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Existence, uniqueness and stability results for neutral stochastic
differential equations with random impulses

S. Varshini?, K. Banupriya?, K. Ramkumar?®, K. Ravikumar®

?Department of Mathematics, PSG College of Arts & Science, Coimbatore, 641 014, India

Abstract. This manuscript is devoted to the study of existence, uniqueness and stability results of neutral
stochastic differential equations with random impulses. The existence results are obtained by considering
sufficient conditions and applying fixed point theory to the aforementioned system. The stability results are

proved via continuous dependence on initial value. Finally an example is provided to show the effectiveness
of the obtained result.

1. Introduction

Mathematical modelling of real-life problems in engineering and scientific disciplines usually results
in functional equations like differential, integral, integro-differential and stochastic equations. The deter-
ministic system often experiences fluctuations due to environmental noise. Thus the Stochastic differential
equations(SDE’s) indeed gained its importance. SDE contains the stochastic term composed of noise, which
is being an advantageous factor in describing uncertain factors of environmental noise in the real world.
This principal factor makes its use in various fields of science and engineering. Due to its widespread appli-
cations it is more appropriate to move from deterministic models to stochastic ones. Stochastic differential
Equations captures disturbances from random factors. A real world system can be made comprehensible
by integrating its stochastic process into mathematical models. For the fundamental study of the theory of
SDE’s we infer to [8, 10, 20, 30]. To get a clear view of SDE’s readers may refer to the monographs and the
references therein [5, 6,9, 11, 21, 22].

Recently, differential equation with fixed moments of impulses has become a natural framework in
modelling several processes in the fields of economics, physics and population dynamics. Differential
equations with instantaneous impulses are investigated by authors see [25, 26, 31]. The impulses in usual
exists at deterministic or random points. The properties of fixed type impulses are established in many
articles [1, 13,17, 24]. Wu and Meng [29] were the first to consider a random impulsive ordinary differential
system and established boundedness of solutions to the model by Liapunov’s direct function.

Stochastic functional differential equations with impulse exist in many evolution processes. It has
wide implementation in modelling systems in the fields of medicine and biology, mechanics, economics,
telecommunication and electronics refer [7,17, 19]. Impulse may appear at random pointsi.e.,impulse time #;
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isarandom variable fork = 1, 2, ... and impulsive function b;(.) being a random variable. Stability analysis for
Impulsive Stochastic Differential Systems (ISDS) and Impulsive Stochastic Functional Differential Systems
(ISFDS) has attracted attention among researchers. Hu and Zhu [14] have studied the exponential stability
of stochastic differential equations ith impulse effects at random effects using Lyaponov method. Also, Hu
and Zhu have established stability analysis by considering impulsive stochastic differential systems using
Lyapunov and Razhumikhin technique refer [15, 16]. Sakthivel and Luo [23] studied the existence and
asymptotical stability for mild solutions with ISDS’s. Li et al. [18] investigated existence and Hyers-Ulam
stability of random impulsive stochastic functional differential equations with finite delays.

Moreover, Gowrishankar et. al [12] established the stability results of random impulsive semilinear
differential systems. Also, Anguraj and Vinodkumar [4] investigated the existence and stability results
of random impulsive semilinear differential systems by Contraction Principle. Vinodkumar et al. [28]
studied the existence and stability results on nonlinear delay integro-differential equations with random
impulses. Anguraj and Vinodkumar [3] investigated the existence and uniqueness of neutral functional
differential equations with random impulses. Also, Vinodkumar et al. [27] established the existence and
stability results on random impulsive neutral partial differential equations. Recently, many monographs
have been focusing their attention towards the theory and applications of SDEs with random impulses see
(see monographs [2? ]). However to the best of author’s knowledge there has not been any papers that
study the neutral stochastic differential equations with random impulses. Thus motivated by the above
facts in this paper we study the existence, uniqueness and stability of random impulsive neutral stochastic
differential equations.

The considered neutral stochastic differential equations with random impulse is of the form:

dlx(t) + h(t, x)] = 1t x)dt + g(t, x))dw(t), t# &, t20, (1)
x(é];) = bk(ék)x(éz)l k= 1/ 2/ cees (2)
x(to) = ¢, ©)

where §; is a random variable defined from Q to ©; =%/ (0,d)) with 0 < d < +oo fork = 1,2, .... Suppose that
0;and 0; are independent of each otherasi # jfori,j = 1,2,.... Here, suppose T € (ty, +o0),f: [to, TIXCE — RY,
g:[to, TIX € — R™ h:[ty, T] X € - RY and by : D — R, and x; is R?-valued stochastic process such
thatx; € RY, x; = {x(t + 0) : =6 < 0 < 0}. The impulsive moments & from a strictly increasing sequence, i.e.,
Eo<é&1< << < 131_{?0 &k = o0, and x(&;) = limy—,g,—o x(t). We assume that & = fp and & = k-1 +06x for
k=1,2,.... Obviously, {{} is a processes with independent increments. We suppose that {N(t),t > 0} is the
simple counting process generated by {&}, and {w(t) : t > 0} is a given m-dimensional Wiener process. We
denote IV the g-algebra generated by {N(#), > 0}, and denote I the g-algebra generated by {w(s),s < t}.
We assume that ﬁg), ﬁf,) and & are mutually independent.

The arrangement of the rest of the paper is as follows. In section 2, some preliminaries and results
applied in the later part of the paper are presented. Section 3 is devoted to the study of existence and

uniqueness of mild solution of the system (1)-(3). In Section 4 the stability of the mild solution of the system
(1)-(3) is studied.

2. Preliminaries
Let (Q2, 3,P) is a probability space with filtration {J;}, t > 0 satisfying J; = 351) v 552). Let £2(Q,RY)
be the collection of all strongly measurable, J; measurable, R%-valued random variables x with norm
1
x|l 22 = (E ||x||2)2, where the expectation E is defined by Ex = fQ xdlP. Let 6 > 0 denote the Banach space

of all piecewise continuous R¥-valued stochastic process {E(t), te[-0, O]} by €([-6,0], £L2(Q, R?) equipped
with the norm

lele = su (Elw@I) . vo <.
0e[-5,0]
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Let T € (ty, +0), f: [ty, TI x € = RY, g : [to, T1 X € — R™™ and h : [t, T] x € — R be Borel measurable.
The initial data
xtozéz{é(e)i—éﬁeﬁ()} (4)
is an J;, measurable, [-0,0] to R?-valued random variable such that E||&|]* < co.

Definition 2.1. For a given T € (t, +o0), a R%-valued stochastic process x(t) on ty — 6 < t < T is called a solution
to (1)-(3) with the initial data (4) if V to <t < T, x(to) = ¢, {Xt}ty<t<r 15 St—adapted and

) k k i t
x(t) = kZ[ 1b16)[qb 0) + h(0, ¢)] - Hb(é )ht, xt)+; ] bj(aj)fEH f(s,xs)ds+j;kf(s,xs)ds

=0 i=
k

k &
+ Y ITv6) O f 965, 2400 [, 2.0, 05 (5)

i=1 j=i i
where
k
[T 010 = be@)bia(G-1) -+ i),
j=i
and Iia)(.) is the index function, i.e.,

1, if teA,
Ia(H) =
A0 {0, if tg A

Lemma 2.2. For any r > 1 and for arbitrary L5- valued predictable process ®(.)

s 2r t ) r
[} @] =eer-vr( [ @reig)

sup E
s€[0,¢]

3. Existence and Uniqueness

In order to derive the existence and uniqueness of the system (1)-(3), we shall impose the following
assumptions:
(H1) The functions f: [ty, TI X € = RY, g : [ty, T] X € - R>" and h : [ty, T] x € — R? satisfies the Lipschitz
condition such that there exist constants £; = £(T) > 0, Lg = Lg(T) > 0and L = Ln(T) > 053,
2
E |[f(t, xe) - f(t, yo)||” <
2
E [la(t, x) - 9t y)||” < LoE ||lx - v,

E|Jh¢t, %) = ht, y||” < Lok [}x -
forx,y e €, t €[ty Tl
(H2) For all t € [to, T], it follows that f(t, 0), g(t,0) and h(t,0) € L1, 3,

E|f(t,0)I* < xr, EIlg(t,0)* < xg, E[INE, O < xn,

where «y, kg and «y, are constants.

(H3) The condition E max H Hb ) )“ } is uniformly bounded. That is, there exist constant C > 0 such

] i
that,

k
E {H},gX{H “b1’(51')||}} =
j=i

forall6; € ©;,j=1,2,3...
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Theorem 3.1. Let the hypotheses (H1)-(H3) holds, there exists a unique continuous mild solution to the system
(1)-(3) for any initial value (to, ¢) with ty > 0 and ¢ € B.

Proof. Let Br be the space Br = €([t, — 6, T], L2(Q, R%) endowed with the norm

2 2
lixlig, = sup [lxlls,

tefto,T]
where [lxillc = sup Elx(s)I.
t—0<s<t
We define the operator @ : 81 — Br by
¢(t - t()) te (+OO, to]r

k

Z[Hbz«s [$(0) +h(0, )] - Hb BN, 20
k=0

(@x)(£) = § | [Zk‘ ﬁ bi(6 )f& f(s, x5)ds + f f(s, xs)ds}

i=1l j=i

ko k
+ [Z H b; (6 ) ) g(s Xs)dw(s) + fgk als, xs)dw(s)} ]I[gkgm)(t), t € [ty, T].

=i

Now we need to prove, ® maps Br into itself.

+00 k k k k
l(@x)H)IF = Z[Hbi(éi)[qb(0)+h(0,qb)]—Hbi(éi)h(t,xt)+ ZHb(é) f (s, x.)ds
k=0 " i=1 i=1 i=1 j=i &i-
ko k ; / )
; f i(s, xs)ds] [ZHb,(é) " o6 x)duls) + g(s,xs)dw(s)”I[ék’ém(t)
i=1 j=i i &k
+00 k
5 4[2 H”bi<5f>llzllq>(0)+h(O,qb)I)zI[zk,am)(t) 4 Y[ T 20 e ]|
k=0 | =1 k=0 = i=1

k 2 t 2 k 2
+ 4[n}%x{1,1‘[1|b,»(5j)||}] ( ft ||f<s,xs>||dsl[ek,;,m)(t)) +4[rr;gX{1fH||bj<6f>I)H
’ j=i 0 ’ j=i
; 2
7 As d Il koSke1
< | | o v o) |
k k
8 [mkax{n ||bi<6,->||2H [l + [n. )|+ [mkax{n ||bi<6,->||2H
k
max {L H Hbj(éf)ﬂz}
j=i
k
n;i\X{erI)b ol }]

1

IN

x [t x) = het, 0)IF + I, 0)I7] + 8

t
x @t [ [, - 65,00 + 16, 0 ds + 8

t
< @-10) [ [lox) - g6 OIF + g, 01 s
to
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Then,
E((@x)®)If < 8C’E [||<p(0)||2 +||heo, ¢)|)2] + 8C2 [ LT IIxlf? + xcn]
+ 8max{1,C*}(T - to) ft t [ LE 12 + <] ds + 8max {1, C?}(T - 1) C
X f [LglE llxcll? + Kg] ds
< 8CE [l + [, )| + 8C2xn + 8C2 Lok I

t
+ 8max {1,02} (T - tO)f LE ||x||§ ds + 8max {1,C2} (T — to)*x;
to
¢
+ 8max{1,C2}(T - to)Cy f LgE |[x|]2 ds + 8max {1, C2} (T — t0)*Carg
fo
Taking supremum over ¢, we get

sup EI@OE < 8CE |6 + |0, @) | + 8C%n + 867 Ly sup Eul?

telto,T] telto,T]

t
+ 8max {1,02} (T - tp) Ls sup E ||x||§ ds + 8max {1,6‘2} (T = to)*x;
to te[to,T]

+ 8max{1 Cz}(T— to)sz Ly sup 1E||x|| ds +8max{1 C’Z}( i’o)zCng

to tefto,T]

IA

8[02113 [||¢(0)|| + |, )| ] + CPcn + max {1, CJ (T = to)? [s + Carcg ]

+ 8[C2 L+ max {1, CHHT = 02 [ £+ €] | Inip

Thus we obtain,

2 2
|Pxlly < ma + my lx[lg,

where,
m = 8[021}3 [H¢(0)|j2 +||heo, ¢)||2] + G2 + max {1, C2J (T - to)? [ + Carcg ]
my, = 8[c2Lh + max {1, CJ (T = to)? [ L + szjg]]

where m; and m, are constants. Hence @ is bounded.
Now we have to prove that @ is a contraction mapping. For any x, y € 87, we have

[ k
@) - @) < 3 mkax{H||bi<ai>||2}||h<t,xf)—h(t,yf)IIZI[gk,gm

) 2
k
+ 3 max {1 H ”b ©® )“ } ) —1(s, yS)”dSI [EkrCier 1)]

j=i
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2

k t
+ 3maxct 1, [T lo6p]f ft 1|g(s,xs>—g(s,ys>||dw(s)flgk,am)],
j=i 0

E[@0) - @po)|° < 3C%E|ht,x) - hit, || +3max{1,C2}(T - to)

t
2
X fto E [[f(s, x5) = 1(s, y&)|| ds + 3max {1,C2}(T - to)

t
xca[EM@m—mme%

IA

¢
3C%Ln ||x - y”tz + 3max {1,02} (T - fo)f LE||x - y“j ds
to
t
+ 3max{1,C2} (T - to)C? f LyE ||x - ]/”j ds,
to

Moreover,

sup E “((Dx)(t) - ((Dy)(if)H2 < 3C*Ly sup ||x - y”tz + 3max{1,C2} (T - to)* L sup E “x - y”j
1 telto, T1

te[t,T] te[to, T
+ 3max{l,Cz}(T - to)zczﬁg sup E ||x - ]/”j
te[to,T]
< [3C7 Ly + 3max (1,C?H(T — )L + L)) sup v o
0/,

Thus,

l@x) = @)l < 0D [l =,
with

Y(T) = 3C2.Ly + 3max {1, CJ (T - to)[ L; + C2.Lg]

By considering suitable 0 < T —1 < T sufficiently small 3, Y(T7) < 1. Hence @ is a contraction on Bt, where
Br, denotes Br with T substituted by T;. By Banach Contraction Principle, a unique fixed point x € By, is
obtained for the operator ® and therefore ®x = x is a mild solution of the system (1)-(3). The solution can
be extended to the entire interval (—co, T] in finitely many steps which completes the proof for the existence
and uniqueness of mild solutions on the entire interval (—co, T]. [

4. Stability

The stability through continuous dependence of solutions on initial condition are investigated.

Definition 4.1. A mild solution x(t) of the system (1)-(3) with initial condition ¢ satisfies (4) is said to be stable in
the mean square if for all € > O there exist, 1> 03,

E [« - 5o

o -3

IA

€ whenever,

IA

1 forall t € [ty, T].

where x(t) is another mild solution of the system (5) with initial value ¢ defined in (4).

Theorem 4.2. Let x(t) and y(t) be mild solution of the system (1)-(3) with initial conditions ¢1 and ¢, respectively.
If the assumptions (H1)-(H3) gets satisfied, the mean solution of the system (1)-(3) is stable in the mean square.
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Proof. By assumptions, x(t) and y(t) be two mild solutions of the system (1)-(3) with initial values ¢ and
¢, respectively.

8

+

M

k k
x0 -0 = Y| T]60[161 - g1+ 100,60 - b0, ¢1] - [ [ 6@ It x) = e, )
i=1

i=1

=
=
(=}

k

& t k k
£ ) Hb](é) %) - Tyl ds + f [f(s, %) = f(s, y)]ds + Y [ ] b))
i=1

i=1 j=i i i=1 j=i

Ei t
x| T - gt e + [ Tatsx) - 06, 1] o) s . 0

&in1 Ek

Then,
Elx® - yo| < 8C7E||pr - ¢ +8C2E |h(©, ¢1) — (O, po)||” + 4CE [|het, x) - het, ||

t
+ 4max {1,02} (t —to) f E “f(s, xs) — (s, y5)||2 ds + 4max {1,02} (t —t)Cy
to

t
X flE”g(s,xs)—g(s,ys)zds
to

8C7E |1 — ol + 8C2LE |1 — dul|” +4C* Lo [[x — y|} + dmax {1,C2} (T~ to)

IA

; t
X Lff E||x - y”j ds + 4max{1,Cz} (T - t0)Ca Ly f E|fx - }/“: ds
to fo

8C?E |1 — a[” [1 + Ln] + 4C*LuE||x — y|} + dmax [1,C?}(T ~ to)

IA

t t
X Lff E ||x - y||§ ds + 4max{1,6‘2} (T - t))Ca Ly f E Hx - y“j ds
to to
Furthermore,
sup E ||x t) — y(t)” < 8C*’E “¢)1 - ¢2||2 [1+ Ln]+4C*Ln sup E “x - y”z + 4max{1,Cz} (T - ty)?

telto, T telto,T]

x  Ls sup ]E”x yH +4max{1 Cz}(T to)*C2Ly sup lE”x y”

te(to,T] te[to,T]
< [SCZ[l + Ln] +4C% Ly + 4mux{l,Cz} (T - to)? [Lf + .Eng]] sup E ||x - y”f .
tefto,T]
Thus,
sup IE ||x(t) - t)||t2 < BE |1 - (]52”2
telto, T
where,

B =8CH[1+ Ln] +4C2 Ly + 4max {1, C2} (T — to)*[Ls + LoCal.

Given € > 0 choose 1 = such that E “qbl (Pz” < 1. Then,

2
b= llg, <e

This completes the proof.
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5. Illustration

In this section, the results obtained are applied to a stochastic partial differential equations with random
impulses. Let us consider a space H = £2([0, ]).
For z € D(Y),
Wz = —Zn2 <Z,Zy > Zy,
n=1
where {z,, : n € Z} is an orthonormal basis of H, z,(x) := ‘/sznei”x,n € Z*,x € [0,7]. It is known that A
generates strongly continuous operators C(t) and S(t) in a Hilbert space H, such that

Ct)z = Z cos(nt) < z,z, >z,, S()z= Z sin(nt)/n < z,z, > z,,
n=1 n=1

for t € R. And we assume that S(t) is not a compact semigroup and 9(S(t)D) < 9(D), where D € H denotes
a bounded set, 9 is the Hausdroff measure of non-compactness.
In the sequel, we may consider second-order neutral stochastic functional differential equation of the form,

0 0
% [%z(t, X) - m?l f e1(s)2(t + s, x)ds] - [m?z f e2(s)2(t + s)ds] dt
_ g S
+ ?3 e3(8)z(t + s)dw(t), t > ty, t # &, x € [0, 7],
Z(ék/ 'x) = Q(k)ékz(glzl x)l k = 1/ 2/ 3"'/ (6)
J 0o
52(51(, x) = Q(k)ékEZ(ék,x),
Z(tOI x) = (P(G, x)/ 0 e [—T, 0]/ X € [0/ T(]/r > O/
%Z(tO/ X) = (P(x)/ xe [0/ T[]/
z(t,0) = z(t,m)=0.
Let 0x be a random variable defined on Dy = (0,dx) where, 0 < dy < +oo, fork =1,2,---. & =t > 0and
Ek = &1+ 0 fork =1,2,---. w(t) denotes a standard cylindrical Weiner process in H. Furthermore, let

be a function of k. ¢; : [-7,0] — R are positive functions and m; > 0 fori = 1,2,3. [|C(#)||, [|S(#)|| are bounded
onR. [[C(H)|| < e and [|S(¥)]| < e ™!(t > 0). We may assume that

(i) The function ¢(6) > 0 is continuous on [—1’,0],fO e?(@)d@ <oo(i=1,2,3)

k
(i) max = {H Ellle()o;] 1 < N.
J=t

. . . 0 0
Using above assumptions and functions €1, €3, €3, owe can show that £; = % -, ef(G)dG,.Lf = % -, 5%(9)018

and L = 52 _Or €3(6)d6. Hence stability in mean square of mild solution (6) is obtained. [
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