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Existence and uniqueness of global solutions for non-autonomous
evolution equations with state-dependent nonlocal conditions
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Abstract. In this paper, we consider the existence and uniqueness of global solutions for non-autonomous
evolution equations with state-dependent nonlocal conditions, in which the undelayed part admits an
evolution operator. We discuss the problems by utilizing theory of evolution operators, Schauder fixed
point theorem and Banach fixed point theorem. Some new results on existence and uniqueness of solutions
of the considered equation are obtained on the infinite internal [0,+∞). In the end, the obtained results are
applied to a class of non-autonomous heat equations with state-dependent nonlocal conditions.

1. Introduction

Partial differential equations (PDEs) without or with time delay have attracted great interest because of
its wide practical applications in many areas such as chemistry, physics, social sciences and other areas of
science and engineering. Until now, one of the important approaches to deal with PDEs is to rewrite them
as abstract evolution equations in Banach space X. For example, in [24, 31] considered the following gas
flow in a large container model

∂v
∂t

(t, x) + c2 ∂p
∂x

(t, x) = 2t sin3(x2 + 1), t > 0, 0 < x < +∞,

∂p
∂t

(t, x) + c2 ∂v
∂x

(t, x) = −t cos(x2 + 1), t > 0, 0 < x < +∞,

v(0, x) = h1(x), p(0, x) = h2(x), 0 < x < +∞,
v(t, 0) = p(t, 0) = 0, t > 0,

(1)

where v is the velocity of the gas and p is the variation in density. Eq. (1) can be expressed equivalently as
∂
∂t

[
v
p

]
(t, x) =

[
0 −c2 ∂

∂x
−c2 ∂

∂x 0

] [
v
p

]
(t, x) +

[
2t sin3(x2 + 1)
−t cos(x2 + 1)

]
, t > 0, x > 0,[

v
p

]
(0, x) =

[
h1(x)
h2(x)

]
, x > 0.

(2)
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In order to rewrite Eq. (2) as abstract evolution equation, we consider the Banach space

H = L2(0,+∞;R) × L2(0,+∞;R)

equipped with the inner product〈[
v1
v2

]
,

[
v∗1
v∗2

]〉
H

=

∫ +∞

0
[v1v∗1 + v2v2∗]dx.

Let the operatorA : D(A) ⊂ H → H be given by

A

[
v
p

]
=

[
−c2 ∂p

∂x
−c2 ∂v

∂x

]
D(A) = H1(0,+∞;R) ×H1(0,+∞;R).

The mapping f : [0,+∞)→H by

f (t) =
[

2t sin3(·2 + 1)
−t cos(·2 + 1)

]
.

We put u(t)(·) = u(t, ·) =
[

v(t, ·)
p(t, ·)

]
∈ H , t > 0, then Eq. (2) can be rewritten as the abstract form


u′(t) = Au(t) + f (t), t > 0,

u(0) = u0 =

[
h1(·)
h2(·)

]
,

(3)

in X. For more related examples, we refer to [19, 43]. In recent years, some topics for evolution equa-
tions (3) on a finite internal [0,T], such as existence and uniqueness, regularity, (almost) periodicity and
controllability, have been discussed by many researchers, see [3, 14, 27, 39, 42] and the references therein.

We observe that among the above researches, most of authors focus on the case that the differential
operators in the main parts are independent of time t, it means that the problems under consideration are
autonomous Eq. (3). Nevertheless, when we treat some non-autonomous evolution equations, it is usually
supposed that the differential operators depend on time t (i.e. A = A(t)), since this class of operators appear
frequently in the applications [37, 41]. Thus, it is important and meaningful to research non-autonomous
evolution equations. Here we just mention the works [1, 2, 4, 5, 10, 13, 15, 23, 29, 30, 32, 33, 35] on issues
related to non-autonomous evolution equations.

On the other hand, it is well-known that in many cases the nonlocal initial condition can be applied in
physics with much better than the classical initial condition x(0) = x0. For instance, Deng [16] described the
diffusion phenomenon of a small amount of gas in a transparent tube by making use of the formula

1(x) =
p∑

i=1

cix(ti), (4)

where ci, i = 1, . . . , p are given constants and 0 < t1 < · · · < tp < a. In this case, condition (4) allows the
additional measurement at ti, i = 1, . . . , p, which is more accurate than the measurement just at t = 0. The
pioneering work on evolution equations with the nonlocal condition (4) is due to Byszewski [8]. Since then
evolution equations with the nonlocal condition (4) have been studied by many researchers and a lot of
works on some topics of nonlocal problems have also been investigated in these years, see [6, 11, 12, 18, 20,
34, 45–47] among others. Dong and Li [18] proved the existence of mild solutions for semilinear differential
equations with nonlocal conditions in Banach spaces using the measure of noncompactness and fixed point
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theory. Zhu et al. [47] considered the following abstract semilinear evolution equations in Banach spaces
of the form{

x′(t) = Ax(t) + f (t, x(t)), t ∈ [0, 1],
x(0) + 1(x) = x0,

(5)

where A is the infinitesimal generator of a C0-semigroup in Banach space X, f (·, ·) and 1(·) are given X-valued
functions. They studied the existence of mild solutions of Eq. (5) with the help of generalized Darbo’s fixed
point theorem.

Especially, in paper [26], by using Banach fixed point theorem Hernández and O’Regan have studied
the existence of mild and strict solutions for the following semilinear evolution equations

u′(t) = Au(t) + F(t,u(r(t))), t ∈ [0,T],

with state-dependent nonlocal conditions

u(0) = H(σ(u),u), (6)

where A generates an analytic semigroup on Banach space X. F(·, ·), H(·, ·) and σ(·) are suitable continuous
functions. It is noticed that the state-dependent nonlocal condition (6) is clearly more general than the
nonlocal condition (4) and classical initial condition x(0) = x0. In addition, from the mathematical point of
view, some other boundary and initial conditions, such as periodic boundary condition and integral initial
condition, are also special cases of the state-dependent nonlocal condition (6). For more details about the
condition (6), we refer the reader to [7, 9, 17, 25, 28].

Motivated by the above mentioned works, in this paper we study the existence and uniqueness of global
solutions for semilinear non-autonomous evolution equations with state-dependent nonlocal conditions of
the form{

x′(t) = A(t)x(t) + G(t, x(h(t))), t ≥ 0,
x(0) +H(σ(x), x) = x0,

(7)

where x(·) is the state variable taking values in a Banach space X. {A(t) : 0 ≤ t < +∞} is a family of closed
linear operators depending on time t and having constant domain D(A). The function h(·) : [0,+∞) →
[0,+∞) is continuous and satisfies 0 ≤ h(t) ≤ t, which is regarded as a delay function. G(·, ·), H(·, ·) and σ(·)
are given functions to be specified later.

It is worth to mention that the following two aspects should be considered: on the one hand, to the
best of the author’s knowledge, most existing articles, such as [18, 47], are only devoted to researching
the existence of mild solutions for autonomous evolution equations with nonlocal conditions on the finite
interval. However, the study of the existence of mild solutions for non-autonomous evolution equations
with state-dependent nonlocal conditions on the infinite interval is an untreated topic in the literature. On
the other hand, Hernández [25] discussed the existence results of mild solutions for semilinear evolution
equations with state-dependent nonlocal conditions by assuming that the state-dependent nonlocal function
H(·, ·) is compact, which is a very strong assumption. How to remove the restriction of compactness
condition on H(·, ·) is a main motivation for writing this paper.

In this work, based on the above mentioned aspects, we firstly study the existence of global mild
solutions for semilinear non-autonomous evolution equation with state-dependent nonlocal conditions (7)
by using Schauder fixed point theorem and Lemma 2.3 (see Section 2). In this case, we do not require
that the state-dependent nonlocal function H(·, ·) satisfies compactness condition. In order to gain the
existence of global mild solutions for Eq. (7), we assume that the state-dependent nonlocal function H(·, ·)
entirely determined by the values on interval [δ,+∞) for some δ > 0 (see (H3)) and adopt an approximation
technique to prove the existence result. After that, we obtain the uniqueness of global mild solutions for
Eq. (7) under the situation that the nonlinear function G(·, ·) and state-dependent nonlocal function H(·, ·)
satisfy Lipschitz condition. The essential tool in our discussion is the theory of evolution operators and
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Banach fixed point theorem. Obviously, the obtained results extend and develop the corresponding ones
existing in literature, such as [18, 25, 47].

The rest of this paper is organized as follows: In Section 2, we introduce some notations and lemmas,
and necessary preliminaries on the basic theory of evolution operators. Then in Section 3, we establish
the existence and uniqueness of mild solutions of Eq. (7) on [0,+∞). In Section 4, at last, we provide an
example to illustrate the applications of the obtained results.

2. Preliminaries

Let X and Z be two Banach spaces with norm ∥·∥. The Banach space of bounded linear operators from
X into Z is denoted by L (X,Z) endowed with the general operator norm, and this notation is written
as L (X) if X = Z. Hereafter C([0,+∞); X) denotes the space consisting of continuous functions from
[0,+∞) to X. The Banach space Cb([0,+∞); X) is composed of the functions x ∈ C([0,+∞); X) such that
∥x∥∞ = supt≥0 ∥x(t)∥ < +∞, endowed with the norm ∥ · ∥∞.

Throughout this paper, we always impose the following restrictions on the family {A(t) : 0 ≤ t < ∞} of
linear operators.

(P1) The domain D(A) of A(t) is dense in X and independent of t, A(t) is closed linear operator for
0 ≤ t < +∞.

(P2) For each t ∈ [0,+∞), the resolvent R(λ,A(t)) exists for all λ with Reλ ≥ 0 and there exists C0 > 0 such
that ∥R(λ,A(t))∥ ≤ C0/(|λ| + 1).

(P3) There exists 0 < α ≤ 1 and C1 > 0 such that ∥(A(t) − A(s))A−1(τ)∥ ≤ C1|t − s|α for all t, s, τ ∈ [0,+∞).
(P4) For each t ∈ [0,+∞) and some λ ∈ ρ(A(t))

(
the resolvent set of A(t)

)
, the resolvent R(λ,A(t)) is a

compact operator.

Then the family {A(t) : 0 ≤ t < +∞} generates a unique linear evolution operator {U(t, s), 0 ≤ s ≤ t < +∞}
satisfying the following properties:

(a) U(t, s) ∈ L (X) for 0 ≤ s ≤ t < +∞.
(b) The mapping (t, s)→ U(t, s) is strongly continuous for 0 ≤ s ≤ t < +∞.
(c) U(t, s)U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t < +∞.
(d) U(t, t) = I for t ≥ 0.
(e) U(t, s) is a compact operator whenever t > s.
( f ) ∂

∂t U(t, s) = A(t)U(t, s) for 0 ≤ s < t < +∞.
(1) If 0 < h < 1, |t − s| > h, and 0 < γ < 1, then ∥U(t + h, s) −U(t, s)∥ ≤ C′hγ

|t−s|γ for some C′ > 0.

(h) If f (t) is continuous on [0,+∞), then the function t →
∫ t

0 U(t, s) f (s)ds is Hölder continuous with any
exponent 0 < γ < 1.

Remark 2.1. The condition (P4) ensures that the evolution operator U(·, ·) satisfies (e) (see [21], Proposition 2.1).
Moreover, the compactness of U(t, s) for t > s implies the continuity in uniform operator topology (see [23], Proposition
2.1).

For more details on the above preliminaries, we refer to [22, 36, 40].
The following lemmas are needed in our main results.

Lemma 2.2. ([20, Lemma 12]) Let {Rm}m≥1 be a sequence of bounded linear maps on X converging pointwise to
R ∈ L (X). Then for any compact set K in X, Rm converges to R uniformly in K, namely,

sup
x∈K
∥Rmx − Rx∥ → 0, as m→∞.

Lemma 2.3. ([44, Lemma 3.4]) Let V ⊂ Cb([0,+∞); X) be a set. If the following conditions are fulfilled:
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(1) V is a locally equicontinuous family of functions, i.e., for any constant T > 0, the functions in V are
equicontinuous on [0,T].

(2) For any t ∈ [0,+∞), V(t) = {x(t) : x ∈ V} is relatively compact in X.
(3) limt,t′→+∞ ∥x(t)−x(t′)∥ = 0 uniformly for x ∈ V, that is, given ε > 0, there is a N > 0 such that ∥x(t)−x(t′)∥ < ε

for any t, t′ ≥ N and x ∈ V .

Then V is relatively compact in Cb([0,+∞); X).

3. Main results

The purpose of this section is to discuss the existence and uniqueness of mild solutions for the equation
(7) on [0,+∞) by Schauder fixed point theorem and Banach fixed point theorem. The mild solutions of this
state-dependent nonlocal equation expressed by the evolution operator are defined as follows.

Definition 3.1. A function x(·) ∈ C([0,+∞); X) is said to be a mild solution of Eq. (7), if it verifies

x(t) = U(t, 0) [x0 −H(σ(x), x)] +
∫ t

0
U(t, s)G(s, x(h(s)))ds, f or t ≥ 0.

To ensure the existence of global mild solutions, we impose the following restrictions on Eq. (7).

(H1) The evolution operator {U(t, s) : 0 ≤ s ≤ t < ∞} satisfies

∥U(t, s)∥ ≤Me−γ(t−s), 0 ≤ s ≤ t,

for some M ≥ 1 and γ > 0.
(H2) The function G(·, ·) : [0,+∞) × X→ X satisfies the following conditions:

(i) For each t ∈ [0,+∞), the function G(t, ·) : X → X is continuous and for each x ∈ X the function
G(·, x) : [0,+∞)→ X is strongly measurable;
(ii) For any k > 0, there is a positive continuous function Wk(·) such that

sup
∥x∥≤k
∥G(t, x)∥ ≤Wk(t), for t ∈ [0,+∞),

and ∫ +∞

0
eγsWk(s) := ρ < +∞.

(H3) The function H(·, ·) : [0,+∞) × Cb([0,+∞); X)→ X and the function σ(·) : Cb([0,+∞); X)→ [0,+∞) are
both continuous, and there exists a constant L > 0 such that, for any x ∈ Cb([0,+∞); X),

∥H(σ(x), x)∥ ≤ L∥x∥∞.

Moreover, there is a δ = δ(k) ∈ (0,+∞) such that H(σ(u),u) = H(σ(v), v) for any u, v ∈ Bk with
u(s) = v(s), s ∈ [δ,+∞), where Bk = {x ∈ Cb([0,+∞); X) : ∥x∥∞ ≤ k, k > 0}.

The first result of this section is

Theorem 3.2. Let x(0) ∈ X and assume that the conditions (H1) − (H3) hold true, then the equation (7) has a mild
solution provided that

M2L < 1,

and

lim sup
k→+∞

(
k
(
1 −M2L

)
−Mρ

)
= +∞. (8)
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As we pointed out in Section 1, we can’t prove this theorem by directly employing Schauder fixed point
theorem due to the fact that the state-dependent nonlocal function H(·, ·) does not satisfies the compactness
condition. Thus, we will adopt the approximation method to prove this result. To this end, for a fixed
n ∈N+, we first consider the existence of mild solutions for the state-dependent nonlocal Cauchy problem

x′(t) = A(t)x(t) + G(t, x(h(t))), t ≥ 0,

x(0) +U
(1

n
, 0

)
H(σ(x), x) = x0.

(9)

Then, we have that

Lemma 3.3. Assume that the conditions of Theorem 3.2 are fulfilled, then for any n ∈ N+ the state-dependent
nonlocal Cauchy problem (9) has at least one mild solution xn(·) ∈ Cb([0,+∞); X).

Proof. We define the operator Γn : Cb([0,+∞); X)→ Cb([0,+∞); X) by

(Γnx)(t) = U(t, 0)
[
x0 −U

(1
n
, 0

)
H(σ(x), x)

]
+

∫ t

0
U(t, s)G(s, x(h(s)))ds. (10)

Then it is clear that the mild solution of Eq. (9) is equivalent to the fixed point of operator Γn defined by
(10). In what follows, we shall prove that Γn has a fixed point on some Bk by employing the well-known
Schauder fixed point theorem, here Bk is given in (H3) which is obviously a bounded, closed and convex
set in Cb([0,+∞); X) for any k > 0.

Firstly, we prove that Γnx ∈ Cb([0,+∞); X) for all x ∈ Cb([0,+∞); X). For 0 ≤ τ < t < +∞, by the property
(b) of evolution operator U(·, ·), (H1) and (10), we obtain that

∥(Γnx)(t) − (Γnx)(τ)∥ ≤
∥∥∥∥∥U(t, 0)

[
x0 −U

(1
n
, 0

)
H(σ(x), x)

]
−U(τ, 0)

[
x0 −U

(1
n
, 0

)
H(σ(x), x)

]∥∥∥∥∥
+

∫ τ

0
∥U(t, s)G(s, x(h(s))) −U(τ, s)G(s, x(h(s)))∥ ds

+M
∫ t

τ
∥G(s, x(h(s)))∥ ds

→ 0 as t→ τ,

which means that Γnx ∈ C([0,+∞); X). Further, for any x ∈ Cb([0,+∞); X), by the conditions (H1)-(H3), we
get that

∥(Γnx)(t)∥ ≤ ∥U(t, 0)∥
[
∥x0∥ +

∥∥∥∥∥U
(1

n
, 0

)∥∥∥∥∥ ∥H(σ(x), x)∥
]
+

∫ t

0
∥U(t, s)∥∥G(s, x(h(s)))∥ds

≤Me−γt
[
∥x0∥ +Me−

γ
n L∥x∥∞

]
+M

∫ t

0
e−γ(t−s)W∥x∥∞ (s)ds

≤M [∥x0∥ +ML∥x∥∞] +M
∫ t

0
eγsW∥x∥∞ (s)ds

≤M [∥x0∥ +ML∥x∥∞] +Mρ
< +∞,

which implies that ∥Γnx∥∞ < +∞. Thus, we conclude that the operatorΓn maps the functions in Cb([0,+∞); X)
into Cb([0,+∞); X).

Secondly, we show that there exists a k0 > 0 such that Γn(Bk0 ) ⊆ Bk0 (for all n ∈N+). If it is not true, then
for each k > 0, there is a function xk(·) ∈ Bk, but Γnxk < Bk, that is ∥Γnxk(t)∥ > k for some t(k) ∈ [0,+∞). On the
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other hand, however, by the conditions (H1)-(H3) again, we get

k < ∥(Γnxk)(t)∥

≤ ∥U(t, 0)∥
[
∥x0∥ +

∥∥∥∥∥U
(1

n
, 0

)∥∥∥∥∥ ∥H(σ(xk), xk)∥
]
+

∫ t

0
∥U(t, s)∥∥G(s, xk(h(s)))∥ds

≤M [∥x0∥ +MLk] +M
∫ t

0
eγsWk(s)ds

≤M [∥x0∥ +MLk] +Mρ,

or (
k
(
1 −M2L

)
−Mρ

)
<M∥x0∥,

which contradicts (8). Hence for some k0 > 0, Γn(Bk0 ) ⊆ Bk0 .
Next we show that Γn is completely continuous map. To do this, we first prove that Γn is continuous on

Bk0 . Let {xm} ⊆ Bk0 with xm → x in Bk0 , then by (H2) and (H3), we have that

G(s, xm(h(s)))→ G(s, x(h(s))), m→∞,

σ(xm)→ σ(x), m→∞,

and

H(σ(xm), xm)→ H(σ(x), x), m→∞.

Since

∥G(s, xm(h(s))) − G(s, x(h(s)))∥ ≤ 2Wk0 (s) ∈ L1,

then applying the dominated convergence theorem, we obtain that

∥Γnxm − Γnx∥∞

≤ sup
t≥0

(
M2
∥H(σ(xm), xm) −H(σ(x), x)∥ +M

∫ t

0
∥G(s, xm(h(s))) − G(s, x(h(s)))∥ ds

)
→ 0 as m→∞,

i.e., Γn is continuous.
In the sequel, we prove by using Lemma 2.3 that, for each n ∈ N+, Γn(Bk0 ) = {(Γnx)(·) : x ∈ Bk0 } is

relatively compact in Bk0 .

(1) We prove that Γn(Bk0 ) is a locally equicontinuous family of functions on [0,T] for any T > 0.

Let 0 < t1 < t2 ≤ T and ε > 0 be small enough, then

∥(Γnx)(t2) − (Γnx)(t1)∥ ≤ ∥U(t2, 0) −U(t1, 0)∥
[
∥x0∥ +

∥∥∥∥∥U
(1

n
, 0

)∥∥∥∥∥ ∥H(σ(x), x)∥
]

+

∫ t1−ε

0
∥U(t2, s) −U(t1, s)∥ ∥G(s, x(h(s)))∥ ds

+

∫ t1

t1−ε
∥U(t2, s) −U(t1, s)∥ ∥G(s, x(h(s)))∥ ds

+

∫ t2

t1

∥U(t2, s)∥∥G(s, x(h(s)))∥ ds
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≤ ∥U(t2, 0) −U(t1, 0)∥ [∥x0∥ +MLk0]

+ sup
s∈[0,t1−ε]

∥U(t2, s) −U(t1, s)∥
∫ t1−ε

0
Wk0 (s)ds

+ 2M
∫ t1

t1−ε
Wk0 (s)ds

+M
∫ t2

t1

Wk0 (s)ds.

As t2 − t1 → 0 and ε sufficiently small, ∥(Γnx)(t2)− (Γnx)(t1)∥ → 0 independently of x ∈ Bk0 since, by Remark
2.1, U(t, s) is continuous in the uniform operators topology for all t > s. In a similar way, the functions
{(Γnx)(·) : x ∈ Bk0 } are apparently equi-continuous at t = 0. In fact, from the properties (b) and (e) of U(·, ·),

Lemma 2.2 and the compactness of U( 1
n , 0)H(σ(Bk0 ),Bk0 ), we have

∥(Γnx)(t) − (Γnx)(0)∥ ≤
∥∥∥∥∥U(t, 0)

[
x0 −U

(1
n
, 0

)
H(σ(x), x)

]
−U(0, 0)

[
x0 −U

(1
n
, 0

)
H(σ(x), x)

]∥∥∥∥∥
+

∫ t

0
∥U(t, s∥∥G(s, x(h(s)))∥ds

≤ ∥U(t, 0)x0 −U(0, 0)x0∥ +

∥∥∥∥∥U(t, 0)U
(1

n
, 0

)
H(σ(x), x) −U(0, 0)U

(1
n
, 0

)
H(σ(x), x)

∥∥∥∥∥
+M

∫ t

0
Wk0 (s)ds

≤ ∥U(t, 0)x0 −U(0, 0)x0∥ + sup
y∈U( 1

n ,0)H(σ(Bk0 ),Bk0 )

∥∥∥U(t, 0)y −U(0, 0)y
∥∥∥

+M
∫ t

0
Wk0 (s)ds

→ 0, as t→ 0.

Therefore, the operator Γn maps Bk0 into a family of locally equicontinuous functions on [0,T] for any T > 0.

(2) We verify that for fixed t ∈ [0,+∞), the set Γn(Bk0 )(t) = {(Γnx)(t) : x ∈ Bk0 } is relatively compact in X.

If t = 0, then Γn(Bk0 )(0) =
{
x0 −U

(
1
n , 0

)
H(σ(x), x) : x ∈ Bk0

}
, and clearly it is relatively compact in X

because U
(

1
n , 0

)
is compact on X and the set

{
H(σ(x), x) : x ∈ Bk0

}
is bounded in X.

Let 0 < t < +∞ be fixed. For 0 < ϵ < t we define

(Γϵnx)(t) = U(t, 0)
[
x0 −U

(1
n
, 0

)
H(σ(x), x)

]
+

∫ t−ϵ

0
U(t, s)G(s, x(h(s)))ds

= U(t, 0)
[
x0 −U

(1
n
, 0

)
H(σ(x), x)

]
+U(t, t − ϵ)

∫ t−ϵ

0
U(t − ϵ, s)G(s, x(h(s)))ds.

Since U(t, s) is compact for each t > s, the set Γϵn(Bk0 )(t) = {(Γϵnx)(t) : x ∈ Bk0 } is relatively compact X for each
ϵ, 0 < ϵ < t. In addition, for x ∈ Bk0 , we find that

∥(Γnx)(t) − (Γϵnx)(t)∥ ≤
∫ t

t−ϵ
∥U(t, s)∥∥G(s, x(h(s)))∥ds

≤M
∫ t

t−ϵ
Wk0 (s)ds

→ 0, as ϵ→ 0.
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Thus there are relatively compact sets arbitrary close to the set Γn(Bk0 )(t) and hence the set Γn(Bk0 )(t) is also
relatively compact in X.

(3) We certify that limt,t′→+∞ ∥(Γnx)(t) − (Γnx)(t′)∥ = 0 uniformly for x ∈ Bk0 .

For any x ∈ Bk0 , we have that

∥(Γnx)(t) − (Γnx)(t′)∥ ≤ ∥U(t, 0)∥
[
∥x0∥ +

∥∥∥∥∥U
(1

n
, 0

)∥∥∥∥∥ ∥H(σ(x), x)∥
]
+ ∥U(t′, 0)∥

[
∥x0∥ +

∥∥∥∥∥U
(1

n
, 0

)∥∥∥∥∥ ∥H(σ(x), x)∥
]

+

∫ t

0
∥U(t, s)∥∥G(s, x(h(s)))∥ds +

∫ t′

0
∥U(t′, s)∥∥G(s, x(h(s)))∥ds

≤Me−γt[∥x0∥ +Me−
γ
n Lk0] + Me−γt′ [∥x0∥ +Me−

γ
n Lk0]

+Me−γt
∫ t

0
eγsWk0 (s)ds +Me−γt′

∫ t′

0
eγsWk0 (s)ds

≤Me−γt[∥x0∥ +MLk0] + Me−γt′ [∥x0∥ +MLk0]

+Me−γtρ +Me−γt′ρ

→ 0, as t, t′ → +∞,

which proves the assertion.
Therefore, from Lemma 2.3, Γn is a compact operator on Bk0 . This fact combined with the continuity of

the operator Γn infers that Γn is a completely continuous map on Bk0 , and there is a fixed point xn(·) for Γn
on Bk0 via Schauder fixed point theorem. Consequently, the state-dependent nonlocal Cauchy problem (9)
has a mild solution xn(·) on [0,+∞) for each n ∈N+. This completes the proof of Lemma 3.3.

Now, we define the solution set D and the set D(t), respectively, by

D = {xn ∈ Cb([0,+∞); X) : xn = Γnxn,n ≥ 1},
D(t) = {xn(t) : xn ∈ D,n ≥ 1}, t ∈ [0,+∞).

Lemma 3.4. Suppose that the conditions of Theorem 3.2 are satisfied, then D is relatively compact in Cb([0,+∞); X).

Proof. Using the same argument as in the proof of Lemma 3.3, it is easy to certify that the functions in
D are equi-continuous on [0,T] with any T > 0, for each t ∈ (0,+∞), D(t) is relatively compact in X, and
limt,t′→+∞ ∥(Γnx)(t) − (Γnx)(t′)∥ = 0 uniformly in n ∈ N+. Subsequently, if we can prove D(0) is relatively
compact in X then the lemma follows immediately. To do so, for xn ∈ D,n ≥ 1, wet put

xn(t) =
{

xn(δ), t ∈ [0, δ),
xn(t), t ∈ [δ,+∞),

where δ comes from the condition (H3). Then

H(σ(xn), xn) = H(σ(xn), xn). (11)

Since D is relatively compact in Cb([δ,+∞); X), without loss of generality, we may assume that there
exists a subsequence of {xn} ⊆ D, still denote by itself, such that xn → x in Cb([δ,+∞); X), as n→∞, for some
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x(·). Thus, by the continuity of H(·, ·), the strong continuity of U(t, 0) at t = 0, U(0, 0) = I and (11), we get∥∥∥∥xn(0) −
(
x0 −H(σ(x), x)

)∥∥∥∥ = ∥∥∥∥∥U
(1

n
, 0

)
H(σ(xn), xn) −H(σ(x), x)

∥∥∥∥∥
≤

∥∥∥∥∥U
(1

n
, 0

)
H(σ(xn), xn) −U

(1
n
, 0

)
H(σ(x), x)

∥∥∥∥∥
+

∥∥∥∥∥U
(1

n
, 0

)
H(σ(x), x) −H(σ(x), x)

∥∥∥∥∥
=

∥∥∥∥U
(1

n
, 0

) [
H(σ(xn), xn) −H(σ(x), x)

]∥∥∥∥
+

∥∥∥∥U
(1

n
, 0

)
H(σ(x), x) −U(0, 0)H(σ(x), x)

∥∥∥∥
→ 0 as n→∞,

i.e., D(0) is relatively compact in X. Thus, we obtain that D is relatively compact in Cb([0,+∞); X) by
applying Lemma 2.3 once again. The proof is finished.

With the help of the preceding two lemmas we are now in a position to prove Theorem 3.2.

Proof. [Proof of Theorem 3.1.] According to Lemma 3.4, we know that D is relatively compact in Cb([0,+∞); X),
therefore, we may assume, by passing of subsequence if necessary, that xn → x∗ ∈ Cb([0,+∞); X) as n→∞.
By the expression of mild solution xn(·) for Eq. (9), we have

xn(t) =U(t, 0)
[
x0 −U

(1
n
, 0

)
H(σ(xn), xn)

]
+

∫ t

0
U(t, s)G(s, xn(h(s)))ds,

for 0 ≤ t < +∞. Taking the limit as n→∞ on both sides, we arrive at

x∗(t) =U(t, 0) [x0 −H(σ(x∗), x∗)] +
∫ t

0
U(t, s)G(s, x∗(h(s)))ds,

for t ∈ [0,+∞), which indicates that Eq. (7) has a mild solution x∗(·) ∈ Cb([0,+∞); X). The proof is
completed.

In the following, we give a result on the uniqueness of global mild solutions for Eq. (7) by adopting the
well-known Banach fixed point theorem. For this purpose, we have the following assumptions:

(H4) The function G(·, ·) : [0,+∞) × X → X is continuous and satisfies Lipschitz condition in the second
variable, that is, there is L1 > 0 such that

∥G(t, x1) − G(t, x2)∥ ≤ L1∥x1 − x2∥,

for any t ∈ [0,+∞), x1, x2 ∈ X and the inequality

∥G(t, x)∥ ≤ L1(∥x∥ + 1),

holds for any (t, x) ∈ [0,+∞) × X.
(H5) The function H(·, ·) : [0,+∞)×Cb([0,+∞); X)→ X and function σ(·) : Cb([0,+∞); X)→ [0,+∞) are both

continuous, and there exists L2 > 0 such that

∥H(σ(u),u) −H(σ(v), v)∥ ≤ L2∥u − v∥∞,

for any u, v ∈ Cb([0,+∞); X), and

∥H(σ(u),u)∥ ≤ L2(∥u∥∞ + 1)

holds for any u ∈ Cb([0,+∞); X).
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Theorem 3.5. Let x(0) ∈ X and suppose that the conditions (H1), (H4) and (H5) hold. Then Eq. (7) has a unique
mild solution x(·) ∈ Cb([0,+∞); X) if

ML2 +
ML1

γ
< 1. (12)

Proof. Let the operator Γ on Cb([0,+∞); X) be defined by

(Γx)(t) = U(t, 0) [x0 −H(σ(x), x)] +
∫ t

0
U(t, s)G(s, x(h(s)))ds.

We will certify that the operator Γ has a unique fixed point in Cb([0,+∞); X) which is evidently a mild
solution to Eq. (7).

Proceeding as in the proof of Lemma 3.3, it is obvious that Γx ∈ Cb([0,+∞); X) for any x ∈ Cb([0,+∞); X).
We next show that Γ is a contraction on Cb([0,+∞); X). Let x, y ∈ Cb([0,+∞); X), applying (H1), (H4) and (H5)
we see that

∥(Γx)(t) − (Γy)(t)∥ ≤
∥∥∥U(t, 0)

[
H(σ(x), x) −H(σ(y), y)

] ∥∥∥ + ∥∥∥∥∥∥
∫ t

0
U(t, s)[G(s, x(h(s))) − G(s, y(h(s)))]ds

∥∥∥∥∥∥
≤Me−γtL2∥x − y∥∞ +ML1

∫ t

0
e−γ(t−s)

∥x(r(s)) − y(r(s))∥ds

≤ML2∥x − y∥∞ +
ML1

γ
∥x − y∥∞

=
(
ML2 +

ML1

γ

)
∥x − y∥∞.

Due to (12), Γ is contractive on Cb([0,+∞); X) and thus by Banach fixed point theorem Γ has a unique fixed
point x(·) in Cb([0,+∞); X). This fixed point is the desired solution of Eq. (7). The proof is completed.

4. Application

In order to show the applicability of the above obtained results, we study in this section the existence
and uniqueness properties for the following non-autonomous heat equations with state-dependent nonlocal
conditions

∂z(t, x)
∂t

= a(t)
∂2z(t, x)
∂x2 +

z(t cos t, x)
10e2ξt , t ∈ [0,+∞), x ∈ [0, π],

z(t, 0) = z(t, π) = 0, t ∈ [0,+∞),

z(0, x) +
∫ +∞

δ
e−4s[z(s, x) + sin(z(s, x))]ds = z0(x), x ∈ [0, π],

(13)

where z(t, x) represents the temperature of the point x at time moment t. ξ, δ ∈ (0,+∞) and a : [0,+∞) →
[ξ,+∞) is assumed to be bounded and Hölder continuous function, this is, there are constants N ≥ 1, Ca > 0
and 0 < θ ≤ 1 such that

a(t) ≤ N, t ∈ [0,+∞), (14)

and

|a(t) − a(s)| < Ca|t − s|θ, t, s ∈ [0,+∞). (15)

To apply the obtained results to (13), we first need to rewrite this system into the form of Eq. (7). For
this purpose, let X = L2([0, π],R) with norm ∥ · ∥, and we consider the operator (A,D(A)) be defined by

Az = z′′
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with the domain
D(A) = {z(·) ∈ X : z′, z′′ ∈ X, and z(0) = z(π) = 0}.

It is well known that A generates a compact, analytic and self-adjoint C0-semigroup (T(t))t≥0. Furthermore, A
has a discrete spectrum, and its eigenvalues are−n2,n ∈N, with the corresponding normalized eigenvectors

zn(x) =
√

2
π sin(nx), n = 1, 2, · · · . Moreover, we have that

Az =
∞∑

n=1

−n2
⟨z, zn⟩zn, z ∈ D(A),

and

T(t)z =
∞∑

n=1

e−n2t
⟨z, zn⟩zn, z ∈ X,

from which we see that ∥T(t)∥ ≤ e−t.
We now show that under the conditions (P1)-(P4), A(t) generates a unique evolution operator {U(t, s) :

0 ≤ s ≤ t < ∞}, which is compact for t > s. Let the operator family {A(t) : 0 ≤ t < +∞} on X be given by

D(A(t)) = D(A), t ∈ [0,+∞)
A(t)z = a(t)Az, z ∈ D(A(t)).

Then it is easy to see that A(t) is a closed and the domain D(A) is dense in X, and thus the condition (P1) is
satisfied. In the following, we consider Sturm-Liouville system:

(
λI − A(t)

)
z(x) = 1(x), x ∈ [0, π],

z(0) = z(π) = 0.
(16)

For a(t) ≥ ξ > 0, Eq. (16) can be written as

λz(x)
a(t)

− z′′(x) =
1(x)
a(t)
. (17)

Multiplying both sides of formula (17) by z and integrating between 0 to π, we find that

λ

∫ π

0

|z(x)|2

a(t)
dx +

∫ π

0
|z′(x)|2dx =

∫ π

0

1(x)
a(t)

z(x)dx.

Utilizing (14), Poincaré inequality and Hölder inequality, we have

(
λ
N
+ 1

) ∫ π

0
|z(x)|2dx ≤

1
ξ

(∫ π

0
|1(x)|2dx

) 1
2
(∫ π

0
|z(x)|2dx

) 1
2

.

Consequently, we see that

∥R(λ,A(t)1∥ = ∥z∥ ≤
N
ξ

1
λ +N

∥1∥, f or all λ > 0,

so that we get

∥R(λ,A(t)∥ ≤
C0

λ + 1
, C0 =

N
ξ
, (18)
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which implies that (18) ensures the condition (P2). Let us now consider

∥

(
A(t) − A(s)

)
A−1(τ)z∥ ≤ |a(t) − a(s)||a−1(τ)|∥z∥

≤
Ca

ξ
|t − s|θ|∥z∥, t, s, τ ∈ [0,+∞), (19)

where (15) has been used. The inequality (19) indicates that the condition (P3) holds. Then A(t) generates a
unique evolution operator {U(t, s) : 0 ≤ s ≤ t < ∞} defined by

U(t, s)z =
∞∑

n=1

e−n2
∫ t

s a(τ)dτ
⟨z, en⟩en, 0 ≤ s ≤ t < ∞, z ∈ X. (20)

It follows from (20) and a(t) ≥ ξ that

∥U(t, s)∥ ≤ e−ξ(t−s), 0 ≤ s ≤ t < ∞.

Then the condition (H1) holds with M = 1 and γ = ξ. Furthermore, using the similar method as in [38], one
can easily certify that the resolvent R(λ,A(t)) is compact, which guarantees the condition (P4). Therefore,
the evolution operator {U(t, s) : 0 ≤ s ≤ t < ∞} is compact for t > s by Remark 2.1.

Now, we take u(t)(x) = z(t, x) and define the abstract functions G : [0,+∞)×X→ X, σ : Cb([0,+∞); X)→
[0,+∞) and H(·, ·) : [0,+∞) × Cb([0,+∞); X)→ X by

G(t, z)(x) =
z(x)

10e2ξt , z ∈ X,

σ(u) = e−4t, u ∈ Cb([0,+∞); X),

H(σ(u),u)(x) =
∫ +∞

δ
e−4s[u(s)(x) + sin(u(s)(x))]ds, u ∈ Cb([0,+∞); X).

Additionally, we set h(t) = t cos t, Then, non-autonomous heat equation with state-dependent nonlocal
conditions (13) can be well reformulated as the abstract form (7) in X.

In the sequel, let us examine that for system (13) the conditions in Theorems 3.2 and 3.5 are all satisfied.
First, from the definition of nonlinear term G(·, ·), for any k > 0, we can easily certify that the conditions
(H2) and (H4) hold with

Wk(t) =
k

10e2ξt , ρ =
k

10ξ
, L1 = 1.

Meanwhile, the nonlocal function H(·, ·) also satisfies the conditions (H3) and (H5). In fact, for u ∈
Cb([0,+∞); X), in view of Minkowski and Hölder inequalities we find that

∥H(σ(u),u)∥ ≤

∫ π

0

∣∣∣∣∣∣
∫ +∞

δ
e−4su(s)(x)ds

∣∣∣∣∣∣2 dx


1
2

+

∫ π

0

∣∣∣∣∣∣
∫ +∞

δ
e−4s sin(u(s)(x))ds

∣∣∣∣∣∣2 dx


1
2

≤

∫ π

0

(∫ +∞

δ
e−4s
|u(s)(x)|ds

)2

dx


1
2

+

∫ π

0

(∫ +∞

δ
e−4s
|u(s)(x)|ds

)2

dx


1
2

≤ 2
(∫ π

0

(∫ +∞

δ
e−4sds

) (∫ +∞

δ
e−4s
|u(s)(x)|2ds

)
dx

) 1
2

≤

(∫ π

0

∫ +∞

δ
e−4s
|u(s)(x)|2dsdx

) 1
2

≤
1
2
∥u∥∞,
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which shows (H3) holds true with L = 1
2 . Similarly, we can also verify (H5) holds with L2 =

1
2 . Furthermore,

it can easily be checked that the condition (8) is fulfilled by using M = 1, L = 1
2 and ρ < +∞. Therefore, we

have the following results.

Proposition 4.1. Let z0(·) ∈ X. Then, from Theorem 3.2, non-autonomous heat equation with state-dependent
nonlocal conditions (13) admits a mild solution on [0,+∞).

Proposition 4.2. Let z0(·) ∈ X. Then from Theorem 3.5 there is a unique mild solution for non-autonomous heat
equation with state-dependent nonlocal conditions (13) as long as ξ > 2.

5. Conclusion

In this work, we discuss the existence results of global solutions for non-autonomous evolution equations
with state-dependent nonlocal conditions. Firstly, we establish the existence of global solutions for the
considered equation by using evolution operators theory and Schauder fixed point theorem. It is worth
mentioning that in this case we do not require the compactness of H(·, ·). Secondly, we show by using Banach
fixed point theorem that these solutions have uniqueness property under the situation that G(·, ·) and H(·, ·)
satisfy Lipschitz condition. Finally, an example is given to illustrate the obtained results. Furthermore,
it is interesting to study the global existence and regularity of solutions for finite delay non-autonomous
evolution equations with state-dependent nonlocal conditions in the future work.
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