(t−s)α−1

Γ(α) f (s, υ(s), υ(s − r))ds 0 ≤ t ≤ S1.

For υ(t), ϑ(t) ∈M1, F1υ(t) = F1ϑ(t) if t ∈ [−r, 0], then we take t ∈ [0,S1]. Hence

|F1υ(t) − F1ϑ(t)| ≤
∫ t

0

(t − s)α−1

Γ(α)

∣∣∣ f (s, υ(s), υ(s − r)) − f (s, ϑ(s), ϑ(s − r))
∣∣∣ds.

Since 0 ≤ s ≤ S1 ⇒ (s − r) ∈ [−r, 0] and the definition of M1, we have∣∣∣F1υ(t) − F1ϑ(t)
∣∣∣

≤
1
Γ(α)

∫ t

0
(t − s)α−1

∣∣∣ f (s, υ(s), ϕ(s − r)) − f (s, ϑ(s), ϕ(s − r))
∣∣∣ ds

≤
L
Γ(α)

∫ t

0
(t − s)α−1eτs

(
max
−h≤s≤S1

∣∣∣υ(s) − ϑ(s)
∣∣∣e−τs)ds

≤
L
Γ(α)

∥υ − ϑ∥1

∫ t

0
(t − s)α−1eτsds ≤

L
τα
∥υ − ϑ∥1 eτt.

Consequently, we obtain that

∥F1υ − F1ϑ∥1 ≤ λ ∥υ − ϑ∥1 where λ =
L
τα
.

By taking τ > 0 such that λ < 1, then we have F1 is a contraction mapping and so there exists a unique
fixed point ϕ1 ∈M1 such that it satisfies the problem (5) on [−r,S1].
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Step 2: In this step, we extend the interval of Step 1 into [−r,S2]. Let (M2, ∥·∥2) be complete normed space
of continuous functions υ : [−r,S2]→ R with the following norm

∥υ∥2 = max
t∈[−r,S2]

|υ(t)| e−τt,

and we take υ(t) = ϕ1(t) for −r ≤ t ≤ S1. Similarly, we define a mapping F2 : M2 →M2 given by

F2υ(t) =

ϕ1(t) −r ≤ t ≤ S1

ϕ(0) +
∫ t

0
(t−s)α−1

Γ(α) f (s, υ(s), υ(s − r))ds S1 ≤ t ≤ S2.

For υ(t), ϑ(t) ∈M2, F2υ(t) = F2ϑ(t) if t ∈ [−r,S1], then we take t ∈ [S1,S2]. Thus

|F2υ(t) − F2ϑ(t)| ≤
∫ t

0

(t − s)α−1

Γ(α)

∣∣∣ f (s, υ(s), υ(s − r)) − f (s, ϑ, ϑ(s − r))
∣∣∣ds.

Note that 0 ≤ s ≤ S2 ⇒ (s − r) ∈ [−r,S1]. By considering the definition of M2, we may write∣∣∣F2υ(t) − F2ϑ(t)
∣∣∣

≤
1
Γ(α)

∫ t

0
(t − s)α−1

∣∣∣ f (s, υ(s), ϕ1(s − r)) − f (s, ϑ(s), ϕ1(s − r))
∣∣∣ ds

≤
L
Γ(α)

∫ t

0
(t − s)α−1eτs

(
max
−h≤s≤S2

∣∣∣υ(s) − ϑ(s)
∣∣∣e−τs)ds

≤
L
Γ(α)

∥υ − ϑ∥2

∫ t

0
(t − s)α−1eτsds ≤

L
τα
∥υ − ϑ∥2 eτt

and consequently we have

∥F2υ − F2ϑ∥2 ≤ λ ∥υ − ϑ∥2 ,

where λ is as stated in Step 1. Therefore F2 has a unique fixed point ϕ2 in M2 such that it satisfies the
problem (5) on [−r,S2].

Step 3: By continuing this process to nth Step, we can find a continuous mapping ϕn as in the other Steps,
which is the unique solution for the problem (5) on [−r,Sn] = [−r,T].

4. Hyers-Ulam stability result

In this section, we give a result on the Hyers-Ulam stability of the first equation in the problem (1).

Theorem 4.1. Assume that the conditions (C1) and (C2) are fulfilled. Then the first equation of the problem (1) is
Hyers-Ulam stable.

Proof. Let ϑ be a solution to (2). We indicate υ as a unique solution to the following problem by Theorem
3.1, cDαυ(t) = f (t, υ(t), υ(1(t))) t ∈ [0,T]

υ(t) = ϑ(t) t ∈ [−h, 0]

It follows we have

υ(t) =

ϑ(t), t ∈ [−h, 0]

ϑ(0) +
∫ t

0
(t−s)α−1

Γ(α) f (s, υ(s), υ(1(s))ds, t ∈ [0,T].
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Obviously, we also have from Remark 2.5

∣∣∣∣ϑ(t) − ϑ(0) −
1
Γ(α)

∫ t

0
(t − s)α−1 f (s, ϑ(s), ϑ(1(s))ds

∣∣∣∣ ≤ ϵTα

Γ(α + 1)

for all t ∈ [0,T], and
∣∣∣ϑ(t) − υ(t)

∣∣∣ = 0 for all t ∈ [−h, 0]. For all t ∈ [0,T], we obtain from the condition (C2)
that ∣∣∣ϑ(t) − υ(t)

∣∣∣
≤

∣∣∣∣ϑ(t) − ϑ(0) −
1
Γ(α)

∫ t

0
(t − s)α−1 f (s, ϑ(s), ϑ(1(s))ds

∣∣∣∣
+

1
Γ(α)

∫ t

0
(t − s)α−1

∣∣∣ f (s, ϑ(s), ϑ(1(s)) − f (s, υ(s), υ(1(s))
∣∣∣

≤
ϵTα

Γ(α + 1)
+

L
Γ(α)

∫ t

0
(t − s)α−1

(∣∣∣ϑ(s) − υ(s)
∣∣∣ + ∣∣∣ϑ(1(s)) − υ(1(s))

∣∣∣). (6)

For z ∈ C([−h,T],R+), we define the operator

A : C([−h,T],R+)→ C([−h,T],R+)

given by

A(z)(t) =

0 t ∈ [−h, 0]
ϵTα
Γ(α+1) +

L
Γ(α)

∫ t

0 (t − s)α−1
(
z(s) + z(1(s))

)
ds t ∈ [0,T].

To prove thatA is a Picard operator, we show thatA is a contraction mapping with the Bielecki norm given
in (4). For z, z̃ ∈ C([−h,T],R+), we have

∣∣∣Az −Az̃
∣∣∣ ≤ L
Γ(α)

∫ t

0
(t − s)α−1

(∣∣∣z(s) − z̃(s)
∣∣∣ + ∣∣∣z(1(s)) − z̃(1(s))

∣∣∣)ds

≤
2L
Γ(α)

∥∥∥z − z̃
∥∥∥

B

∫ t

0
(t − s)α−1eτsds ≤

2L
τα
∥∥∥z − z̃

∥∥∥
Beτt

which implies that

∥∥∥Az −Az̃
∥∥∥

B ≤ λ
∥∥∥z − z̃

∥∥∥
B where λ =

2L
τα
.

Choosing an appropriate real number τ > 0 such that λ < 1, we get that A is a contraction mapping with
respect to the Bielecki norm ∥·∥B on C([−h,T],R+). HenceA is a Picard operator such that FA = {z∗} and the
following equality holds by the Banach contraction principle

z∗(t) =
ϵTα

Γ(α + 1)
+

L
Γ(α)

∫ t

0
(t − s)α−1

(
z∗(s) + z∗(1(s))

)
ds

for t ∈ [0,T]. To show that z∗ is increasing, we denote m := mint∈[0,T][z∗(t)+z∗(1(t))] ∈ R+. For 0 ≤ t1 < t2 ≤ T,
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we have

z∗(t2) − z∗(t1) =
L
Γ(α)

∫ t1

0

(
(t2 − s)α−1

− (t1 − s)α−1
)(

z∗(s) + z∗(1(s))
)
ds

+
L
Γ(α)

∫ t2

t1

(t2 − s)α−1
(
z∗(s) + z∗(1(s))

)
ds

≥
mL
Γ(α)

∫ t1

0

(
(t2 − s)α−1

− (t1 − s)α−1
)
ds

+
mL
Γ(α)

∫ t2

t1

(t2 − s)α−1ds

=
mL

Γ(α + 1)
(tα2 − tα1 ) > 0.

Then we can say that the solution z∗ is increasing and so z∗(1(t)) ≤ z∗(t) due to 1(t) ≤ t. It follows that

z∗(t) ≤
ϵTα

Γ(α + 1)
+

2L
Γ(α)

∫ t

0
(t − s)α−1z∗(s)ds.

Applying Lemma 2.8 to the above inequality, we obtain that

z∗(t) ≤
ϵTα

Γ(α + 1)

(
1 +

2δLTα

Γ(α + 1)

)
for all t ∈ [−h,T]. In particular, if we choose z =

∣∣∣ϑ − υ∣∣∣ in (6), then z ≤ Az. So, we have z ≤ z∗ by Lemma
2.7 sinceA is an increasing Picard operator. Consequently, we have∣∣∣ϑ(t) − υ(t)

∣∣∣ ≤ cϵ where c =
Tα

Γ(α + 1)

(
1 +

2δLTα

Γ(α + 1)

)
.

Thus the first equation of (1) is Hyers-Ulam stable.

Proof. [Alternative proof] By considering the inequality of (6), we have∣∣∣ϑ(t) − υ(t)
∣∣∣ ≤ ϵTα

Γ(α + 1)
+

L
Γ(α)

∫ t

0
(t − s)α−1

(∣∣∣ϑ(s) − υ(s)
∣∣∣

+
∣∣∣ϑ(1(s)) − υ(1(s))

∣∣∣)ds

≤
ϵTα

Γ(α + 1)
+

2L
Γ(α)

∥ϑ − υ∥B

∫ t

0
(t − s)α−1eτsds

≤
ϵTα

Γ(α + 1)
+

2L
τα
∥ϑ − υ∥B eτt.

Then we have

(1 − λ)
∥∥∥ϑ − υ∥∥∥B ≤ ϵTαeτhΓ(α + 1)

where λ =
2L
τα
.

Choosing large enough τ > 0 such that λ < 1, we get∣∣∣ϑ(t) − υ(t)
∣∣∣e−τt ≤ ∥∥∥ϑ − υ∥∥∥B ≤ ϵTαeτh

(1 − λ)Γ(α + 1)

Consequently, we obtain that∣∣∣ϑ(t) − υ(t)
∣∣∣ ≤ cϵ, c :=

Tαe(h+T)τ

(1 − λ)Γ(α + 1)

for all t ∈ [−h,T]. Thus the first equation of (1) is Hyers-Ulam stable.
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5. Examples

Example 5.1. Consider the following fractional-order differential equation
cD

1
2 υ(t) =

∣∣∣υ(t)∣∣∣
1+
∣∣∣υ(t)∣∣∣ + cos υ(t2) t ∈ [0, 1]

υ(t) = t t ∈ [−1, 0].
(7)

Let f (t, υ, ϑ) =

∣∣∣υ∣∣∣
1+
∣∣∣υ∣∣∣ + cosϑ and 1(t) = t2. It is clear that

∣∣∣ f (t, υ1, ϑ1) − f (t, υ2, ϑ2, )
∣∣∣ ≤ ∣∣∣υ1 − υ2

∣∣∣ + ∣∣∣ϑ1 − ϑ2

∣∣∣
for all υi, ϑi ∈ R (i = 1, 2) and t ∈ [0, 1]. Then we obtain from Theorem 3.1 that the above problem (7) has a unique
solution. In addition, we also obtain that the first equation in this problem is Hyers-Ulam stable by Theorem 4.1.

Example 5.2. Consider the following fractional-order differential equation with a constant delay;cD
1
2 υ(t) = sin υ(t) + υ2(t − 1) t ∈ [0, 10]
υ(t) = et t ∈ [−1, 0].

(8)

Let f (t, υ, ϑ) = sin υ + ϑ2 and 1(t) = t − 1. It is obvious that∣∣∣ f (t, υ1, ϑ) − f (t, υ2, ϑ)
∣∣∣ ≤ |υ1 − υ2|

for all υi, ϑ ∈ R (i = 1, 2) and t ∈ [0, 10]. Then we obtain from Theorem 3.3 that the above problem (8) has a unique
solution without checking the Lipschitz condition with respect to third variable.

6. Conclusion

In this article, we consider the main problem in the article [29] and motivated by [5–7, 19]. We have
observed that the contractivity constants appear as an important hypothesis in the main results in [29] and
in many papers. We omit these hypotheses by using the Bielecki norm more effectively and then show that
there is a unique solution. Then we take a special case of our main problem with a constant delay. Here
we use Burton’s method to show the existence and uniqueness of solution reducing the Lipschitz condition
with respect to the third variable. Then we investigate Hyers-Ulam stability of our problem using Picard
operators theory, and then we show that the problem can be proven to be stable without the need for
techniques such as Picard operator theory and Gronwall-type inequalities. Finally, we give examples to
illustrate our results. As can be seen from these results and examples, there is no need for contractivity
constant to be less than 1.
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