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Some studies of SEP elements in a ring with involution
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Abstract. In this paper, we give some new characterizations of SEP elements and partial isometries in
rings with involution. Especially, we discuss these characterizations from the perspectives of the existence
of solutions to certain equations, and the form of the general solutions to some equations.

1. Introduction

Let R be a ring with 1. a € R is called group invertible if there exists b € R such that
aba = a, bab = b, ab = ba.

In this case, b is uniquely determined by the above equations [2]. We call it the group inverse of a and
denote it by a*. The set of all group invertible elements of R is denoted by R¥.

Ris called a *—ring if there exists an anti-isomorphism * of degree 2 in R, which satisfies

(@) =a,(a+b) =a"+b",(ab) =b"a",

foralla,b € R.

a € Ris said to be Moore-Penrose invertible (or MP-invertible) if there exists b € R such that the following
Penrose equations hold:

aba=a, bab=0b, (ab)"=ab, (ba)’ = ba.

There is at most one b such that the above conditions hold, see [4, 5, 7-9, 17]. We call it the Moore-Penrose
inverse (or Moore-inverse) of 2 and denote it by a*. Denote by R* the set of all MP-invertible elements of R.

a is said to be EP [6] if a € R* N R" and 4" = 4. We denote the set of all EP elements of R by REP. On EP
elements, the readers can refer to [14, 15, 18-20].

If a* = a', then the element a € R' is called a partial isometry. The set of all partial isometries of R is
denoted by RP!. In recent years, the study of partial isometry elements are discussed by many authors such
as [3,11-13, 15].

If a € REP and a* = 4, then the element a is called strongly EP element [21, 22]. We denote by R°EP the
set of all strongly EP elements of R.
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In [10, 12, 16, 21, 22], many characterizations of strongly EP are discussed. Motivated by these results,
this paper is intended to give a number of new characterizations of strongly EP elements from some different
angles. We characterize it by considering the existence of solutions to certain equations in a definite set,
the general solutions of certain equations, and invertible elements in rings, which are all new approaches
to study generalized inverses in rings.

2. Some characterizations of SEP elements

Leta € R* N R*. Then, by [12, Theorem 1.5.3], a € RF? if and only if a*a* = a*a*. We can generalize this
result as follows.

Lemma 2.1. Leta € R* N\ R*. Then a € RS if and only if a*a* (a*)* = a*a*(a™)".

Proof. ” = ” Assume that a € RSEP. Then a*a* = a*a* by [12, Theorem 1.5.3] and a € RE’. Hence a* = a*,
which implies a*a*(a*)* = a*a*(a*)".

” +

& ” From the condition a*a*(a*)* = a*a*(a*)’, we obtain a*a* = a*a*(a*)'a* = a*a*(a*)'a* = a*a*. Hence
a € R°EP by [12, Theorem 1.5.3]. [

Lemma 2.2. Let a € R* " R*. Then
1) a*a*(a*)" € R* and (@*a*(a*)")" = aa*aa(a*) a*a;
2) arat (@)’ e R with (a'a* (")) = a*a(a")’;
3) atat(a*) € R* with (a*a* (a*)")" = a*ada*;
4) ata*(a*) € R* with (@*a* (@)’ = aa*a*a?.
Proof. 1) Since
(@a*(@*) Y aa*a'a@®) ata) = a*a* (@*) a’a(@®) a*a = a'ata(@®) ata = a*(@*) ata = a*a,

(@a*(@") Y aa*a*a@®) ata)(a'a* (@")) = ata(@at (@")) = a'at ("),

and
(@ a* (@) Yaa*aa@®) a*a)) = (a*a)" = a*a = @a* (@) ) aata*a@@) a*a).
Owing to
(aa*a*a(@®) ata)@at(@®)) = aata*a@®) a'a* (@*) = aatataat (@*) = aata’(@") = aa*,
(aa*a*a(@®) a*a)(@'a* (@*) Y aa*a*a(a®) ata) = aa* (aa*a*a@@®) ata) = aatata(a®) a*a,
and

((aa*aa(@®) a*a)@a*@))) = (aa*) = aa* = (aa*a*a(a®) a*a)@a* @*)").

Hence a'a*(a*) € R* and (¢*a*(a*)")" = aa*a*a(a®) a*a.
2) Since
(@a* (@) )aa(@®)) = a'a*a(@") =a'(@") = (ad"),

(@ a* @ ) a'a@) ) aat (@")) = (aa®) a'at (@") = a'a* @)
Owing to
(@a@"))a'a*(@*)) = a'aa*(@") = a’(@") = (ad"),

(@a@*))@a* @) )@ a@*)) = (aa*) a’a(@®) = aa(a")’,
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and
(@a* (@) )a'a(@*)) = (aa*) = (@'a@®) )@a'a* (@")).

Hence a*a*(a*)" € R* with (a*a*(a#)*)# = a*a(a*)".
3) and 4) can be shown similarly. [

Lemma 2.1 and Lemma 2.2 imply the following Theorem.

Theorem 2.3. Leta € R* N R*. Then
1) a € RSP if and only if aa*a*a(a®) a*a = a*a’a*;
2) The following conditions are equivalent:

(1) a € REP;

(2) a*a*(a*)" € REF;

(3) ata*(a*) € REP;

(4) aa*a*a(a®) a*a = a*a(a*)’;

(5) a*ala* = aa*a*a®.

Proof. 2) (1)” = ”(2) By Lemma 2.2, we know that (a*a*(a*)")" = aa*a‘a(a*)'a*a and (a*u*(a#)*)# = aa(a*)".
Sincea € REP, aa*a*a(a®) a*a = a*aa*a(a®) aa* = a*a(a®)". This gives (a*a*(a*)")" = @a* (@), Hencea'a*(a*) €
REP.

(2)” = ”(3) Since a*a*(a*)" € RE?, by Lemma 2.2, we get aa*a‘a(a*) a*a = a*a(a*)’. Multiplying the equality
on the left by aa*, one yields aa*a*a(a*)* = a*a(a*)*. Again multiply the equality on the right by a*a*(a*)", one
gets aa® = a*a. Hence a € RFP. Tt follows that (a*a®(a*))* = (a*a* (a*))* = aa*a*a® = a*aa*a® = a*a® = a*aPa* =
(a*a*(a*y)* = (a*a*(@*)")*. Hence a*a*(a*)" € RE” by Lemma 2.2.

(3)” = ”(1) Since a*a®(a*)* € RE?, (a*a®(a*))* = (a*a®(a*)")*, that is,

a‘ata’(aa®) = aatatata®.

Multiplying the equality on the right by aa*, one gets

aatatata® = aataatatat

Multiplying the last equality on the left by a*(a*)", one yields a = a?a*. Hencea € REP. [

The following corollary is an immediate result of Theorem 2.3.

Corollary 2.4. Let a € R* N R*. Then the following conditions are equivalent:
1) a € RSEP;

2) aa*a*a(a®)’ = a*aa*;

3) aata*a(a®)’ = a*a?.

Proof. (1)” = ”(2) Since a € R°EF, a* = a* = a*. It follows that

aata‘a(@®y = ad’aa(a)’ = a*aa*aa = ataaa® = a'a® = a*a®a® = a*aa”.

(2)” = ”(3) From the assumption, we have

a'aat = aataa(@®) = aa*(aa*a*a(a®)’) = aata‘ala*.

Multiplying the equality on the right by a*a*, one gets a* = aa*a*. Hence a € REP. This gives

aa(@®) = aa*a*a(a®) = a'a’a” = a*a.
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(3)” = ” (1) Assume that aa*a*a(a*)” = a*a®. Multiplying the last equality on the right by aa*, one has
a'a® =a'a’a*,

and
a? = @yaa® = @) aalat = alat.

Hence a € REP by [? ], it follows that
aa(@) = aa*a'a@®) = a*a?
. Multiplying the last equality on the left by a*(a*)*, one obtains (a*)* = a. Hence a € R°EP.
0
Observing Lemma 2.1, we have the following corollary.
Corollary 2.5. Leta € R* N\ R*. Then a € RSE if and only if a*a*(a*)" = a*a*(a*)".

Proof. ” = ” Since a € R°EF, a* = a* = a*. Tt follows that

aa (@) = atat(a*)".

” & ” Assume that a*a*(a*)" = a*a*(a*)". Multiplying the equality on the left by a*a, one gets
ataadtat (@) = a*at(at).

Again multiply the last equality on the right by a%a, one has a*aa* = a*. Hence a € REP. It gives that
a‘a*(@*) = a'a*(a*)". Thusa € R°F by Lemma 2.1. O

Lemma 2.6. Let a € R¥ N R*Y. Then a*a*(a*)" € R* with (a*a*(a*)")" = aa*a’a*a®(a*)".

Hence, Corollary 2.5 and Lemma 2.6 lead to the following Corollary.

Corollary 2.7. Leta € R* N\ R*. Then a € R°EY ifand only if aa*a*a*a®(a*)" = a*a®a*

3. Consistency of certain equations
Observing Lemma 2.1, we construct the following equation
a'x(@") =a'at@*y". (3.1)
Theorem 3.1. Let a € R* N R*. Then a € RSP if and only if Eq.(3.1) is consistent and the general solution is given
by
x=a"+u—aatuata, where u € R. (3.2)
Proof. ” = ” Assume that a € REP. Then a*a*(a*)" = a*a*(a*)" by Lemma 2.1. Hence

a‘(a* +u —aatuata)@®) = aat (@) = a'at (@),

which implies formula (3.2) is exact the solution of Eq.(3.1).
Now, let x = xo be any solution of Eq.(3.1). Then a*xo(a*)" = a*a*(a*)". It follows that

aa*xoata = (a*) a'xo(a®) a'ata = (@) (@*at (@) )aata = @) a*ataatata = (@) atatata.
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Noting that a € RSP, Then (a*)" = a; a* = a*. Hence aa*xoa*a = a* = a*, this gives xo = a* + xo — aa*xpa*a.
Thus the general solution of Eq.(3.1) is given by (3.2).
” < ” If the general solution of Eq.(3.1) is given by (3.2), then

a‘(a* +u —aatua*a)d®) = atat @ty

e.g. a'at(a*)’ = a*a*(a*)". Hence a € RS*" by Lemma 2.1. [
Remark 3.2. Leta € R* N R*. Then a € RE if and only if Eq.(3.1) is consistent. In this case, the general solution of
Eq.(3.1) is given by

x = @) atat +u—aatua*a, where u € R. (3.3)
Proof. ” = ” Assume that a € REP. Then a* = 4*, it follows that

a* (@ ata*) @) = atat @) =a'at (@)
Hence Eq.(3.1) is consistent. Clearly, the formula (3.3) is exact the solution of Eq.(3.1). Now, let x = x( be
any solution of Eq.(3.1). Then a*x(a*)" = a*a*(a*)". So
aa*xoata = (a*)'a*atata = (@) atatata = @) o = (") ata*

because a € REP. Hence xo = (a*)'a*ta* + xo — aa*xoa*a, one obtains the general solution of Eq.(3.1) is given
by the formula (3.3).
” & ” From the assumption, we have

a* (@ ata® +u —aatuata)@®) = atat @ty
thatis, ata*(a*)’ = a*a*(a*)". Post-multiplying the equality by a*, one gets a*a*™ = a*a*. Hencea € RE’. O

Now, we construct equation as follows

a'x(d) =a* (34)
Theorem 3.3. Let a € R* N R*. Then a € R°? if and only if Eq.(3.4) is consistent and the general solution is given
by

x=a"+u—aatua*ta, where u € R. (3.5)
Proof. ” = " If a € R°?, then (a*)" = g, it follows a*a*(a*)" = a*a*a = a*. Hence Eq.(3.1) is the same as
Eq.(3.4). Noting that a* = a*. Then, by Theorem 3.1, we have the general solution of Eq.(3.4) is given by
3.5).

” & ” From the assumption, we have a*(a* + u — aa*ua*a)(a*)’ = a*, e.g. a* = a*. Thus a € RSEP by [12,
Theorem 1.5.3]. O

Consider

a'x(@) =at (3.6)
It is easy to show that Eq.(3.6) is consistent and the general solution is given by

x=(a")a*a" +u—aa*ua*a, where u € R. (3.7)

In fact, by a simple computation, we get the formula (3.7) is indeed the solution to Eq.(3.6). On the other
hand, for any solution x = x¢ to Eq.(3.6), we have

a‘xo(@®) =a*.

Choose u=xyp— (@ )ara. Then
0
+ %+

aatua*a = aa* (xo—(a*)'ata)ata = aa* xoaTa—aa* (at)'ata'aa = aat xoata—(at) (@' xo(a®) a'ata = aatxoata—aatxonta = .

Thus xg = (a*)'a*a* + u — aa*ua*a has the form of the formula (3.7).
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Theorem 3.4. Let a € R* N R*. Then a € RSY if and only if Eq.(3.1) and Eq.(3.6) have the same solutions.

Proof. ” = ” Assume thata € REF. Then

atat(a*) =a'ata=a" = a.

Hence Eq.(3.1) is the same as Eq.(3.6), certainly, they have the same solutions.
” < " If Eq.(3.1) and Eq.(3.6) have the same solutions, then by Remark 3.2, a € REP. Noting that the general
solution of Eq.(3.6) is given by the formula (3.7). Then the formula (3.7) is the general solutions of Eq.(3.1),
this gives

a*((@*)'a*a +u—aatuata)a®) = atat @),

e.g. at =a'a*(a*)’, it follows that
a=a%a" =a*d*at(@a*) = (@*)".

Hence a € RSP, O

Remark 3.5. Clearly, x = (a*)’a*a* is a solution of Eq.(3.6). How to express the solution in the form of the formula
(3.7)?

4. Univariate equation

Lemma4.1. Leta € R* N R*. Then
1) a* € R* with (a*)* = (aa") a(aa®)";
2)a* € R* with (a*)" = a*aa*.
Proof. It is routine. [
Lemma4.2. Leta € R* N\ R*. Then a € R°EP if and only if a*a(a™)" = (a*)".
Proof. ” = ” Assume thata € REF. Then a*a(a*)’ = a¥a® =a = (a*)".
7 <" Ifa*a(a*)’ = (a*)’, then
aa” = (aY)a" = aa@@)'a* = a*a*a”,
this gives a = a*a®. Hence a € RS by [11, Theorem 2.3]. [
Observing Lemma 2.1, we consider the following equation

ax@) = a*x@*)". 4.1)

Theorem 4.3. Let a € R* N R*. Then a € R°E” if and only if Eq.(4.1) has at least one solution in p,={a, a*, a*, a*,

@), @, @), @),
Proof. ” = ” If a € RSEP, then x = a* is a solution by Lemma 2.1.
” & ” 1) If x = ais a solution, then a*a(a*)’ = a*a(a*)" = (a*)". Post-multiplying the equality by a*a*, one
yields a* = aa*a*, it follows that a*a* = a*(aa*a™) = a*a*. Hence a € R by [21, Corollary 2.10], this gives
a= @ =aa@) =ata@® = @") .

Thus a € R°EP by [12, Theorem 1.5.3];
2) If x = a*, then a*a*(a*)" = a*a*(a*)’, this gives

(1 —aa")aa* (@) = 1 - aa*)a'a (@) =0,

and
(1 —aa)a'a® = (1 — aa®)a*a*(@") a'ata =0,
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one has (1 —aa*)a* = (1 —aa*)a*a*a(a*)’a* = 0. Hence a € RE?, which implies

# #

*
aa® =aa*(@") aata = a*a(a*) a’ata = atatata = ata®.

Thus a € R” by [12, Theorem 1.5.2]. Therefore a € RSEP;

3)If x = a*, then aa* (a*)" = a*a*(a*)’, which implies a € R(” by Lemma 2.1;

4) If x = a*, then a*a*(a*)" = a*a*(a*)’, e.g. a* = a*. Hence a € RSP by [12, Theorem 1.5.3];
5)If x = (a*)", then a*(a*)"(a*)" = a*(a*)'(a*)", e.g. (a*)" = a*(a*)"(a*)", one obtains

(1 -aa")@") =1 -aa")a (@) @) =0.
Hence (1 —aa*)a* = (1 — aa*)(a*)'a*a*™ = 0, which implies a € RF’. Now we have
@) =a'@a*) @) =a'@) @) =" @,
and
a* = (a") a'a* = a' (@) (@) a0 = a* (@) 0" = a*(@") 0 = at.
Thus a € RSEP;
6) If x = (a*)", then a*(a*)"(a*)" = a*(a*) (a*)", e.g. (a*)" = a*(a*) (a*)", this gives (1 — aa*)(a*)" = 0. Hence
a € REP, which implies x = (a*)" = (a*)" is a solution. Hence a € RSE” by 5);
7)If x = (a*)", then a*(a*)*(a*)" = a*(a*)*(a*)". By Lemma 4.1, we have

a*(aa®) a(aa®) (@) = a®(aa®) a(aa®) (™Y,
that is, a*a(a*)" = a*(aa") a(aa®) (a*)*. Since
(1 —aaHa‘a@@®) = (1 — aa®)a*(aa®) a(aa®) (@*)" = 0.
(1 —aa*)a* = (1 - aa)a*a(@®) a’a*™ = 0.
Hence a € RF’. Now we have
a'a(@*)’ = a*a@®) = a*(aa") a(aa®) (%) = a*(aa®) a(aa®) (@*) = ata(@®) = @") = @*)".

Hence a € R by Lemma 4.2;
8) If x = (a")", then a*(a*)" (a")" = a(a")" (a*)". By Lemma 4.1, we have

aata’at (@) = atataPat (@) = (@),
this gives
(1 —a*a)@*) = (1 -ata)aata’at (@) =0,

which implies a € RE’. Now we get (a*)" = a*a*a’a*(a*)" = a*a(a*)". Hence a € RE” by Lemma 4.2. O

It is known that a € R°E” if and only if a* € R, Hence a* instead of a in Eq.(4.1), we have

axa® = (a*) xa*. 4.2)

Thus Theorem 4.3 implies the following Theorem:
Theorem 4.4. Let a € R* N R*. Then a € R°? if and only if Eq.(4.2) has at least one solution in p,.

Applying the involution on Eq.(4.2), one obtains the following equation.

(@")xa* = (@) xa". (4.3)
Theorem 4.4 implies the following Theorem:

Theorem 4.5. Let a € R* N R*. Then a € RS if and only if Eq.(4.3) has at least one solution in p,.
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5. Bivariate equations
We modify Eq.(4.1) as follows:
a'x(@®) = a'y@a*)". (5.1)
Theorem 5.1. Let a € R* N R*. Then the general solution of Eq.(5.1) is given by

where u,v,p € R (5.2)
y=a"a*atpata +v—atavaat ' "

{x = @) atpata'ata+u—aatuata
and satisfying a*p = aa*ta*p and pat = patata.
Proof. First,
a'((@*)'a*pata‘ata + u —aatuata)(@®) = atpa*;
and
a*(a*a*a*pata’ + v —atavaa*)(a®) = aaatpatata = a*a(aaatpatata) = aatatpatata = apa”.

Hence the formula (5.2) is the solution of Eq.(5.1). Next, let

X =X
¥y =Y

is a solution of Eq.(5.1). Then a*xo(a*)" = a*yo(a*)". Choose

p=ada'yo@@*)a, u=x, v=yp.

Then
a*p = a*a@*yo(@*))a = a*a(@*xo(@*) )a = a*xp(a*) a = a*yo(a*)a,
one has
aata*p = aa* (a*yo(a*)a) = a*yo(at)'a = a*p.
Also

pat = a(a*yo(a*)Yaa* = a(@'xo(a®) Yaa* = aa’xo(a*)” = aa*yo(a®)’,
hence pata*ta = aa*yo(a*)'a*a = aa*yo(a*)" = pa*. Noting that
aatuata = an*xoaa = (@) a*xo((@") a*a)a
= (@) @ yo@@))a'aa = (a*)a*a)(a"yo(a®))a'a*a
= (a*)a*(adyo(a*))a'ata = (a*)'a* (aa’xo(@*) )a'a*a
= (@")a*(aa'xo(a*) aa*)a'a*a = (a*)'a* (aa*yo(a*) a)a*a'a*ta
+ %+

= (a*)a*pataata.

Then

xo = (@")'a*pata‘ata + xg —aatuata = (@) atpata’ata + u —aatuaa.

Since
atavaa® = a*ayoaat = a*a’a*(aa’yo(a*t) a’)
= a*a?a*(aa*xo(a") )a* = a*ala* (aa*xo(a") aat)a
= a*a’a*(ad"yo(a®) a)(a*a")
= a*d’atpata,
Yo = ata’atpata’ + yo —atavaa® = ata’atpata’ +v —atavaa®.

Thus the general solution of Eq.(5.1) is given by (5.2). O



S. Zhao et al. / Filomat 37:6 (2023), 1815-1824 1823

Corollary 5.2. Leta € R* N R*. Then a € RE? if and only if the general solution of Eq.(5.1) is given by

c s ,where u,v,p € R. (5.3)

x=(a*)a*pataata+u—aatuata
y=a‘a‘a*pata’ + v —a*avaa”

Proof. ” = ” Assume thata € REP. Then forallp € R,
a'p=aata’p and pa* =patata.
Hence, by Theorem 5.1, the general solution of Eq.(5.1) is given by (5.3).
” & ” If the general solution of Eq.(5.1) is given by (5.3), then
a'((@*)a*pata‘a*a + u — aa*ua*a)(@®)
= d'(a*e’atpata’ +v—atavaat)(a®y’,
e.g. atpat = a*aa*pata*a for each p € R. Choose p = a, one has a* = a*aa*a*a, this gives

aatat = aa*(a*aatata) = a'aatata = a”.

Thusa € REP. [
Lemma 5.3. Leta € R* N\ R*. Then a € RSE ifand only if a* = a*a*(a*)".

Proof. ” = ” Assume thata € R . Then a* = a* and (a*)" = a. It follows that ata*(a*)" = a*ata = a* = a™.
"< "1fa* =atat(a*)’, thena*a*t =a*a*(a*) a*, this gives a* = a*(a*)'a* by [21, Lemma 2.11], so

a=aata=aa* (@) a*a=@a")".
This induces a € R” and a* = a*a*(a*)’ = a*a*a. Hencea € R°F?. O

Theorem 5.4. Let a € R* N R*. Then a € RS if and only if the general solution of Eq.(5.1) is given by

where u,v,p € R. (5.4)
y=a"a*a*patat +v—atavaat ' Y

{x = (@) atpata'ata+u—aatuata
Proof. ” = ” Assume thata € R°EP. Then a* = a* and a € RE?, this infers the formula (5.3) is the same as the
formula (5.4). Hence, by Corollary 5.2, we know that the general solution of Eq.(5.1) is given by (5.4).

” & ” If the general solution of Eq.(5.1) is given by (5.4), then

a'((@*)'a*pata‘ata + u — aatuata)(a®)y

= d'(a*a®atpatat +v—a*avaat)(a*)

,

e.g. atpat = a*aa*pata*(a*)" for all p € R. Choose p = a. Then a* = a*aa*a*(a")", one obtains
aatat = aa* (@*aatat(a*)’) = afaatat(@t) = at.

Hence a € REP, which implies
at =d'aatat(a*) = ataatat(@*) = atat(@t)".

Hence a € R’ by Lemma 5.3. [J

Inspired by Lemma 2.2, we can guess the following results, however, we do not know how to prove it.
Leta € R* N R*. Then

(1) a*x(a*)* € R* with (a*x(a*))* = aa*a*a*ax®(a*)" for x € x, = {a,a*,a*,a*, (a*)", (a*)*}.

(2) a*x(a®)* € R* with (a*x(a*)*)* = a*x*(a*)" for x € x,.
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