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Abstract. Thisarticleis devoted to prove the basic Chen’s inequalities for slant submanifolds in Riemannian

space forms equipped with Golden structure. The equality case and some particular cases of derived
inequalities are discussed.

1. Introduction

The concept of polynomial structures on a manifold came to discussion in [12] and it paved the foun-
dation of Golden structure [8]. The study of invariant submanifolds for their different properties in a
Riemannian manifold equipped with Golden structure appeared in [13] and results related to integrability
in the same ambient manifold were proved in [11]. On the other side, the concept of Golden maps was
proposed and harmonicity was established for such maps due to Sahin and Akyol in [18]. As far as warped
product structures are concerned on Golden Riemannian manifold, their study was carried out in [2]. The
Golden structure on Semi-Riemannian manifolds has also been investigated in recent years ([16],[17]).

The theory of slant submanifolds came into picture due to [3] and later researched in ([20],[19]). Recently,
slant submanifolds were took into investigation due to Bahadir and Uddin [1] in Riemannian manifolds
with Golden structure.

On the other hand, in 1993, Chen considered submanifolds of real space form [4] and introduced the
basic idea for the sharp relationships between the intrinsic and extrinsic invariants. Later on, Chen-like
inequalities were also studied in many other ambient spaces [5],[14],[15],[9],[10] and the references therein.

Inspired by all the above developments in the field, we establish sharp inequalities for golden Rieman-
nian space forms.

2. Preliminaries

Consider any Riemannian manifold (M",g) with dimension equal to m and assume M" to be any
Riemannian manifold isometrically immersing in M. Identify with the help of V, the covariant differentiation
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induced on M and with V*, the normal connection induced by V on TM*. When ¢ describes the second
fundamental form, one can note down that

Vy, Yo = Vy, Yo +0(Y1,Y2), Vy,V=-AyY; + Vllﬁ V, ¥Y1,Y, eT(TM), YV e I(TM*).
Following link also hold
g(AvY1,Y3) = g(o(Y1,Y2), V).
One writes Gauss equation as
R(Y1,Y2,Y3,Ys) = R(Y1, Y2, Y3, Ys) — g(0(Y1, Ys), 0(Y2, Y3)) + 9(0(Y1, Y3),0(Y2, Y4)). (1)

Let us fix local orthonormal frame field {ey, ..., e, €441, ..., €x} on M. Then, one may estimate

n

1
H(p) = Z ;o(e,-,ei), of]. =g(o(e,ej),e), 1<i,j<n, n+l1<s<m.
i=1

We recall.

Lemma 2.1. When one represents by uy, ..., u;, v the (t + 1), t > 2 real numbers provided [4]

t 5 t
(Zuk) =(t- 1)(Zui +v),
k=1 k=1
then, 2uiuy > v and equality holds if and only if u; + upy = uz = -+ = uy.

We have the following set to explain the relative null space of M in M
Lp = {Yl S TpM | O'(Yl, Yz) =0,V Yz € TPM}’p e M.
Let © C T,M represents a plane section and K(7) be standing for the sectional curvature of M. We estimate
T(p) = Z K(e; ne), pe M.
i<j
We also have
(inf K)(p) = inf{K(n)|t € T,M,dim 7t = 2}, om(p) = 7(p) — (inf K)(p).

In our case dpm(p) is used for Chen first invariant.
Next, we identify by L’ the subspace of T,M of dimension equal to g with g > 2 and its orthonormal
basis by {e, ..., e;}. We have

T(l') = ) K(ea Aep),

a<p

L’ represents g-plane section. Now, we move on by considering y-tuples (1] ...A}) of integers > 2 in the
form of a set S(A’, u) holding for the following inequality

A <N AL+ 4+ A <A

for any integer u > 0. In addition, let us fix a A’ and consider unordered p-tuples in the form of a set S(A").
In this way, we note down the Riemannian invariant as

S(A - A)(p) = T(p) = ST AP, V(AT A)) € SV,
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where S(A] ... A})(p) = inf{t(L])) +--- + T(L;l)}, here, L! ... L, varies for all p mutually orthogonal subspaces
of TyM having dimL! = A/,i € {1,..., u}. Set the following real constants

d(Al AI)_l(/\,—i_[J_l_ Z”=1A1,) 72
reeesy 2 (A’+[J_Z§L:1/\z,')

and

k
7 7 1 ’ ’ 7’ 7’
b, A = S IV = 1) - 2 AL =T)].
i=1

3. Golden Riemannian manifolds

Assume any (1,1)-tensor field X on any Riemannian manifold M". Then, X produces a polynomial
structure on M if [1, 8, 12]
PY)=Y"+a,Y" '+ .. +aY +m =0,

here, I is taken for identity (1, 1)-tensor field and atp € M, I, X" 1(p), X"(p), ..., X(p) are linearly independent.
In present case, P(Y) is known as structure polynomial.
Any (1, 1)-tensor field ¢ produces structure of Golden type on (M™, g) provided [1, 7, 12]

¢*—p-1=0,

I, in the present situation is used for identity transformation. Furthermore, YY1,Y> € F(TM), @-compatible
Riemannian metric g satisfies

9(@Y1,Y2) = g(Y1,9Y2). )

(M, ) equipped with Golden structure ¢ is termed as Golden Riemannian manifold [1, 8] provided Rie-
mannian metric g satisfies (2). Substituting @Y in place of Y; in (2), creates the following

g(PY1,9Y2) = g(@* Y1, Y2) = g(pY1, Y2) + g(Y1, Y2).

Any (1, 1)-tensor field X produces an almost product structure on any differentiable manifold, provided
(1]
X =1, X # I,

in this case, I is allocated for identity transformation. Additionally, if X also supports the following relation
9(XY1,Y2) = g(Y1, XY2),

(M, g) turns to be almost product Riemannian manifold .
In case, @ is a structure of Golden type, it produces an almost product structure [8]

1
X=—Qp-1I), 3
\/5((p ) )

and X produces a structure of Golden type
1
p=50+ V5X). (4)
We identify a submanifold M as

e totally umbilical provided
O_(Yll YZ) = g(Yl/ YZ)H/

in this situation, YY1, Y; € [(TM),
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e totally umbilical submanifold becomes totally geodesic provided the second fundamental form van-
ishes identically.

Let (M, g, ¢) stands for Golden Riemannian manifold and (M, g) be any Riemannian manifold.

One calls M as slant submanifold of M provided slant angle 9(Y) between TM and ¢Y is independent
of p € M and a nonzero vector Y tangent to M at p.

A slant submanifold becomes

e p-invariant with 6 = 0;
e @-anti-invariant when 6 = 7;
e proper O-slant (if neither invariant nor anti-invariant).

Also, VY € I'(TM), one might express
Y =TY +QY,

here, TY stands for tangent component and QY for normal component of ¢Y.

Lemma 3.1. Any submanifold (M, g) of (M, g, @), is recognized as slant if and only if A A € [0, 1] and the following
relation is satisfied [1]
T? = M + ).

Additionally, when O is used to denote slant angle of M, one observes that
A = cos® 0.
Lemma 3.2. For slant submanifold (M, g) of (M, g, @), notice that [1]
9(TY1, TY>) = cos 6(g(Y1, Y2) + g(Y1, TY>)).

Example 3.3. Assume that [E* denotes an Euclidean 4-space with standard coordinates (a1, a2, a3, 44) and @
be (1, 1)-tensor field [1]

Plar,a2,a3,a1) = (1 = P)ay, pay, (1 = P)as, Yay)

Y(a1,a,a3,a;) € E*, in this case Y= %g and1-1 = %5 represent roots of t2 =t + 1. This implies

(1= ¢)ay, Y2ay, (1 — ¥)as, P2ay)
(1= Y)ay, Pas, (1 — )as, Yas) + (a1, a2, a3, a4)

implying ¢* = ¢ + I. In addition, we have

(P2 (11,a2,a3,0a4)

< (a1, a2,a3,a4),(ay, 5,05, 0,4) >=< (a1,02,a3,44), P(ay, a5, a3,0,) >

’

for each vector field (a1, a,,4a3,a4) and (a'l, a’z,a;, a,) in E*, here <, > is used for standard metric on E*. This
shows that (E*, <,>, @) is a Golden Riemannian manifold. Further, assume any submanifold M in E*
satisfying

t(z1,22) = (1 = Y)z1, pYzo, (1 — P)z1, pYz2)

forp # 0,1. Now,wesee E; = (1-¢,p¢,0,0), E; = (0,0,1-¢, py) and ¢E; = (-1, -p,0,0), pE; = (0,0, -1, —p)
obtaining
< @E1,E; >=< @Ey,E; >= (-p* + )iy =1 and < @E;,E; >=0.
When we denote the slant angle of M by 0, its value is given by COS_l(%) and M becomes a slant
P+

submanifold.
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Let us identify by M, a real-space form having sectional curvature equals to a constant ¢, and by M,
another real-space form having sectional curvature equals to constant ¢;. Hence for a locally Golden product
space form M(= My(cp) X My(cy), g, @), one writes [6]:

(FV5 +3)c, + (£ V5 + 3)c
R(Y1, Y2)Ys = =T H9(Y2, Y3)Y1 = g(Y1, Y3)Ya]
(=V5-1)c, + (FV5-1)c
+ plO Lg(@Ya, Ya)Y1 — g(@Y1, Y3)Y2 + g(Ya, Ya)pY1 — (Y1, Y3)pY2]
o +eg
5 [9(@Y2, Y3)pY1 — g(Y1, Y3)pYa]. (5)

4. Chen-type Inequalities on Golden Riemannian manifolds
Now, we establish the following 6-invariant inequalities.

Theorem 4.1. Any proper O-slant submanifold M" isometrically immersed in locally Golden product manifold M™
holds following inequality

(n-2)p n?
le [Yl

Ry IHIP + f—o(cp +¢){3(n + 1) — 2Trace(p)}]

om(p) <

+ ll—o(cp + c,,)[(Tmce(T) + (4 —n))cos?6 — Tmcez((p)]

+ ﬁ(cp —¢;)(n - 2)[2Trace(p) - (n + 1)], peM. (6)
Proof. Thanks to (1), we get
FV5+3 +v5+3
ROV, Y, Yo, Yo = S0 )C”;;“ 0, Ya)g(Y, Ya) — g1, Ya)g(Ya, Y))

+V5-1 FV5-1

+ ( )CP;EJH V5= ey [9(pY2, Y3)g(Y1, Ya) — g(pY1, Y3)g(Y2, Ya)

+g(Y2, Y3)g(@Yy, Y4) — g(Y1, Y3)g9(pY2, Ya)] (7)

+ O oY, Ya)g(pYa, Ya) — gleYa, Ya)g(eYa, Yo)l

5
+g(0(Y1,Ys),0(Y2, Y3)) — g(o(Y1, Y3),0(Y2, Yy)),

VY; e I(TM),i = 1,2,3,4. Consider {ey, ..., e, €n41,...,6n} and let © = Span{e;, e;} and for any p € M, e,41 is
parallel to H(p). Then, in the light of (1), we can obtain the scalar curvature 7 as follows

nn—-1)
5

+ le(c,, - cq)% (4Trace(p) — 2n) + n?||H|* - |lo|, (8)

{6 - %Trace((p) + [(Trace((p))2 — (Trace(T) + n) cos? 6]}

ZT(p) = }L(Cﬁ + C’i) 1'1(1'14— 1)

where we have used Lemma 3.2. Taking

e=21(p) - ||H||2n i 1 (n3 - 2712) - %(cp + cq)(n2 - n){6 — %Trace(@)
+ 4[(Trace(¢))* + n — (Trace(T)) cos® 0] s n)} - le(cp - cq)(n—\;;) (4Trace(p) — 2n), 9)
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then, equations (8) and (9) will result

W2 HIP
||H|1| (10)

This can be simplified to

(Y o) = (n—1)€+Z e Y @i Y Y ) )

j=1 i#] s=n+2i,j=1

2
+lloll” =

Taking

m n
— +1 _ n+l _ n+l _ n+1\2 532
ay =04, a0 =0% ,..., 00 = Oy, €+Z(a )+ Z Z(Gij) ,

i#] s=n+2i,j=1

we get

(71Irlagl > _[é +Z(On+1)2+ Z Z(O?J’)Z]’ (12)

i#] s=n+2i,j=1

in above calculations Lemma 2.1 has been applied. Also, in the light of (1) and (5), we have
K(n) = 21—0(c,, + cq){6 — 2Trace(p) + 4[(Trace((p))2 — (Trace(T) + 2) cos? 6]}

+ ﬁ(cp - ¢g) (2Trace(p) — 2) + Z [03,05, — (oiz)z]. (13)

s=n+1

Hence, in view of (12) and (13), we obtain

K(m) > 20 (c,, + cq){6 2Trace(p) + 4[(Trace((p))2 (Trace(T) + 2) cos 6]} Z r1+1)2 + Z 05105,

i#j s=n+2
- i (03)" + Z Z(Gu)z

;) (2Trace(p) — 2)
s=n+1 s n+21,j=1 \/_

(c,, + cq){6 2Trace(p) + 4[(Trace((p))2 (Trace(T) + 2) cos 6]} ﬁ(cp - ¢q) (2Trace(p) - 2)

2 Z(Gnﬂ 2 ; Z Z(GU)Z " Z Z (011)2 +(G2z)2 % i 011 +a§2)2’ (14)

i#j>2 s=n+21i,j>2 s=n+1 i>2 s=n

i.e., we have
K(m) > %(CP + cq){6 — 2Trace(¢) + 4[(Trace(¢))* — (Trace(T) + 2) cos® 6]}
1 1
+ ——(cy — c;) (2Trace(p) — 2) + =¢. (15
whereby proving the required result. [

For the equality case, we write.
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Theorem 4.2. When all considerations for above Theorem 4.1 hold, equality is satisfied in (6) at p € M if and only if
forlei, ..., en €n41,...,6m), A has following form:

c 0 0 ... 0 ¢s ds O 0
0od 0 ... 0 d —c¢ 0 ... 0
0 0 c+d ... 0 0O 0 0 ... 0
Aps1 = . . . . . , As= . . . . .| n+2<s<m. (16)
00 0 ... 0 0O 0 O 0
00 0 ... c+d 0O 0 O 0

Proof. The equality is satisfied in (6) if and only if equality holds in each and every previous inequality and
in Lemma 2.1:

ot =0,i#j>2,
S _ S _ S
oli—azl-—oi.—os>n+2,z,]>2,
n+1 n+1 .
oy =0y =0,i>2,
011+022—Os>n+2
n+1 n+1 n+l _ n+1

O T03p =03 = =0y -

Finally, the shape operators As,s € {n +1,...,m} appear to be like in (16) as one can opt {e;, >} fulfilling
n+1 =0. O

Next, we derive inequality involving 6(n1, . .., 1ny).

Theorem 4.3. For proper 0-slant submanifold M" immersed in M, the following inequality holds for any u-tuples
(nll ey n‘Ll) € S(i’l),

k
o(ny,...,ny) <Tz— (cp + ¢q){cos 20 + Trace(p)}(n Z n;)
j=1

k
——=(cp —cp)f(n + Z n;j) — 2Trace(p) — 1}(n — Z n;). (17)
4 x/’ =

Here, Ty = cl(nl,...,ny)llHH2 + %(cp + ¢cg)b(n, ..., ny). Additionally, equality in (17) at p € M < 1
lel, ... en €n41,...,em) and A appear as follows:

0 a0 0 ... O N PO
) 0 04 .. 0 |0 ... B 0..0 e
nl = , As = , se{n+2,...,m},
SN S S PO 0O ... 0 ¢ ... 0
0 0 0 0 :
00 0 a, 0 0 o .

(18)
and ay, ..., a, satisfy
a+-tay =0 = an1+...ny,1+1 +-e+ an1+...n!, = an1+...n“+1 ==y
where B; is a symmetric n; X n; submatrix that satisfies

Trace(B}) = - - - = Trace(B}) =
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Proof. For p € M, fix e,41 parallel to H(p). Also, opt u mutually orthogonal subspaces of T,M represented
by Li,...,L, and assume dimL; = n;, Vi € {1,..., u} so that

Ly = Spanfey, ..., en1}, Lo =Spanfen+1, ..., enemb, ..., Ly = Span{en reun, 141, - €yt }-

Then, in view of Gauss equation, we obtain

(L) = %(cp + cg)ni(n; — 1){6 - %Trace((p) + ﬁ[(ﬂace((p))2 — (Trace(T) + n;) cos? 6]}
+ 1(cp ) (i = 1) (4Trace(p) — 2ny) + Z Z [aziaiogiﬁi - (aaiﬁi)z]. (19)
8 ‘/g s=n+1 a;<B;
Let us put
) n(n 1) 4 4 2
n=21t(p) - 2d(ny,...,n)|H[" = ( +¢q) {6 - ETrace(go) + Y — [(Trace(p))
— (Trace(T) + n) cos? 9]} - }I(Cp - cq)( \;5 (4Trace(p) — 2n) (20)
and
u
S=n+y—Zni. (21)

Then, we have
n2||H|P?
S 7

and hence, one obtains

1+ llol? = (22)

n

( 4 o?]” W+Z(Gn+1)2+z(an+1)2+ Z Z (0" )2 (23)

j=1 i#j s=n+21i,j=1

that reduces to

S+1 9+1 m n u
(Z i) =9{n+ Z(b Y @2 Y Y @ -2) Y aag), (24)
j=1 i#j s=n+2i,j=1 i=1 a;<p;
where

+1 s
aj = a;’] Viell,... n},
bl =a, bZ =ay+---+ an1/b3 =Ap+1 t 0t Angan,,., b;u—l = Any+etny +1 +--t Ay +netny s

b‘u+2 = Apytetny+1r -0y bS+1 = dy.
Hence, we have
H m n
Y X qams =z 50+ Y@ Y Y 5)
i=1 a;<p; i#] s=n+2i,j=1

in above discussions, Lemma 2.1 was used.
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Further, suppose that ey, ..., e, e be the sets

e1={lL....mhe={m+1,...,nm+n},..., eg={m+--+n,1+1,...n+--+n,,

e =(e1xe) U - U(ey Xey),
S0, we arrive at
11 = )
Z 2 Y [0l — @12 30+ 5 Z Y @+ 2 Y @) (26)
i=1 s=n+1 a;<p; s=n+1 (a,f)¢e? s=n+2 a;<e;
that produces
H m
Z Y, Y (000, — (@)1 2 27)
i=1 s=n+1 a;<p;

and hence in view of (19), we obtain

(L) > Xy:

™= D6 — Lrrace(p) + [(Trace())? - (Trace(T) + n) cos? 0]}

_4
n;(n; — 1)

OOIP—‘

(n, -

% (4Trace((p) —2m;) + %n. (28)

M$

i=1
Finally, taking into account (20) and (28) we have the required inequality. Additionally, (17) atp € M is valid

for equality if and only if there exists equality sign in each and every previous inequality and in Lemma
2.1. Further, the shape operators A,,s € {n + 1, ...,m} reduce to be like in (18). [

As a special case of Theorems 4.1 and 4.3, we write.

Corollary 4.4. For g-invariant submanifold M" immersed in M, the following inequality holds

(n-2)
1/12 [

om(p) < + 11—0(97 +¢){3(n + 1) — 2Trace(p)}] + 11—0(c,, + ¢)|(Trace(T) + (4 - n))

(n-1)

- Tracez((p)] + 4%(% —cp)(n— 2)[2Trace((p) -(n+ l)], peM. (29)

Additionally, (29) holds for equality at p € M <= for orthonormal frame {e1, ..., ey, €ns1,...,em), A can be written
like (16).

Corollary 4.5. For q-anti-invariant submanifold M" immersed in M, the following inequality holds

1
+ m(cp —cg)(n— 2)[2Trace((p) -(n+ 1)], peM (30)

Additionally, equality in (30) & ey, ..., en, en41,...,m} and A appear to be like (16).

||H||2 + —(n 2)(cp + cq)[3 (n + 1) = 2Trace(p) - Tmcez((p)]

-2)

Next, we have
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Corollary 4.6. For q-invariant submanifold M" immersed in M, the following inequality holds for any u-tuples
(nll ey ny) € S(n)/

k
o(ny,...,ny) <Tz— %(cp + {1 + Trace(p)}(n — Z 1j)

j=1

k
——=(cp —cp)f(n + Z n;j) — 2Trace(p) — 1}(n — Z n;). (31)
! x/’ =

Additionally, if for some orthonormal frame {e1, ..., en, €441, - .., em}, A appear like (18) <= equality holds in (31) at
pE€M.

Corollary 4.7. For gp-anti-invariant submanifold M" immersed in M, the following inequality holds for any p-tuples
(n1,...,ny) € S(n),

k
1
o(ny,...,ny) < Tz — E(CP +cg)(n— Z nj)Trace(qp)
j=1

k
—— (e —cl(n + Z n;) — 2Trace(p) — 1}(n — Z ny). (32)
4 ‘/— j=1 j=1

Additionally, equality in (32) < for {e1,...,eu,€ns1,...,€m}, A appear to be like (18).

5. Inequalities for Ricci curvature tensor

Consider proper 0-slant submanifold M" immersed in M™, we fix unit tangent vector Y € T;M, ¥t € M
and on M, identify local orthonormal frame with the help of {ej, ..., e,} so that e; = Y. Taking into use (8),
we get

1

21(t) = }L(Cp q)n(n ){6 - éTrace((p) + P 4 )[(Trace((p))2 (Trace(T) + n) cos® 9]}

1 (n-1) 202 _ L P s SN

+ Z(cp cq) (4Trace((p) —2n) + n7||H|I* - 5 [Z(ojj) + (0%, — Zaﬁ) ]

\/5 s=n+1 j=1 j=2
-2 Z [Z(ij)z - Z 7513l (33)
s=n+1 i<j 2<j<i<n
where we have taken help of lemma 3.1 and lemma 3.2.
Also, the Gauss equation produces

U PN Vs Ut T : s
Z K(ej nei) = 8(cp +¢4) = {6 1Trace((p) + m-Dm-2 [(Trace(ep))

2<j<i<n
% (4Trace(p) —2(n— 1))

+ i Z [0%,05 — (03] (34)

s=n+12<i<j<n

— (Trace(T) + n — 1) cos? 9]} + %(cp - Cq)
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(33), (34) deliver the following

%nannz > 27(t) +2 Z Z(a;)‘Z -2 Z K(ej Aei) + %(cp + c,)[Trace(p) — 3(n — 1) + cos?6]

sn+l i=2 2<j<i<n

+ %(cp —¢g)[(n = 1) — Trace(p)],
whereby proving
Ric(Y) < n—ZIIHllz -T; - l(cp + cq)cosze,
4 10

where

T = %(clg —¢g)[(n = 1) — Trace(p)] + 11—0(cp + cg){Trace(p) — 3(n — 1)}

Moreover, with H(t) = 0, equality in (36)

=

<:aiizol ie{zr'--/n}/ 011: G;j, SG{TI+1,...,m}
j=2

implying that Y is a member of relative null space L;. Additionally, equality in (36)

n

<=)af].=0, n+l<s<mi#j Zaj-]:ZaS

i’

se{n+1,...,m}iel{l,... n}.
=1

Concluding point ¢ to be
e totally geodesic provided n # 2
e totally umbilical if n = 2.

One can observe that the converse part is obvious.
Hence, one may summarize it as

Theorem 5.1. For any proper 0-slant submanifold of M" of M™ (= M,(cp) X My(cy), 9, ¢),
Ric(Y) < n—ZIIHIIZ -1 - l(cp + cq)cosze,
4 10
here Y is used for unit tangent vector on M.
In view of Theorem 5.1, we get
Corollary 5.2. When M" represents g-invariant submanifold of M™, we get
Ric(Y) < ”ZZHHH2 -Ti - %(c,, +cp),
where Y € T:M, VYt € M is a unit vector.
Corollary 5.3. The @-anti-invariant submanifold M" isometrically immersed in M™ has relation:
Ric(Y) < ”ZZHHH2 ~-Ti.

In this case, Y € T;M, t € M represents a unit vector.
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(36)

(37)

(38)

(39)

(40)

(41)
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Remark 5.4. When H(t) = 0, (39),(40) and (41) hold for equality if and only if Y is a member of relative null
space L;. Moreover, (39),(40) and (41) satisfy equality <= t be totally geodesic point in M or n = 2 and with
totally umbilical point ¢.
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