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Abstract. In this paper, we establish several new integral inequalities including Caputo fractional deriva-
tives for quasi—convex, s—Godunova-Levin convex. In order to obtain our results, we have used fairly
elementary methodology by using the classical inequalities such that Holder inequality, Power mean in-
equality and Weighted Holder inequality. This work is motivated by Farid et al in [17]. Especially we aim
to obtain inequalities involving only right-sided Caputo-fractional derivative of order a

1. Introduction

The following definitions are well known in the literature
Definition 1. The function f : [a,b] — R, is said to be convex, if we have
[+ (1 =0y) <)+ (1 -1) f(y)
forallx,y € [a,b]land t € [0,1].
Geometrically, this means that if P, Q and R are three distinct points on the graph of f with Q between
P and R, then Q is on or below chord PR. A huge amount of the researchers interested in this definition
and there are several papers based on convexity. Many important inequalities are established for the

class of convex functions, but one of the most important is so-called Hermite-Hadamard’s inequality (or

Hadamard'’s inequality). This double inequality is stated as follows in literature: Let f : I CIR — R be a
convex function and let a, b € I, with a < b. The following double inequality;

A(55) < 55 [ e LOLS0

The above inequality is in the reversed direction if f is concave
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Definition 2. [5] Let real function f be defined on some nonempty interval I of real numbers line R. The function
f is said to be quasi—convex on I if inequality

ftx+ (1= hy) <max{f(x), f(y)} (QO)
holds for all x,y € L and t € [0,1].

Clearly, any convex function is a quasi—convex function but every quasi—convex function is not convex
function.
For example the function f : R* — R, f(x) =Inx, x € R* is quasi-convex but it is not convex.

Definition 3. [10] we say that the function f : C € X — [0, o) is of s — Godunova — Levin type, with s € [0,1], if

fltx+ A=y <t7f0)+ 1 -7 f(y)
forallt € (0,1) and x,y € C.

In [2] Hudzik and Maligranda considered, amongs others, the class of functions which are s—convex in
the second sense.
Now we give a necessary definition of fractional calculus theory which is used throughout this paper.

Definition 4. [1] Let « > Oand o ¢ {1,2,3,...}, n = [a] + 1, f € AC"[a, ], the space of functions having n — th
derivatives absolutely continuous. The left-sided and right-sided Caputo fractional derivatives of order o are defined
as follows:

X (n)
D8N0 = 1o 2O x4, 1)

n— a) p (x _ t)a—n+1
and

GV AL ()
Tow ). gt <b (12)

(“Dy_fx) =

Ifa =n € {1,2,3,..} and usual derivative f™(x) of order n exists, then Caputo fractional derivative (D7, f)(x)
coincides with f"(x) whereas (“D}}_f)(x) coincides with f")(x) with exactness to a constant multiplier (~=1)". In
particular we have

(DY, f)(x) = (CD)_Hx) = f(x), (1.3)
wheren =1 and a = 0.

Since the inequalities always have been proved worthy in establishing the mathematical models and
their solutions in almost all branches of applied sciences. Especially the convexity takes very important
role in the optimization theory. The aim of this paper is to introduce some fractional inequalities for the
Caputo fractional derivatives via the convexity property of the functions which have derivatives of any
integer order.

We will also use the weighted version of the Holder inequality well known in the literature see [18] :

) g i
< ( f1 1G] h(t)dt) ( f1 Is()l” h(t)dt)

forp>1, ’1] +1 =1 and h is non-negative on I.

‘ j; F(BOsBh()dt

In [17], Farid et al. proved the following identity and established some inequalities for Caputo fractional
integrals.
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Lemma 1. Let f : [a,b] — R, be a differentiable mapping on (a,b) with a < b. If f"**V € L[a, b], then the following
equality for fractional integrals holds:

@)+ fO0b) Tn-a+1)
2 20 —ayre

1
: T fo [(1 =&y =] f0*Dta + (1 - D).

[€DE ) (®) + (-1)" DL ) (@)]

The main aim of this paper is to establish three new integral identities and by using these equalities to
prove some new integral inequalities for quasi—convex and s—Godunova-Levin convex via the Caputo—
fractional integral operators.

2. Main Results

Lemma 2. Let f : I C R — R be a differentiable function on [ where a,b € [ with t € [0,1]. If f*Y € L[a, b], Then
foralla < x <y < band a > 0 we have:

1

1 CUTe=atDepe e = f (1= )"~ f0D (b + (1= B y) dt.

= fmy
V- = W) o

Proof. Firstly, by integrating by parts

1
f (1 =) f D (px + (1 - £) y) dt
0

_ 1 n (Tl _ 0() ! n—a-1
- - E=2 [Tt e a -y

Secondly, by applying the change of the variable u = tx + (1 — t) y to the above integrals, we get

— Y
0 - s [
= ﬁf(”)(y) - (y_(_x%r(n - a+1)(Dy- N

This completes the proof. « [

if we choose x = a and y = b in Lemma 2, we obtain

1

(—1)"r (n -+ 1) (CD;,f)(ll) _ jov (1 _ t)”“‘f("“)(ta + (1 _ t)b)dt.

(b _ a)n—ﬁé+1

1
—— ) —
— )
Theorem 1. Let f: IC R — R, I € [0, %) ,be a differentiable function on I such that f(”“) € Lla,b] wherea,b € I
witha < x <y < b. If f"*Vis quasi-convex on [x, y] for t € [0,1] . Then for all & > 0 we have

D)'Tn—a+1)
(y _ x)n—a+1

where al'(a) =T (@ + 1).

1 1
ﬁf(n)(y) _ (CD‘;,f)(X) < m max {f(”*'l)(x)/ f(n+1)(y)} ,

)
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Proof. Since f"*V (tx + (1 — t)y) < max {f(”“)(x),f(””)(y)} for t € [0,1] and from Lemma 2, we obtain

1 n (—1)”F(n—a+1) a ! n—a g(n+
- SR Dy = [Fa-orege s - oy

1
< max { (), f74(y)) f (1 —1)"2dt
0
max {f(n+1)(x)’ f(n+1)(y)} ,

T (—a+)
which completes the proof of the Theorem. « [J

Corollary 1. If we choose x = a and y = b in Theorem 1, with increasing of f"* we obtain

L n _ (—1)”F(n—a+1) o 1 n+1) n+1)
—— () = DA < o max { £ (@), f7*) (b))

1

el =

IA

Corollary 2. In inequality of corollary 2.3, if we choose o = 1, we have
O

b—a (B-a)"J,
Particularly for n = 2, we get

(1 — a)" 2 F (u)du < % max {1 (a), f*D (b))}

, 1 (. b-
O g [ S w5 max{s @), )

Theorem 2. Let f : I C R — R, I C [0,0), be a differentiable function on I such that f"*V € L[a, b] where with
a,bel,a<x<y<b. If|f("“)|qis quasi-convex on [x,y] fort € [0,1], g>1, p = q%l, then for all o > 0, we have

< (—n — i 1 )max {lf(n+1)(x)|‘7 , |f(n+1) (y)l‘l}% ) @.1)

‘ L pongyy - EVTO =% Diepa gy

y - X (y _ x)n—a+1

Proof. First of all, we know that is

|f(n+1) (tx+ (1—t) y)r7 < [max{|f(”+1)(x)|q / |f(n+1) (y)‘q}]'

Using well known Hoélder’s inequality for n-th derivative, properties of modulus and from Lemma 2, we
obtain

Ly D)"Thm—-a+1)
Y- Xf (]/) (y _ x)nfowl

1
- ‘ f (1 =)™ f+D (px + (1 - t)y) dt
0

D2 )

1
< [la= ol e - )l
0

1
. f (1= =81 = pr=F | F0D (g 4 (1 = By)| i
0

1 s i
_ p\(n-a) _ p\(n=a) | g(n+1) _ q
s(fo (1-1 dt) (fo (1= O [fD (tx + (1 - t)y)| dt)

S N T Ml

n—a+1)
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which completes the proof of desired inequality. « [

Corollary 3. If we choose x = a, y = b and @ = 1 in inequality (2.1), then

f(n)(b) n-1 n-2 £(n)
=2 0oy f(u—a) Y (u)du

< _max{|f(n+l u)|’1 |f(n+1) b)) }

Lemma 3. Let f : I C R — R be a differentiable function on I where a,b € I with t € [0,1]. Iff("“) € L[a, b], then,
foralla <x <y <banda >0, we have

In—a+1)
(y — x)n—a+1

1 1
= f 170 D (b 4+ (1 - tyy) dt + f (1 =ty f0 D (kx + (1 - t) y) dt.
0 0

(@) - fOy)] + [ Hy) - (~D)"(CDL )]

Proof. By using integration by parts we can write the above integrals as follows

1
f P FOD (fx + (1 - ty) dt
0

) + (ynx% fy (y—u)" " fydu, u=tx+(1-1ty
F(n a+1) D
(y .X)” a+l

D3 f)(y)

and

1
f (1 =ty f0 D) (b + (1 = ) y) dt

Wf (u—x)""" fuydu, u=tx+1-1t)y
(=1)'T(n—a+1)
(y — x)n—a+1

Adding the above integral equalities we get required inequality. « [J

= £y — o
- yf (y) Dy )0

Theorem 3. Let f : I C R — R be a differentiable function on I where a,b € [ with t € [0,1]. If f"*V € L[a, b] and
| f0+D] is s—Godunova-Levin type function. Then for alla < x <y <band a > 0, s € [0,1) we have

F(n 0(+1)[

1 n n n 23
‘ﬂ[f( @ - )]+ ﬁ D& A(y) = (1D H)]

< [/3 (1—a+1,1-5)+ - ] £ ()] + | (),

s+1

where B (x,y) = fol 11 =t tdt, x > 1, y > 0 is modify of B.

Proof. From Lemma 3 and with properties of modulus

1 1
f 170 D (x4 (1 - tyy) dt + f (1=t D (tx + (1 - t)y) dt'
0 0

1 1
< f o[£ (b + (1 - 1) )| de + fo (L=t [fD (tx + (1 = Hy)| dt.

0
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Since ) f (””)) is s—Godunova-Levin type function, applying integration by parts to every integral, respec-
tively, we get

1 1 1
f £ [FD (fx + (1 - t)y)| dt < [F0D () f oS dt + [f0D (y) f (1~ 1)t
0 0 0

= [ @ @l -a 1,1 -9)
and
1
1
j; @ =" [fD (b + (1= Hy)|dt = |[fD @)L —s,n—a+1) +[f"D(y)| —
Finally, since 8 (x,y) = B (y, x), we have

5l - o]« 2

% AW) - (1D HW)]

< [ﬁ nm—a+1,1-s)+ D (x)| + |f("+1) (y)|

n—a-—s+ 1] )
0
Lemmad. Let f : 1 C R — R be a twice differentiable function on I where a,b € [ with t € [0,1]. If f*? € L[a, b],
Then for all a < b and a — 1 > 0, with properties of Gamma function we have
2 2(p — - 1)
(b - a)n—a—l
b-ay?

= (Tl — a)22—n+a

Mt - a - )DL N0+ 1 DL @) - f("’(a+b)

[ f E 170 f D (tg 4 (1 — t)b)dt + f (1=t 2 (g + (1 - t)b)dt}.
0 !

Proof. Making repeated applications of integration by parts, we obtain the following equalities:

1

f T D) (4 4 (1 - 1) by dt
0

:;f(nﬂ) a+b 3 n—a f(") a+b
(a—b)2-« 2 (a — b)*2n-a-1 2

+(n—a)(n—a—1)
(a—by?

%
702 f0 (g + (1 — t)b)dt

and

1
f (1 =)™ f*2 (tg + (1 - t)b) dt

_ 1 (n+1)(a+b) (n—a) (a+b)
(a—b)Z”*“f 2 (a — b)? 2n-a- 1f

(n a)y(n—a-— 1)f(1 )naZf(n (ta + (1 - t)b)dt

(a—b)

Now, using change of variable u = ta + (1 — t)b for every integral, we have

b
ﬁ f (b—uw)"™*7 f(u)du

Tn-a-1) pa-1
- (b_a)nal a+b+f)

f T2 ) (10 1 (1~ 1) b) dt =
0
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and
1 1 £ e
L (1 =12 f) (tg + (1 - t)b) dt = A fa (u—a)" 2 f(u)du
_F(Tl—a—l)_ nCrya-1
i (=D D%bff) (@).

By adding these inequalities and multiplying by (ﬂ_b’;z% we get the required inequality. O

Theorem 4. Let f : I C R — R be a differentiable function on I such that f'*? € L[a,b] ,wherea,b € I, a < b with
te[0,1]. If ) f(”+2)|q is quasi-convex on [a,b] C I and q > 1, Then the following inequality for fractional integrals
holds:

20 2(n — - 1)
(b _ a)n—a—l

b—a\’ 1
<
-\ 2 n—amn-a+1)

M1 - a=1)|CDGL H® + DL H@|- (#)’

2 z

[max(‘f("”) (a)‘q y |f(”+2)(b)|q)]% ’

where a —1 > 0.
Proof. From Lemma 4 and using power-mean inequality with properties of modulus, we can write

202 — o — 1)

= U (€D pO) + DL H@)| - £ (%) =u

2 2

< - Ji e D ea + (1~ )| d
< (n — 0()22+a—n + ﬁl(l _ t)n—a |f(n+2) (m + (1 _ t)b)l dt

1 1—% 1 },7
(b _ a)z (foz tn—adt) (foz -a )f(n+2) (m + (1 _ t)b)'q dt)
= (n- )22« N (ﬁl(l B t)”_“dt)l_ﬁ (ﬁl(l — by [ fr )t + (1 - t)b)|‘7 dt)a
(b —a)* 1

[max (|f(”+2) (a)‘q / |f(” +2) (b)|q)]%

- (n — @)22+a—n 2n—a (n —q + 1)

il 2 1 (n+2) (|7 (n+2) (17 |7 i
‘( 2 ) [max (|2 @[", [f20)]",

m-—a)y(n—a+1)

which completes the proof. [

" on [4,b] and it can be easily checked that

Here we used the quasi-convex of

f/l

1

1 1

2 1
fr-adt = | (1—)"%dt = .
fo f; -9 2ot (n —a +1)

Theorem 5. Let f : I C R — R, I C [0, ) ,be a differentiable function on I such that f,g € L[a,blanda,be I, 0 <
a<b. |f|;7 and |g|q are quasi—convex on [a,b] for t € [0,1],q > 1. Then forall x € [a,b], a+1> 0, ’1)+% =1;if The

functions ( f |p and |g|qare increasing on [a, b] C I.The following inequality hold:
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b
f f(”)(x)g(") (x) h(”)(x)dx

||f e l7 1. [r(n a+1)
2 (b )n —a+1

1 b
D5 ) + (1D f@)] - 57— f f(”)(x)dx],

where K™ (ta + (1 — £)b) = [(1 — )"~ + ("% = 1)] f**V (ta + (1 — )b) > 0 forall t € [0,1] and a € [0,1].

Proof. We will use the weighted Holder inequality. Since

/(@)g" @) (x) dx

b—a
1
= f F(ta + (1 - )b)g™ (ta + (1 — £)b)h"(ta + (1 - £)b)dt
0

and

b
| [ s @

! ;
= ( f |f (ta + (1 - t)b)ﬂ” h(ta + (1 - t)b)dt)
0

! :
X ( f g™ (ta + (1 = HB)|" H (ta + (1 - t)b)dt)
0
< [max{lf(”) (a)|p |f(”)(b)|p}]; [max{)g(m (@) )'4 ‘g(n)(b)r?}]ﬁ

1
x( f 9 (ta + (1 —t)b)dt)
0

= [max || @[, | (b)m% [max{|g (@) lql‘g(m(b)w}]%

1
x( j; 9 (ta + (1 —t)b)dt)

= [max ([ @, |[f®F )]} [max{ls® @[, ] @)}’
1
W 1-1t)b)d
x(fo (ta + ( t))t)
1
= Il oI v+ 0

1
Do [ 1= e = 7 - )

_ g™l o =a+ 1)
- 2 (b _ a)n—oc+1

1

( W (ta + (1 - 1) )dt)q

==

==
E.

nCrya Cra 1 ' (n)
[0 €Dt @+ DL @] - 5 [ |,

which completes the proof. [
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Theorem 6. Let f : [a,b] — R, be a differentiable function on (a,b) with a < b. If | f("+1)|qis quasi-convex on
[a,b] for t € [0,1], [a,b], rl—] + % =1, a €[0,1]. Then the following inequality
for fractional integrals holds:

T (n—a+1) (D)), (-1)"( Dy f) @)

aegl0,1]

b-a 1 ’ 1 (141
=72 m—ap*+m-a)(1-p)+1) \mn-a)(1-p)+1 ”f ||°°'

where

T (n—a+1)(CD%)®), (-1)"CDLf) @)

FY @ + fO) r(n a+1)
- 2 — )@

a€[0,1]

(D3O + DDy H @] .

Proof. Using the lemma 1 and with properties of modulus

T (n—a+1)((D2f)®), (-1)"Dif) @)

el01]

. fo |1 =y — o [ e (ta+(1—t)b)|dt].

We know that that for @ € [0,1] and VYt1, £, € [0,1],
B — e < - B,

That is

1 1
f|(1—t”‘“)—t”‘“|dt§f [T — 24" dt.
0 0

On the other hand, using the power mean inequalitiy to the right hand of elementary integral inequality
we have
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T (n—a+1)((DLAEG), (-1)" DL @)

€[0,1]

b-a
< —
2

f 11— 26" [f"D(ta + (1 - £)b)| dt]
0

1
= b ; a [f Il — 2t|("—(1)P ‘f(n+1)(tﬂ + (1 _ t)b)| |1 _ 2t|(1’l—a)(l—p) dt]
0

1

) .

<! 3 : (f 1 — 24" 1 — 2¢(=(17) dt)P
0

1

1 q
X f £ (ta + (1 = ) b)[" 1 = 240 (7) dt)
0

b-a 1 2 }l’ 1 }7
= ( f |1 — 2w +or=a(1-p) dt) ( f 11 — 2¢0=(1-) dt)
0

(max f(n+1 a) f(n+1 b)) })%

——

S

{
b- ’ 1 i
B ((n ay?+(n- a)(l p)+1) ((n—a)(l—p)+1)
(max |f(n+1 u)|’1 |f(n+1) b)) })

Z 1
2 ((n ayp?+(n— a)(l p)+1) ((n—a)(l—p)+1) ”

where

and

1 1 1
f |1 — 24w (1) gy = f T (1 - 2t (19) g f (2t — 1) Hem(1p) gy
0 0 1

1
:((n—a)P2+(n—a)(1—P)+1)

1 1 1
f 11— 26=00P) g = f (1 = 2600 g 4 f @t — 1)=0) gt
0 0 1

:((n—a)(;—;?)ﬂ)'

which completes the required proof. [

Corollary 4. For p € (1, 00) we have the following limits

lim 1 )3’_ 1,
po1 \m—ap2+(n-a)(1-p)+1) @m-a)+1 ’

lim 1 7_1
poo \n-ay?+m-a)y(1-p)+1)

1 1 )5<1
(n—oz)+1< m-ap+m-a)y(l-p)+1 !

1852
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and

lim ( 1 )«:1 lim ( 1 )1‘2
p—>1" \n-a)y(1-p)+1 Top—o e \((n—a)(1-p)+1

This means that we can make the decision which estimation is least upper bound. Because it becomes
better as p increases.
Thus we can rewrite inequality in Theorem with increasing of f®*1 as following

fO@+fP0) Tm-a+1)
2 C 2(b-aye

[(CDﬁif)(b) +(=)"(“D{f) (a)] < % hE.

Conclusion: In this paper we established three new integral identities and by using these identities we
proved some new integral inequalities for quasi—convex and s—Godunova-Levin convex via the Caputo—
fractional integral operators. The results offer new estimations for integral inequalities. Many particular
cases can be revealed by using the findings. The interested researchers can investigate different inequalities
using the main Lemmas.
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