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Abstract. The principal goal of this paper is to express the existence and uniqueness of the best proximity
point for a comprehensive contractive non-self mapping in partially ordered metric spaces. The main result
covers a lot of former well-known theorems in related to best proximity point. Moreover, as an interesting
application, integral versions of main theorem are obtained.

1. Introduction and Preliminaries

In 2011, Raj [18] introduced the concept of best proximity point (in short, bpp) as below and proved
some theorems for weakly contractive non-self mappings. Assume that (X,d) is a metric space, (E,F ) is a
pair of nonempty subsets of X, T : E → F be a non-self mapping and d(E,F ) = inf

{
d(x, y) : x ∈ E, y ∈ F

}
.

An element x ∈ E is named a bpp for T if d(x,T x) = d(E,F ).
Also, assume that

E0 =
{
x ∈ E : d(x, y) = d(E,F ) for some y ∈ F

}
,

F0 =
{
y ∈ F : d(x, y) = d(E,F ) for some x ∈ E

}
.

Note that if x is a bpp for T , then we have x ∈ E0 and T x ∈ F0.
The purpose of bpp theory is to furnish sufficient conditions that assure the existence of such points.

Hence, numerous works on this theory were studied by giving sufficient conditions assuring the existence
and uniqueness of these points such that several authors have studied different contractions for having the
bpp in various metric spaces and partially ordered metric spaces in [1, 3–17, 19, 20] and references therein.

Let E and F be nonempty subsets of a metric space (X,d) with E0 , ∅. We say the pair (E,F ) have the
P-property [18] if

d(x1, y1) = d(E,F )
d(x2, y2) = d(E,F )

}
=⇒ d(x1, x2) = d(y1, y2)
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for all x1, x2 ∈ E0 and y1, y2 ∈ F0.
In the sequel, suppose that (X,d,⪯) is a partially ordered metric spaces (in short, POMS) and (E,F ) is a

pair of nonempty closed subsets of X unless otherwise stated. Also, assume that ψ,φ : R⩾0
→ R⩾0 are two

functions such that

• ψ is nondecreasing and continuous;

• φ is lower semi-continuous (in short, lsc) on R⩾0 and φ(t) = 0 implies t = 0.

In this paper, we prove the existence and uniqueness of the bpp for a comprehensive contractive non-self
mapping in partially ordered metric spaces. Our theorems contain some former well-known theorems in
related to the bpp. Ultimately, integral versions of main theorem are obtained.

2. Main results

First, following the idea of Sadiq Basha [19], we define the concept of an order-proximal mapping.

Definition 2.1. A non-self mapping T : E → F is said to be order proximal if

y1 ⪯ y2
d(x1,T y1) = d(E,F )
d(x2,T y2) = d(E,F )

 implies that x1 ⪯ x2

for all x1, x2, y1, y2 ∈ E.

The main theorem of this article is as below.

Theorem 2.2. Assume that (X,d) is a complete POMS and T : E → F is a mapping such that the following
properties are held:

(i) T is order proximal, T (E0) ⊆ F0 and (E,F ) have the P-property;

(ii) there exist elements x0, x1 ∈ E0 provided that x0 ⪯ x1 and d(x1,T x0) = d(E,F );

(iii) T is continuous on E and

ψ(d(T x,T y)) ≤ ψ
(
QT (x, y)

)
− φ
(
QT (x, y)

)
(1)

for all x, y ∈ E with x ⪯ y, where

QT (x, y) = max
{
d(x, y),d(x,T x) − d(E,F ),d(y,T y) − d(E,F )

}
.

Then T has a bpp in E. Moreover, if for any two bpp(s) u, v ∈ E we have u ⪯ v, then T has a unique bpp in E.

Proof. From x1 ∈ E0 andT (E0) ⊆ F0, there exists x2 ∈ E such that d(x2,T x1) = d(E,F ). In particular, x2 ∈ E0.
Since d(x1,T x0) = d(E,F ) and x0 ⪯ x1, by the order proximality of T we have x1 ⪯ x2. By continuing this
process, we can construct a sequence {xn} in E0 provided that

xn ⪯ xn+1 and d(xn+1,T xn) = d(E,F ) n = 0, 1, · · · . (2)

In particular, {xn} is nondecreasing with respect to⪯; that is, x0 ⪯ x1 ⪯ · · · . On the other hand, (E,F ) satisfies
the P-property. Hence,

d(xn,T xn−1) = d(E,F )
d(xn+1,T xn) = d(E,F )

}
=⇒ d(xn, xn+1) = d(T xn−1,T xn) (3)
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for all n ∈N. Therefore, the contractive condition (1) yields

ψ
(
d(xn, xn+1)

)
= ψ
(
d(T xn−1,T xn)

)
≤ ψ
(
QT (xn−1, xn)

)
− φ
(
QT (xn−1, xn)

)
, (4)

which implies ψ
(
d(xn, xn+1)

)
≤ ψ
(
QT (xn−1, xn)

)
. Since ψ is a nondecreasing function, we get

d(xn, xn+1) ≤ QT (xn−1, xn), (5)

where

QT (xn−1, xn) = max
{
d(xn−1, xn),d(xn−1,T xn−1) − d(E,F ),d(xn,T xn) − d(E,F )

}
.

On the other hand, using (2) and (3) as well as the triangle inequality, we have

d(xn−1,T xn−1) − d(E,F ) ≤ d(xn−1, xn) + d(xn,T xn−1) − d(E,F )︸                      ︷︷                      ︸
=0

= d(xn−1, xn)

and

d(xn,T xn) − d(E,F ) ≤ d(xn, xn+1) + d(xn+1,T xn) − d(E,F )︸                      ︷︷                      ︸
=0

= d(xn, xn+1),

which induce that

QT (xn−1, xn) = max
{
d(xn−1, xn),d(xn−1,T xn−1) − d(E,F ),d(xn,T xn) − d(E,F )

}
≤ max

{
d(xn−1, xn),d(xn−1, xn),d(xn, xn+1)

}
.

If d(xn−1, xn) < d(xn, xn+1), then d(xn, xn+1) = QT(xn−1, xn) > 0 and using (1), we have

ψ
(
d(xn, xn+1)

)
≤ ψ
(
d(xn, xn+1)

)
− φ
(
d(xn, xn+1)

)
,

which is a contradiction. Consequently,

d(xn, xn+1) ≤ QT (xn−1, xn) ≤ d(xn−1, xn) (6)

for all n ≥ 1. Hence, the sequence {d(xn, xn+1)} is monotone nonincreasing and bounded. Thus, there exists
α ≥ 0 such that

lim
n→∞

d(xn, xn+1) = lim
n→∞
QT (xn−1, xn) = α.

Now, suppose that α > 0. By the contractive condition (1), the continuity ofψ and the lower semi-continuity
of φ on R⩾0, we have

ψ(α) ≤ lim
n→∞

ψ
(
d(xn+1, xn)

)
= lim
n→∞

ψ
(
d(T xn,T xn−1)

)
≤ lim
n→∞

sup
(
ψ
(
QT (xn, xn−1)

)
− φ
(
QT (xn, xn−1)

))
≤ lim
n→∞

ψ
(
QT (xn, xn−1)

)
− lim

n→∞
infφ

(
QT (xn, xn−1)

))
≤ ψ(α) − φ(α),
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which yields φ(α) = 0 and so α = 0. Thus, lim
n→∞

d(xn+1, xn) = 0. Now, we establish that sequence {xn} is
Cauchy. To this end, assume on the contrary that there exist ε > 0 and positive integersmk and nk provided
that

mk > nk ≥ k and d(xmk , xnk ) ≥ ε k = 1, 2, · · · .

Keeping the integer nk fixed for sufficiently large k, say k ≥ k0, one can assume without loss of generality
thatmk is the smallest integer greater than nk with d(xmk , xnk ) ≥ ε; that is, d(xmk−1, xnk ) < ε for all k ≥ k0. Thus,
we have

ε ≤ d(xmk−1, xnk−1)
≤ d(xmk−1, xnk ) + d(xnk , xnk−1)
< ε + d(xmk , xmk−1)

for all k ≥ k0. Letting k→∞, we obtain d(xmk , xmk−1)→ 0 and so d(xmk−1, xnk−1)→ ε. On the other hand,

ε ≤ QT (xmk−1, xnk−1)

= max
{
d(xmk−1, xnk−1),d(xmk−1,T xmk−1) − d(E,F ),d(xnk−1,T xnk−1) − d(E,F )

}
≤ max

{
d(xmk−1, xnk−1),d(xmk−1, xmk ),d(xnk−1, xnk )

}
,

which by taking limitation induces that lim
k→∞
QT (xmk−1, xnk−1) = ε. Consequently, by the contractive condition

(1), the continuity of ψ and the lower semi-continuity of φ on R⩾0, we have

ψ(ε) ≤ lim
k→∞

ψ
(
d(xmk , xnk )

)
= lim

k→∞
ψ
(
d(T xmk−1,T xnk−1)

)
≤ lim

k→∞
sup
(
ψ
(
QT (xmk−1, xnk−1)

)
− φ
(
QT (xmk−1, xnk−1)

))
≤ lim

k→∞
ψ
(
QT (xmk−1, xnk−1)

)
− lim

k→∞
infφ

(
QT (xmk−1, xnk−1)

)
≤ ψ(ε) − φ(ε),

which yields φ(ε) = 0 and so ε = 0, which is a contradiction. Therefore, the sequence {xn} is Cauchy in
E0 ⊆ E. Since E is a closed subset of a complete metric space X, there exists a x∗ ∈ E such that xn → x∗.
Now, we establish that x∗ is a bpp of T . Using the continuity of T on E, we have T xn → T x∗. Also, by the
joint continuity of d, we conclude that d(xn+1,T xn) → d(x∗,T x∗). On the other hand, it follows by (2) that
{d(xn+1,T xn)} is constant sequence converging to d(E,F ). Since the limit of a sequence is unique, we get
d(x∗,T x∗) = d(E,F ); that is, x∗ is a bpp of T . Moreover, we have x∗ ∈ E0 and T x∗ ∈ F0.

To prove uniqueness, assume that x∗∗ is another bpp of T such that x∗ ⪯ x∗∗. Since x∗, x∗∗ ∈ E0 and
T x∗,T x∗∗ ∈ F0, it follows from the P-property that

d(x∗,T x∗) = d(E,F )
d(x∗∗,T x∗∗) = d(E,F )

}
=⇒ d(x∗, x∗∗) = d(T x∗,T x∗∗). (7)

Hence,

QT (x∗, x∗∗) = max
{
d(x∗, x∗∗),d(x∗,T x∗) − d(E,F ),d(x∗∗,T x∗∗) − d(E,F )

}
= d(x∗, x∗∗). (8)

Now, by (1), (7) and (8), we have

ψ
(
d(x∗, x∗∗)

)
= ψ
(
d(T x∗,T x∗∗)

)
≤ ψ
(
QT (x∗, x∗∗)

)
− φ
(
QT (x∗, x∗∗)

)
= ψ
(
d(x∗, x∗∗)

)
− φ
(
d(x∗, x∗∗)

)
,
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which yields φ
(
d(x∗, x∗∗)

)
= 0 and so d(x∗, x∗∗) = 0; that is, x∗ = x∗∗.

Example 2.3. Consider the same usual metric on X = R2 as below

d
(
(x1, y1), (x2, y2)

)
=
√

(x1 − x2)2 + (y1 − y2)2, where (x1, y1), (x2, y2) ∈ R2

and suppose

E =
{
(x, 1) : x ∈ [0, 1]

}
and F =

{
(y, 0) : y ∈ [0, 1]

}
.

Also, consider φ,ψ : R⩾0
→ R⩾0 as below

ψ(t) =


t2, 0 ≤ t <

1
2

t

2
, t ≥

1
2

and φ(t) =


t2

4
, 0 ≤ t <

1
2

t

8
, t ≥

1
2

.

Let the mapping T : E → F , where

T (x, 1) =


(0, 0), 0 ≤ x < 1

(
2
3
, 0), x = 1

.

Note that for the elements (1, 1) and ( 1
2 , 1), we have

QT

(
(1, 1), (

1
2
, 1)
)
= max

{1
2
,

√
1
9
+ 1 − 1,

√
1
4
+ 1 − 1

}
=

1
2

and, by (1), we obtain

ψ
(
d
(
T (1, 1),T (

1
2
, 1)
))
= ψ
(
d
(
(
2
3
, 0), (0, 0)

))
=

1
3

>
3

16

= ψ(
1
2

) − φ(
1
2

)

= ψ
(
QT

(
(1, 1), (

1
2
, 1)
))
− φ
(
QT

(
(1, 1), (

1
2
, 1)
))
.

Hence, T does not satisfy the non-order version of (1).
Now, define a partial order relation ⪯ on R2 by

(x1, x2) ⪯ (y1, y2)⇐⇒ (x1 = y1, x2 = y2)

∨

(
(x1, x2) = (0, 1), (y1, y2) = (1, 1)

)
∨

(
(x1, x2) = (1, 1), (y1, y2) = (0, 1)

)
.

Then (R2,d,⪯) is a complete POMS. Also, d(E,F ) = 1, E = E0 and F = F0. Moreover, one can simply prove that
(E,F ) have the P-property, T is ordered proximal and T (E0) ⊆ F0. Next, assume that x ∈ [0, 1]. Then we have

ψ
(
d
(
T (x, 1),T (x, 1)

))
= ψ(0) ≤ ψ

(
QT

(
(x, 1), (x, 1)

))
− φ
(
QT

(
(x, 1), (x, 1)

))
.
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Also, we have

QT

(
(0, 1), (1, 1)

)
= max

{
1, 0,

√
1
9
+ 1 − 1

}
= 1,

which yields

ψ
(
d
(
T (0, 1),T (1, 1)

))
= ψ
(
d
(
(0, 0), (

2
3
, 0)
))

=
1
3

≤
3
8

= ψ
(
QT

(
(0, 1), (1, 1)

))
− φ
(
QT

(
(0, 1), (1, 1)

))
.

Thus, T satisfies in contractive condition (1). Hence, all hypotheses of Theorem 2.2 are held. Consequently, T has a
bpp x∗ = (0, 1). Now, let x∗∗ = (x, 1) ∈ E with x ∈ [0, 1] be another bpp of T . If x ∈ [0, 1), then

d
(
(x, 1),T (x, 1)

)
= d
(
(x, 1), (0, 0)

)
=
√

x2 + 1 > d(E,F ).

Otherwise, if x = 1, then

d
(
(1, 1),T (1, 1)

)
= d
(
(1, 1), (

2
3
, 0)
)
=

√
1
9
+ 1 > d(E,F ),

which is a contradiction. Hence, (0, 1) is the unique bpp of T .

Remark 2.4. By selecting special types of the function ψ and φ, we can replace the condition (iii) of Theorem 2.2
with one of the following conditions:

(I) T is continuous on E and

d(T x,T y) ≤ QT (x, y) − φ
(
QT (x, y)

)
for all x, y ∈ E with x ⪯ y, where

QT (x, y) = max
{
d(x, y),d(x,T x) − d(E,F ),d(y,T y) − d(E,F )

}
.

For this case, it is sufficient to put ψ(t) = t in Theorem 2.2.

(II) T is continuous on E and there exists α ∈ [0, 1) such that

d(T x,T y) ≤ α · QT (x, y)

for all x, y ∈ E with x ⪯ y, where

QT (x, y) = max
{
d(x, y),d(x,T x) − d(E,F ),d(y,T y) − d(E,F )

}
.

For this case, it is sufficient to put ψ(t) = t and φ(t) = (1 − α)t in Theorem 2.2.

Remark 2.5. (ψ,φ)-weak contractions involves a lot of contractions defined until now. So we can obtain Theorem
2.2 for various contractions and in a complete POMS. For all (x, y) ∈ E with x ⪯ y, some of the contractions obtained
from (ψ,φ)-weak contractions as below:

• There exists α ∈ [0, 1) such that d(T x,T y) ≤ αd(x, y). In this case, T is automatically continuous on E;
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• There exists α ∈ [0, 1
2 ) provided that

d(T x,T y) ≤ α
(
d(x,T x) + d(y,T y)

)
− 2αd(E,F );

• There exist α, β ∈ [0, 1
2 ) provided that

d(T x,T y) ≤ αd(x,T x) + βd(y,T y) − (α + β)d(E,F );

• There exist α, β, γ ≥ 0 with α + β + γ < 1 provided that

d(T x,T y) ≤ αd(x, y) + β
(
(d(x,T y) − d(E,F )

)
+ γ
(
d(y,T x) − d(E,F )

)
;

• There exist functions α, β, γ : X ×X → R⩾0 with

sup
{
α(x, y) + β(x, y) + γ(x, y) : (x, y) ∈ X × X

}
= λ < 1

such that

d(T x,T y) ≤ α(x, y)d(x, y) + β(x, y)
(
d(x,T x) − d(E,F )

)
+ γ(x, y)

(
d(y,T y) − d(E,F )

)
.

3. Application

In 2002, the idea of using Lebesgue integrals in metric fixed point theory was introduced by Branciari
[2]. In fact, he considered mapping T from a complete metric space (X, d) into itself satisfying∫ d(Tx,Ty)

0
φ(t)dt ≤ α

∫ d(x,y)

0
φ(t)dt

for all x, y ∈ X, where α ∈ (0, 1) and φ : [0,+∞) → [0,+∞) is a Lebesgue-integrable function whose
Lebesgue-integral is finite on each compact subset of [0,+∞) and satisfies

∫ ε
0 φ(t)dt > 0 for all ε > 0.

Then he investigated the existence and uniqueness of fixed points for mappings satisfying such integrally
contraction.

Now, let λ be the Lebesgue measure on the Borel σ-algebra of the metric subspace R⩾0 of R, E = [a, b]

be a Borel set and
∫ b

a φ(t)dt be Lebesgue integral of a function φ on E. Also, let Φ be a class of all functions
φ : R⩾0

→ R⩾0 satisfying the following properties:

(Φ1) φ is Lebesgue-integrable on R⩾0;

(Φ2)
∫ ε

0 φ(t)dt > 0 and finite for all ε > 0.

Theorem 3.1. Assume that (X,d) is a complete POMS and T : E → F is a mapping such that the following
properties hold:

(i) T is order proximal, T (E0) ⊆ F0 and (E,F ) have the P-property;

(ii) There exist elements x0, x1 ∈ E0 provided that x0 ⪯ x1 and d(x1,T x0) = d(E,F );

(iii) T is continuous on E and there exist µ, γ ∈ Φ provided that∫ d(T x,T y)

0
µ(t)dt ≤

∫
QT (x,y)

0
µ(t)dt −

∫
QT (x,y)

0
γ(t)dt

for all x, y ∈ E with x ⪯ y, where

QT (x, y) = max
{
d(x, y),d(x,T x) − d(E,F ),d(y,T y) − d(E,F )

}
.
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Then T has a bpp in E. Furthermore, if for any two bpp(s) u, v ∈ E we have u ⪯ v, then T has a unique bpp in E.

Proof. In Theorem 2.2, we set

ψ(s) =
∫ s

0
µ(t)dt and φ(s) =

∫ s

0
γ(t)dt.

Clearly, ψ is nondecreasing and continuous, and φ is lsc on R⩾0 and φ(s) = 0 implies s = 0. Then the result
follows from Theorem 2.2.

If we set E = F = X in Theorem 3.1, then we get the following corollary.

Corollary 3.2. Let (X,d) be a complete POMS and T be a self-mapping on X satisfying the following conditions:

(i) T is order preserving; that is, x ⪯ y implies T x ⪯ T y for all (x, y) ∈ X;

(ii) There exist x0, x1 ∈ E0 so that x0 ⪯ T x0;

(iii) T is continuous on X and there exist µ, γ ∈ Φ such that∫ d(T x,T y)

0
µ(t)dt ≤

∫ max
{
d(x,y),d(x,T x),d(y,T y)

}
0

µ(t)dt −
∫ max

{
d(x,y),d(x,T x),d(y,T y)

}
0

γ(t)dt

for all x, y ∈ E with x ⪯ y.

Then T has a fixed point in E. Furthermore, if for any two fixed points u, v ∈ E we have u ⪯ v, then T has a unique
fixed point in E.
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[16] A. Kostic, E. Karapınar, V. Rakocević, Best proximity points and fixed points with R-functions in the framework of w-distances,

Bull. Australian Math. Soc. 99 (3) (2019) 497–507.
[17] P. Magadevan, S. Karpagam, E. Karapınar, Existence of fixed point and best proximity point of p-cyclic orbital ϕ-contraction map,

Nonlinear Anal. 7 (1) (2022) 91–101.
[18] VS. Raj, A best proximity point theorem for weakly contractive non-self mappings, Nonlinear Anal. 74 (2011) 4804–4808.
[19] S. Sadig Basha, Best proximity point theorems in the frameworks of fairly and proximally complete spaces, J. Fixed Point Theory

Appl. 19 (3) (2017) 1939–1951.
[20] S. Sadiq Basha, Discrete optimization in partially ordered sets, J. Glob. Optim. 54 (2012) 511–517.


