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Subordination results for some subclasses of analytic functions using
generalized q-Dziok-Srivastava-Catas operator

R. M. El-Ashwah?

“Department of Mathematics, Faculty of science, Damietta University New Damietta, Egypt

Abstract. We introduce two classes of analytic functions related to conic domains, using a new generalized

g-Dziok-Srivastava-Catas operator D;”ng(m €eNp=1{0,1,..},r<s+1;r,s€Ny,0<g<1,7>0,{=0). Basic

properties of these classes are studied, such as coefficients estimate. For these new function classes, we

establish subordination theorems and also, point out some new and known consequences of our main
results.

1. Introduction and Preliminaries

Let A denote the class of functions of the form:
fz)=z+ Z a2k,
k=2

which are analytic in the open unit disc U ={z:z€ Cand [z] < 1}.
For functions f(z) € A, given by (1.1), and g(z) € A defined by

giz)=z+ Z bk,
k=2
Hadamard product (or convolution) of f(z) and g(z) is given by

(frD@=2+) abd =@+fiz) (zeU).

k=2

Definition 1.1. [10, Chapter 6, p. 190] (Subordination Principle). For two functions f and g, analytic in U, we
say that the function f is subordinate to g in U, and write

f<y or f@) <9 (ze W),
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if there exists a Schwarz function @(z), analytic in U with

p0)=0 and lp(z) <1 (ze ),

such that
f@) = 9(p) (zeU).

In particular, if the function g(z) is univalent in U, the above subordination is equivalent to
f(0) = 4(0) and f(U) c g(U).

Given (0 < 1 < 1), a function f € A is said to be in the class of starlike functions of order n in U,
denoted by ST (n), (see [32]) if

2f (2)
Re{f@)

On the other hand, a function f € A is said to be in the class CV (1) of convex functions of order ) in U if

}>1], (zelU,0<nn<1).

f@

In particular, the classes CV = CV(0) and ST = S7(0) are, respectively, the familiar classes of convex and
starlike functions in U.
A function f € A is said to be in the class of uniformly convex functions of order 1 and type 0, denoted
by UCYV (5, 1) (see [7]) if
zf"(2)

zf'(2)
Re{l + 5 —17} >0 @

where 6 > 0, €[-1,1) and 6 + 1 > 0 and is said to be in a corresponding class denoted by SP(6, 1) if

@ | |
R‘"{ @) ’7} e

where 6 > 0,71 €[-1,1)and 6 + 11 > 0.

It is obvious that f(z) € UCV(5,1) if and only if zf (z) € SP(5,1). These classes generalize various
other classes. For 0 = 0, we get, respectively, the classes C'V(n) and S7 (). The class UCV(1,0) = UCV
is called uniformly convex functions introduced by Goodman with geometric interpretation in [16]. The
class SP(1,0) = SP is defined by Ronning in [33]. The classes UCV(1,n) = UCV(n) and SP(1,1) = SP(1)
are investigated by Ronning in [34]. For 1 = 0, the classes UCV(5,0) = 6 — UCYV and SP(5,0) = 6 — SP,
respectively, are defined by Kanas and Wisniowska in [23] and [24](see also Kanas and Srivastava [22]).

Geometric interpretation [2] (see also [42]). f € UCV(5,1n) and f € SP(6, 1) if and only if 1 + Z}C(g) and

Re{1+zf (Z)}>n, (zeU,0<n<1).

7

1

7

Z}((g) , respectively, take all the values in the conic domain Rsy which is included in the right half plane such
that
Ré,,,:{u+iv:u>6 (u—1)2+vz+17}. 2)

Denote by p(Ps,)(6 > 0,-1 < 1 < 1), the family of functions p, such that p € p and p < Py, in U,
where p denotes the well-known class of Caratheodory functions and the function Ps, maps the unit disc
conformally onto the domain R, such that 1 € R;, and dR;, is a curve defined by the equality
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IR, = {u+1v u —((S (u—1)2 +z;2+17)}

From elementary computations we see that dR;, represents the conic sections symmetric about the real
axis. Thus R, is an elliptic domain for 6 > 1, a parabolic domain for 6 = 1, a hyperbolic domain for
0 < 0 <1 and a right half plane u > 1 for 6 = 0.

The functions, which play the role of extremal functions of the class p(Pa,]), were obtained in [2] as
follows:

1+(1-27) _
1- zn - 2 o= O'
1+ 202 (10g 1% 5=1,
Psy(z) = 11 T35 COS {(; cos™! 6) ilog i\\g} - % 0<o6<1, (3)
(1 q) uf;) b ]
in(xp) [ ymmvim e o 5>1,

where u(z) = = \\;, t €(0,1), z € U and ¢ is chosen such that 6 = cosh —Zlé(g),

elliptic integral of the first kind and K'(t)is complementary integral of K(t).
For 0 = 0 obviously Po,](z) =14+2(1-n)z+2(1-n)z*+ ..., for 6 = 1 (compare [28] and [34]) P1,(z) =

1+ 5@ -nz+ 3% (1 - 1)z + ...., by comparing Taylor series expansion in [25], we get for 0 < 6 < 1

K(t) is Legendre’s complete

1-17) v« 2k -1
Pon@) =1+ 75 Z[Z ()(mc—l)lzk’

k=1 | =1

where B = 2 cos™ § and for 6 > 1,
21 — 200042
Psy(z) =1+ Gl X {z ACOE+6t+1) - z2 + }
4VHS? - DK2(D)(1 + 1) 24 VEK2(H(1 + 1)

In the recent years, practical applications of g—calculus (quantum calculus) in the fields of g—difference
equation, optimal control, g—transform analysis and number theory are an efficient area of research. Jackson
[19, 20] was the successful first to develop g-integral and g—derivative in a systematic way and later
geometrical interpretation of the g—analysis has been recognized through studies of quantum groups.

Fractional calculus appears more and more frequently for the modelling of relevant systems in sev-
eral fields of applied sciences. Fractional g—calculus is the g—extension of ordinary fractional calculus.
Researchers have claimed it to construct and investigated several classes of analytic and bi-univalent func-
tions and their interesting results are extremely numerous to discuss.

Definition 1.2. Jackson [19] defined the q—derivative of a function f(z) of the form (1) as follows

D,fz) =1L ((1) f;)(zz) 1+Z[k Ll (@ #0), ()

where
ad =1+g+@+-+47 (ke N={1,2,.]))

0 (k=0)
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and

lim D) = £ (2.
A g—analog of the class of starlike functions was first introduced by Ismail et al. [18] by means of the q—difference
operator D;f(z), f(z) € A and 0 < q < 1. Also, several authors studied many applications of g-calculus and it’s

generalization associated with various families of analytic and univalent (or multivalent) functions (for example see
[26, 31, 39, 43, 45, 46]).

In 2004, Gasper and Rahman [15, Page 4] defined a g—hypergeometric series which is given by

(51; q)k(‘SZ; q)k...(ér; q)k [(_1)kq(/§)]l+s—r Zk,

V(ps(él, & G, G, z) = ; (@ (G Do D (Css i

where (g) = @, s € No,7<s+1,q#0,&(j=12,.,rand ;(j = 1,2,..,s) are complex numbers,

Ci+g™j=1,2,..,5, n €Ny are such that the denominator factors in the series are never zero.
i*Fq U

Definition 1.3. [37] For v, k € INg = IN U {0}, g-shifted factorial is defined by

k-1
Wiqo =1, Wk = Ja-va), (6)
1=0

and in terms of the basic (or g—) gamma function

(1-9)Ty(v +k)
Fq(v)

where the g—gamma function is defined by

_1-97 @)

@9k = k € Ny,

T, (x <1, xeN
where
@ige = [ [ - v gl < 1.
1=0

For the g-gamma function I';(x), it is known that (see [15])
[y(x +1) = [x];T(x)
where [x], denotes by (5). It is also known that

i @"; Dn
-1- (1 —g)"

=Wy =vv+ ) +2)..v+n-1).

Note that the series ,¢s(&1, ..., &, Ci, ..., Gs; ,2) converges absolutely for all z if r < s and for |z] < 1 if
r = s + 1. Further, note that

qlijln_ /0@, g7, 9%, 0559, = DT, 2) =, 8581, 0 &, oy e, G 2)

which is a well known generalized hypergeometric functions [15].
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Corresponding to the function ,¢s(&y, ..., &, C1, ..., Cs; g, z) defined by

YHS(glr"-/ éi’/ Cl/-"/ Cs;q/Z) = Zr(f)s(élr /érr Cl/ /Cs}q/z)

= (51' Dk 1(52’q)k 1 (5rf‘1)k 1 k) 1+s—r 3
=z+ Z (@ D=1 (C1; Di=1(C25 Pe=1---(Cs; =1 [( 1" ] k.

Bhardwaj and Sharma [8] are defined a linear operator $.(¢1;q) = 95(&i;Cj;49,2) : A — Aby

9:(&1;9)f(2) = 1Hs(&1, s &1, Cay e, Cs5 9, 2) * f(2). 7)
For a function f(z) of the form (1), the series expansion of 9;(&1; 9) f(z) is given by

(8)

C Cu e i (& P e T
Denpfe) =z Z A e el A IS

which converges absolutely in U if ¥ < s+1. The operator $}(&1; g) is called a g—analogue of Dziok-Srivastava
operator.
Let

(E15 Die-1(E2; Pi-1---(Er; P [(_1),(,1 (k;1)]1+s—7
(@ Dr=1(C; Pr-1(C25 Pi—1---(Cs; P—1 1 ’

then (8) reduces to

r(él/ q, k) =

SUENf@) =2+ ) | T(Er9, b, 9)
k=2

We introduce the linear extended g—analogue of Dziok-Srivastava-Catas operator D;"’TS 7 as following:

Yf@ = f@
Df@ = 1-08E0fE) + mm(z%z@;q)ﬂm =D, f@)
= [1+ €], + t([k + €], — [1 + €],)
bms;f — er D;nT:;SYf(Z)) (10)

where m € Ny, T > 0 and ¢ > 0. It follows from (1) and (10) that
I f(a _z+Z® (T, EDmZt (11)

where

[T+ €]+ t([k + €], = [1+£]y)
[1+¢],

G‘)ka(’l—/ f/ 51) = [ I1(51/ q/ k)] . (12)

By virtue of (7) and (11), Dm A ', f(2) can be written in terms of convolution as follows:

DITF(E) = [($:(En ) * 67 (2) * - x (9L(E19) * 6] (2))] *£(2)

m—times
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where
z- (1 [1+£ )qz
(1-2)1-¢q2)

Remark 1.4. Note that the operator D’"” generalizes several previously studied familiar operators, and we will

q _
® m(z) =

mention some of the interesting partzcular cases as follows:

(i) Forr=2,s=1,¢& = qz, &=¢q,G = qz‘@, and € = 0 we obtain the operator ngstudied by Abelman et al.
[1] (see also [27, with € = Q]);

(ii) Forr=2,s=1,¢& = qz, &r=q,0 = qz‘g, T ={ = 0and m = 1 we obtain the operator Dg,zstudied by
Purohit and Raina [29];

(iii) Forr = 2,s = 1,& = q“’\ A>-1),& =90 =4g,7="¢=0and m =1 we obtain the operator
Dy 1+15tudied by Kanas and Raducanu [21];

(iv) Forr=2,8s=1,& =& =q, 0 = ¢ (n > —1), £ = © = 0 and m = 1 we obtain the operator i?;g”studied
by Arif et al. [5];

(v) Forr=2,5s=1, & = & = (4 = q we obtain the operator Sg’(’c, C)studied by Aouf and Madian [4];

(vi) Forr=2,5=1,& =& =0 =g, =0and t = 1 we obtain the operator S?studied by Govindaraj and
Sivasubaramanian [17];

(vii) For q — 17 we obtain the operator ®';" studied by El-Ashwah et al. [13];

(vili) Forg - 17, r=2,5s =1, =2, & =14 =2 —-a(a # 2,3,4,..) and £ = 0, we obtain the operator
D2 f(z) = DI f(2) studied by Al-Oboudi and Al-Amoudi [3];

(ix) Forgq » 17, r=2,s =1,& =a(@ > 0),& =1, = c(c > 0)and € = 0, we obtain the operator
q p
”)Dm 2 f(z) =T vacf (2) studied by Prajapat and Raina [30];

(x) Forq = 17,r=2,s=1and & = & = (; = 1, we obtain the operator D’T’Z,l'zf(z) = I'"(t, €) f(2) studied by
Catas [9];

(xi) Forqg = 17, m = 1land t = € = 0, we obtain the operator 1‘)1 > rf(z) H; (&) studied by Dziok and Srivastava
[11,12].

Making use of the linear extended g—analogue of Dziok-Srivastava-Catas operator given by (11), we
introduce the subclass 2)’”': ; (&1, C1; 1, 0) of g-uniformly starlike functions of order n and type 6 in U and the

subclass Rm s fr (&1, C1; 1, 0) of g-uniformly convex functions of order 1 and type 6 in U as follows:

(Dmsrf(z ) ) 6 (Dmsrf(z))
Ve T e 13)
0<g<1,6>0,n€[-1,1),n+06=0),
and
ofP 12Dy (Dp577@)) D (zD; (V457 f))
D, (D17 £(2)) Dy(D f(2)) (14)

0<g<1,620,n€e[-1,1),n+6=0).
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respectively, wherer,s € Ny, r <s+1, m € Ny, 1 20, £ > 0 and f(z) € A. From (13) and (14), it follows that

bm S;f Z) € ’Rm Sg(éli Cl/ n, 5) — ZD(J(Dm S;f(z)) € 2’);’1,[5;;(61/ Clr 1, 6)/ (15)

and

Koy (€155, 0) € D (&1;Cis, 0).

Note that:
@ 9777@,4:0:0,0) = S,,(x, £,1) (see [4]);

Q) V0@, 3:3:1,0) = ST(A,8,1,9) (1 > 1) (see [21]);

(iii) 2);;3;3(% 34" 1,0) = Q(n,1,q) (n > —1) (see [5, with A = 1 - 25 and B = —1]);

(i) V75, q:3:,6) = Sq(n, 6,m) (see [17]);

() limgoi- 9777 (60 Ci 1, 8) = SPIF (€1 iy, 6) and limyo1- K77 (E1; Cus1,8) = UCV(E1;Cisn, 0) (see
[13]);

(v) For g — 17 and different choices of the parameters r,s,&1, Ci, €, T, 1, 6 and m, we will obtain special
subclasses which studied by various authors (see [3, 14, 35, 36, 41, 44]).

From geometric interpretation, (13) and (14), f(z) € Rm 5; (&1;C1;m,0) and f(z) € ‘D;:; (&1, Ci;n, 0) if and
. D, (0,07 2))) D, (077 £2))
only if P(z) = ————"—~% and P(z) = —mrer?,
y Dq(bgj;f; f(z)) D f@

given in (2) which is included in right half plane, we may rewrite the conditions (13) and (14) in the form

respectively, take all values in the conic domain R

P < Pg,[,]

where the functions P;,; given in (3).
By virtue of (13), (14) and the properties of the domain P;;, we have, respectively

D ( (Dmsgrf(z))) o+1

m,s,r > (Z € U)’
(:g 1 f(2) ) 1+6
and
2D, (271£(2) NLLL
D"’ ng(z 1+6 ’
which means that
f2) €977/ (&1; G, 0) = D7 f(2) € S’T( 2) C ST.
and
F2) € NI (51 i, 0) = K f2) € cv(l g) ccv,
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Definition 1.5. (Subordinating Factor Sequence). An infinite sequence {c¢}? | of complex numbers is said to be
a subordinating factor sequence if, whenever f(z) of the form (1) is analytic, unzvalent and convex in U, we have the
subordination given by

Zakckzk < f(2) (zeU; m =1). (16)
k=1

A finite sequence {cc}}_, is said to be a subordinating factor sequence if (1) implies (16) whenever cy11 = Cyi2 =
= 0. The class of such infinite sequences, will be denote by ¥, and the class of sequences of length n by F.

Lemma 1.6. [47, p. 690, Theorem 2] The sequence {ci};?, of complex numbers is a subordinating factor sequence

if and only if

Re(l +Zchzk] >0 (zeD)

k=1

2. Main Results

Unless otherwise mentioned we shall assume throughout the paper that 0 < g <1, -1<n<1,6 >
0,6+n20,7,¢620,7,5, me€No,r<s+1,&(=1,2,.,r),and (;j(j = 1,2,...,5) are positive and real.
First, we obtain sufficient conditions for a function to belong to the classes ‘D"'”(él,cl,n, 5) and

Rmsg(él,Cl,T}, 0).

Theorem 2.1. A function f(z) of the form (1) is in ‘D;"fg(&; Gi;m, 0) if

Y (1,0 +0) = 0 + )|t |l <1, a7
k=2

where @ka('(, €, &) is defined by (12).

Proof. It suffices to show that

NG 2D, (V)21 f) Dy (0@
o f@ e "
We have
Qmsr gmsr
o PR @) - (PulEe)
iné’f(z) Dq-(gf(z)
(D;ns;f(z))
< (1+0)|—m—
< v o @)
(1+ 8) Lok, - D [@2,(x, €, )| laglzf
<
1= X2, |00, €, &) axlizt
(14 8) (1Kl = 1) O x, €, &)l
<

1- I |en e,

The last expression is bounded above by (1 — n) if (17) is satisfied. [
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By virtue of (15) and Theorem 2.1, we have
Corollary 2.2. A function f(z) of the form (1) is in R;TS; (&1;G;m, 0) if

YK [k, (1 + ) - @+ m] @2 (r, €, o)l < 1 -1, (18)
k=2

where @;’/’k(’c, €, &) is defined by (12).
Remark 2.3.

() Takingm =1,r=2,s=1,& =g"*"' (A > -1), & = {; = gand ¢ = 7 = 0 in Theorem 2.1, we obtain the
results obtained by Kanas and Raducanu [21];

(ii) Taking g — 1~ in Theorem 2.1 and Corollary 2.2, we obtain the results obtained by El-Ashwah et al.
[13].

Second, In view of Theorem 2.1 and Corollary 2.2, we define @Zl:; (&1;C151,0) © 2);”:; (&1, C1;n,0) and

§:Ts; (&1;81;1,0) € R;"TS; (&1, 151, 6) which consists of functions f € A whose coefficients satisfy the in-

equalities (17) and (18), respectively. Now, we investigate some subordination results for the functions in
the classes ‘D;”:; (&1;C1;1m,0) and R;ff”; (&1; G151, 6) employing the technique used earlier by Attiya [6] and
Srivastava and Attiya [40].

Theorem 2.4. Let the function f(z) € A defined by (1) be in the class i)\"”s’r(él ;C1;1,0). Then

q,7t
(1211 +0) = (0 + ) [z, £,60)
(f*P)2) < P(z) (zeU;p €CV), (19)
2{(121,01+0) - 6 + ) |on &) + (1 = )}
and
(1211 +8) - © + ) @z, £, €0)| + (1 = 1)
Re{f(2)} > - (z € V). (20)

(21,1+6) = © + ) |z, £,&0)

(121, 1+0)-+m) @2 (1.6.51)

is the best estimate.
2(@@na+0-Grn)epafta-n)

The constant

Proof. Let f(z) € ‘D:TS; (&1;C1;1m,0), and let p(z) =z + ), cxz* be any function in the class C°V. Then
o k=2

(1211 +0) = 0+ ) [z, £,61)
2{(121,1 + &) - 6+ m) @tz & 0] + (1 - )
(1211 +0) = 0+ ) [r(r, £,60)
2{(121,1+0) - 6 + ) jow & 0] + (1 = )} [

Thus, by Definition 1.5, the assertion of the theorem will hold if the sequence

(f *$)(2)
}

[o¢]
= z+ Z akaZkJ

k=2

00

(21,1 +0) = @+ m) [Er (. £,&0)

2 {([2],7(1 +8) = (5+1) |®;’,’2(L ¢, él)' +(1- n)}

Ay

k=1
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is a subordination factor sequence, with a; = 1. In view of Lemma 1.6, this equivalent to

-

Since ®(x) = ([K];(1 +8) - (6 + 1)) ‘@gjk(f, ¢, 51)] is an increasing function of k (k > 2). Now

(21,1 +6) - G +n) |®m2(T, ¢, 51)|
2],(1+0) - ((5+T]) '@m (7, ¢, 51)’+(1—17)

kzk} >0 (ze ). (21)

o (20404 0) - 0+ )]y £,6) )
Re<d1+ az
= (121,01 +6) - (6 +m) |Ory (%, €, él)' +(1-1)
(1211 +0) = 0 + ) @ (x, €, )
=Rell d
(12141 + ) = + ) |Or(x, £,£0) + (1 = )|
(RLa+8)-G+m)enEes)|
aiz
2 ([21,(1+0) = @ +1) |@;’f2(r, (, 51)| -
(21,0 +0) = ©+m) [Er(x.6,&1)
(21,1 +8) - @+ ) [z, £, €0)| + (1 = 1)

+

[

o~
||

>1-

o (K 0) - 0+ n) e 6 &)
2 gl
= (120, +0) - 6 +m) ‘@ (5L, 51)| (-1
o (aro-een)enmt o)
> 1 - r
(1211 +6) = 0 + ) |@r(x, £, €0)| + (1 = )
d-n r=1-r>0 (Iz| = ).

(12,0 +0) -6+ m)|er & ]+ (1 -

Thus (21) holds true in U. This prove (19), (20) follows by taking ¢(z) = i - in (19).

m,s,r
9,70

(1 - 77) Zz
(1211 +0) = 0 + ) |Er(r, €, )

Now we consider the function fy(z) € @ (&1;C1; 1, 0) given by

foz)=z— (-1<1n<1;620)

msr(

which is a member of the class 9) &1; G151, 0), then by using (19), we have

(1211 +0) = 0+ ) |1z, £,60)

2{(121,1+0) - 6 + ) |on &, &0)] + (1 = )}

fo(z) < 12

>
It can be easily verified that

(21,1 +8) - 0 + ) @15, ¢,20)

2{(121,1+8) - 6 + ) |on & 0] + 1 = )}

min Re
lz|<1

fild)| =3 e,
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([21,(1+8)—(5+m)) @;’fz(’[,f,él)’
2{([2]q(1+5)—(e>+n)) o (oL En|+1-n)

then the constant } is the best possible. This completes the proof of Theorem

24. O

Theorem 2.5. Let the function f(z) € A defined by (1) be in the class §;1T5; (&1;C1;1, ). Then

21, (12141 +8) = 6 + ) Bl (x, €, 1)

2{ 121, (12141 +6) = @ + ) |o(n. £, 0] + (1 = )}

(f*P)(2) < ¢(2) (z€U;¢p €CV),

and

21, (12141 + ) = (6 + )|z, £, €| + (1= )
121, (12141 +6) - 0 + ) |Or(7, £, &)

Re{f(2)} > - (ze ).

21,(121,(1+8)-(6+n))
2{[2]q([2]q(1+6)7(6+q))

O, (w6.E)|

O (1,6,E0)|+(1-1)

The constant

} is the best estimate.

Remark 2.6.
(i) Putting g — 1~ in Theorems 2.4 and 2.5, we obtain the results which studied by El-Ashwah et al. [13];

(ii) For different choiceson f € A,7,5,&i(i=1,2,..,r)and (;(j = 1,2, ...,5),{, T, m and g, we will obtain several
results analogous to special cases of the operator mentioned in Remark 1.4 and the classes given by
(13) and (14) (see [13]).

3. Conclusion

In our investigation, we generalized the fractional g-calculus and g-Hypergeometric function to define

the linear convolution g-Dziok-Srivastava-Catas operator Qg":tf (meNy=1{0,1,.},r<s+1;r,s € Ny,0 < g <

1,7 2 0,¢ 2 0). Using this operator we defined and study the subclass ‘D;’ff,’g(&; Ci;1n,0)(0=20,ne[-1,1), n+

0 > 0) of g-uniformly starlike functions of order 1 and type 6 in U and the subclass R;”f; (&1;C1;1n,0) (6 =
0,n€[-1,1), n+ 6 = 0) of g-uniformly convex functions of order 1 and type 6 in U. We have derived
their associated coefficient estimates. For these function classes, we establish subordination theorems and
also, point out some new and known consequences of the results. There are some obvious connection
between the classical g-analysis, which we used here, and the so-called (p, q)-analysis. Specifically, we can
see that the results for the g—analogues, which we have considered in this article for 0 < g < 1, can easily
be translated into the corresponding results for the (p, 7)—analogues (with 0 < p,g < 1) by applying some
obvious parametric and argument variations, for details about the fractional (p, g)-calculus see [37, p. 340]
and [38, p. 511-512].
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