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Abstract. In the present paper, we study fuzzy multimodal logics over complete Heyting algebras and
Kripke models for these logics. We introduce two types of simulations (forward and backward) and five types
of bisimulations (forward, backward, forward-backward, backward-forward and regular) between Kripke
models, as well as the corresponding presimulations and prebisimulations, which are simulations and bisim-
ulations with relaxed conditions. For each type of simulations and bisimulations an efficient algorithm has
been provided that works as follows: it computes the greatest presimulation/prebisimulation of that type,
and then checks whether it meets the additional condition: if it does, then it is also the greatest sim-
ulation/bisimulation of that type, otherwise, there is not any simulation/bisimulation of that type. The
algorithms are inspired by algorithms for checking the existence and computing the greatest simulations
and bisimulations between fuzzy automata. We also demonstrate the application of these algorithms in the
state reduction of Kripke models. We show that forward bisimulation fuzzy equivalences on the Kripke
model provide reduced models equivalent to the original model concerning plus-formulas, backward bisim-
ulation fuzzy equivalences provide reduced models equivalent concerning minus-formulas, while regular
bisimulation fuzzy equivalences provide reduced models equivalent concerning all modal formulas.

1. Introduction

Bisimulations have significantly contributed to the application of concurrency theory in computer sci-
ences. They were introduced by Milner [35] and Park [45] with the original purpose of modeling behavioural
equivalence among processes and reducing the state-space of processes. Later, the field of their use expanded
to many other areas of computer science, and today they are employed in areas such as functional lan-
guages, object-oriented languages, types, data types, domains, databases, compiler optimizations, program
analysis, verification tools, etc. Even a little earlier, bisimulations were discovered in mathematics, that is,
in modal logic, by van Benthem [57]. He came up with the result known today as the van Benthem’s theorem,
which states that propositional modal logic is the bisimulation-invariant fragment of first-order logic. An-
other famous result that emphasizes the importance of bisimulations in modal logic is the Hennessy-Milner
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theorem which states that two worlds, from image-finite Kripke models, are bisimulation-equivalent if and
only if they satisfy the same set of modal formulas (cf. [25, 26] as well as [5, Theorems 2.20 and 2.24]). For
more information on origins of bisimulations and their applications we refer to [52, 53].

Fuzzy modal logic is a kind of many-valued modal logic obtained by applying the fuzzy approach to clas-
sical modal logic, which allows not only to reason about modalities but also to cope with uncertainty. After
an early attempt to combine fuzzy logic and modal logic [54], fuzzy modal logic has flourished over the last
few decades (cf., e.g., [7, 9, 10, 24, 59, 60, 64]). Connections between bisimulations and fuzzy modal logic
have been unexplored until recently, but have been intensively studied in recent years, especially for a
special type of fuzzy modal logic – fuzzy description logics (cf. [19, 20, 23, 32, 38–43, 61]). Note also that
the logical characterizations of the Hennessy-Milner type for bisimulations between fuzzy social networks
and fuzzy labelled transition systems have been provided in [21, 22, 62, 63].

There have been different approaches to bisimulations for fuzzy modal logics in the literature dealing
with this subject. In the first paper on this subject [19], bisimulations were defined as ordinary crisp relations
that satisfy some additional ”fuzzy conditions”. A similar approach has been used in the recent paper [32].
However, in most of recent papers, a complete fuzzy approach has been used and bisimulations have been
defined as fuzzy relations. Fan [20] studied two types of fuzzy bisimulations, which are called here forward
and regular bisimulations. In a series of papers, Nguyen and others [23, 38–43] have dealt with a special type
of fuzzy forward bisimulations for fuzzy description logics. In the case when the considered Kripke models
are image-finite and the underlying structure of truth values is linearly ordered, this type of bisimulations
coincides with forward bisimulations. The third approach to bisimulations for fuzzy modal logics, based on
bisimulation games and pseudometrics, was used in [61].

The purpose of this paper is to conduct a comprehensive study that will include more different types
of simulations and bisimulations for fuzzy multimodal logics. The motivation for this came from papers
[13, 14] where two types of simulations and four types of bisimulations for fuzzy finite automata were intro-
duced. These are forward and backward simulations, and forward, backward, forward-backward, and back-
ward-forward bisimulations. We also introduce the fifth type of bisimulations, regular bisimulations, which
originate from research on fuzzy social networks [30]. Research on bisimulations (and simulations) for var-
ious types of relational systems was mainly focused on forward bisimulations. Backward bisimulations are
much less common in the literature, probably due to their duality with the forward ones, as a result of which
many results on forward bisimulations can be easily transformed into corresponding results concerning
the backward ones. However, there are situations when backward and forward bisimulations behave com-
pletely differently. For instance, it has been shown in [14] that there are situations in which for any of the
four types of bisimulations for fuzzy automata, there is only a bisimulation of that type, and there are no
bisimulations of the other three types. Also, it has been shown in [55] that backward bisimulations can be
very successfully used in the fuzzy discrete event systems theory, in the conflict analysis, while forward
bisimulations cannot. Interesting differences between forward and backward bisimulations will be demon-
strated in this paper as well (cf. Theorems 7.7–7.9). All this suggests that all types of bisimulations and
simulations should be equally in the focus of research.

The main results of the paper are as follows. First, for each of the two types of simulations and the five
types of bisimulations we have introduced here, we create an algorithm that tests the existence of a simula-
tion or bisimulation of that type between the given Kripke models. In the case where such simulation or
bisimulation exists, the same algorithm computes the greatest one. As these algorithms do not always finish
in a finite number of steps, we also provide their modifications which determine whether there are crisp
simulations or bisimulations of a given type, and compute the greatest ones when they exist. Such algorithms
always finish in finitely many steps. Second, we provide an application of bisimulations in the state reduction
of fuzzy Kripke models, while preserving their semantic properties. Using an arbitrary fuzzy quasi-order
on a given fuzzy Kripke model, we construct a new model, called the afterset fuzzy Kripke model, and
in the case when this fuzzy quasi-order is regular, forward or backward bisimulation fuzzy equivalence,
we show that the corresponding afterset model is equivalent to the original one with respect to all modal
formulas, to all formulas valid in future worlds or to all formulas valid in past worlds (viewed in the
temporal interpretation of Kripke models).

The paper is organized as follows. After this introductory section, in Section 2 we give basic defi-
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nitions and notation concerning Heyting algebra, fuzzy sets and fuzzy relations, and in Section 3, we
introduce syntax and semantics for fuzzy multimodal logics over a Heyting algebra. In Section 4, we in-
troduce two types of simulations and five types of bisimulations for fuzzy multimodal logics and describe
their basic properties. These simulations and bisimulations are defined by means of particular systems of
fuzzy relation inequations, and we transform these systems into equivalent systems consisting only of two
inequations. The main results of the paper are presented in Section 5, where we provide algorithms for
testing the existence of simulations or bisimulations of a given type, and computing the greatest ones, in
the cases when they exist, and in Section 7, where we provide a method for the state reduction of fuzzy
Kripke models, while preserving their semantic properties. In Sections 6 and 8, we present computational
examples which demonstrate applications of the results from Sections 5 and 7.

2. Preliminaries

A Dutch mathematician Luitzen Brouwer had founded the mathematical philosophy of intuitionism in
the early 20th century. His student Arend Heyting developed formal systems in order to provide a formal
basis for Brouwer’s programme in 1930 (cf. [27]). The algebras thus obtained are called Heyting algebras. In-
stead of Heyting algebra, certain authors used a term pseudo-Boolean algebra or relatively pseudocomplemented
distributive lattice with 0 (for example, see [46]), and Brouwerian algebras for algebraic duals of Heyting alge-
bras (see [44]). For more information about Heyting algebras see [1, 3, 4, 6].

Now, we give a definition of a Heyting algebra.

Definition 2.1. An algebra H = (H,∧,∨,→, 0, 1) with three binary and two nullary operations is a Heyting
algebra if it satisfies:

(H1) (H,∧,∨) is a distributive lattice;
(H2) x ∧ 0 = 0, x ∨ 1 = 1;
(H3) x→ x = 1;
(H4) (x→ y) ∧ y = y, x ∧ (x→ y) = x ∧ y;
(H5) x→ (y ∧ z) = (x→ y) ∧ (x→ z), (x ∨ y)→ z = (x→ z) ∧ (y→ z).

A binary operation→ is called relative pseudocomplementation, or residuum, in many sources. The relative pseu-
docomplement x→ z of x with respect to z can be characterized as follows:

x→ z =
∨{

y ∈ H | x ∧ y ⩽ z
}
. (1)

Equivalently, we say that operations ∧ and→ form an adjoint pair, i.e., they satisfy the adjunction property
or residuation property: for all x, y, z ∈ H,

x ∧ y ⩽ z ⇔ x ⩽ y→ z. (2)

If, in addition, (H,∧,∨, 0, 1) is a complete lattice, then H is called a complete Heyting algebra. In the rest of
the paper, unless otherwise stated, H = (H,∧,∨,→, 0, 1) will be a complete Heyting algebra.

The operations∧ and→ are intended for modeling the conjunction and implication of the corresponding
logical calculus, respectively. Supremum (

∨
) and infimum (

∧
) are intended for modeling the existential

and general quantifier, respectively. An operation↔ defined by

x↔ y = (x→ y) ∧ (y→ x), (3)

called bi-implication, is used for modeling the equivalence of truth values.
A complete Heyting algebra H = (H,∧,∨,→, 0, 1) satisfies the following infinite distributive law:

x ∧

∨
i∈I

yi

 =∨
i∈I

(x ∧ yi), (4)
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as well as

x ∧

∧
i∈I

yi

 =∧
i∈I

(x ∧ yi), (5)

for all x ∈ H, {yi}i∈I ⊆ H and for every index set I. Also, if a complete Heyting algebra satisfies the following
condition:

x ∨

∧
i∈I

yi

 =∧
i∈I

(x ∨ yi), (6)

then for all non-increasing sequences {xk}k∈N, {yk}k∈N ⊆ H we have

∧
k∈N

(xk ∨ yk) =

∧
k∈N

xk

 ∨
∧

k∈N

yk

 , (7)

as shown in [16] for more general context of residuated lattices. Further, this can be generalized for all
non-increasing sequences {x j

k}k∈N ⊆ H, j ∈ J, in the following way:∧
k∈N

∨
j∈J

x j
k =

∨
j∈J

∧
k∈N

x j
k, (8)

where J is a finite set of indices.
We also point out the well-known equation that holds in Heyting algebras:

x ∧ (y→ z) = x ∧ (x ∧ y→ z). (9)

It is generally known that Heyting algebra H = (H,∧,∨,→, 0, 1) can be defined as a commutative
residuated lattice H = (H,∧,∨,⊗,→, 0, 1) in which operation ⊗ coincide with ∧, i.e., x ⊗ y = x ∧ y for all
x, y ∈ H. Therefore, the terminology and basic notions given in this section are according to [3, 4], but we
set them up for a Heyting algebra.

A fuzzy subset of a set A over H , or simply a fuzzy subset of A is a function from A to H. Ordinary crisp
subsets of A are considered as fuzzy subsets of A taking membership values in the set {0, 1} ⊆ H. Let f and
1 be two fuzzy subsets of A. The equality of f and 1 is defined as the usual equality of functions, i.e., f = 1
if and only if f (x) = 1(x), for every x ∈ A. The inclusion f ⩽ 1 is also defined pointwise: f ⩽ 1 if and only if
f (x) ⩽ 1(x), for every x ∈ A. Endowed with this partial order the set F (A) of all fuzzy subsets of A forms a
complete Heyting algebra, in which the meet (intersection)

∧
i∈I fi and the join (union)

∨
i∈I fi of an arbitrary

family { fi}i∈I of fuzzy subsets of A are functions from A to H defined by∧
i∈I

fi

 (x) =
∧
i∈I

fi(x),

∨
i∈I

fi

 (x) =
∨
i∈I

fi(x).

We can define the product f ∧ 1 the same as binary meet: f ∧ 1(x) = f (x) ∧ 1(x), for every x ∈ A, due to the
relationship between Heyting algebra and residuated lattice.

The crisp part of fuzzy subset f of A is a crisp subset f̂ = {a ∈ A | f (a) = 1} of A. We will also consider f̂
as a function f̂ : A→ H defined by f̂ (a) = 1, if f (a) = 1, and f̂ (a) = 0, if f (a) < 1.

Let A and B be non-empty sets. A fuzzy relation between sets A and B (in this order) is any function from
A × B to H, i.e., any fuzzy subset of A × B, and the equality, inclusion (ordering), joins and meets of fuzzy
relations are defined as for fuzzy sets. In particular, a fuzzy relation on a set A is a function from A × A to H,
i.e., any fuzzy subset of A×A. The set of all fuzzy relations from A to B will be denoted by R(A,B), and the
set of all fuzzy relations on a set A will be denoted by R(A). The inverse of a fuzzy relation φ ∈ R(A,B) is a
fuzzy relation φ−1

∈ R(B,A) defined by φ−1(b, a) = φ(a, b), for all a ∈ A and b ∈ B. A crisp relation is a fuzzy
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relation which takes values only in the set {0, 1}, and if φ is a crisp relation of A to B, then the expressions
“φ(a, b) = 1” and “(a, b) ∈ φ” will have the same meaning.

For non-empty sets A, B and C, and fuzzy relations φ ∈ R(A,B) and ψ ∈ R(B,C), their composition φ ◦ ψ
is a fuzzy relation from R(A,C) defined by

(φ ◦ ψ)(a, c) =
∨
b∈B

φ(a, b) ∧ ψ(b, c), (10)

for all a ∈ A and c ∈ C. If φ and ψ are crisp relations, then φ ◦ψ is the ordinary composition of relations, i.e.,

φ ◦ ψ = {(a, c) ∈ A × C | (∃b ∈ B)(a, b) ∈ φ & (b, c) ∈ ψ},

and if φ and ψ are functions, then φ ◦ ψ is an ordinary composition of functions, i.e., (φ ◦ ψ)(a) = ψ(φ(a)),
for every a ∈ A. Next, if f ∈ F (A), φ ∈ R(A,B) and 1 ∈ F (B), the compositions f ◦ φ and φ ◦ 1 are fuzzy
subsets of B and A, respectively, which are defined by

( f ◦ φ)(b) =
∨
a∈A

f (a) ∧ φ(a, b), (φ ◦ 1)(a) =
∨
b∈B

φ(a, b) ∧ 1(b), (11)

for every a ∈ A and b ∈ B.
In particular, for f , 1 ∈ F (A) we write

f ◦ 1 =
∨
a∈A

f (a) ∧ 1(a). (12)

The value f ◦ 1 can be interpreted as the “degree of overlapping” of f and 1. In particular, if f and 1 are
crisp sets and φ is a crisp relation, then

f ◦ φ = {b ∈ B | (∃a ∈ f )(a, b) ∈ φ}, φ ◦ 1 = {a ∈ A | (∃b ∈ 1)(a, b) ∈ φ}.

Let A,B,C and D be non-empty sets. Then for any φ1 ∈ R(A,B), φ2 ∈ R(B,C) and φ3 ∈ R(C,D) we have

(φ1 ◦ φ2) ◦ φ3 = φ1 ◦ (φ2 ◦ φ3), (13)

and for φ0 ∈ R(A,B), φ1, φ2 ∈ R(B,C) and φ3 ∈ R(C,D) we have that

φ1 ⩽ φ2 implies φ−1
1 ⩽ φ

−1
2 , φ0 ◦ φ1 ⩽ φ0 ◦ φ2 and φ1 ◦ φ3 ⩽ φ2 ◦ φ3. (14)

Further, for any φ ∈ R(A,B), ψ ∈ R(B,C), f ∈ F (A), 1 ∈ F (B) and h ∈ F (C) the one can easily verify that

( f ◦ φ) ◦ ψ = f ◦ (ϕ ◦ ψ), ( f ◦ φ) ◦ 1 = f ◦ (φ ◦ 1), (φ ◦ ψ) ◦ h = φ ◦ (ψ ◦ h) (15)

and consequently, the parentheses in (15) can be omitted, as well as the parentheses in (13). Finally, for all
φ,φi ∈ R(A,B)(i ∈ I) and ψ,ψi ∈ R(B,C)(i ∈ I) we have that

(φ ◦ ψ)−1 = ψ−1
◦ φ−1, (16)

φ ◦

∨
i∈I

ψi

 =∨
i∈I

(φ ◦ ψi),

∨
i∈I

φi

 ◦ ψ =∨
i∈I

(φi ◦ ψ), (17)

∨
i∈I

φi


−1

=
∨
i∈I

φ−1
i . (18)

Let A and B be fuzzy sets. A fuzzy relation φ ∈ R(A,B) is called image-finite if for every a ∈ A the set
{b ∈ B | φ(a, b) > 0} is finite, it is called domain-finite if for every b ∈ B the set {a ∈ A | φ(a, b) > 0} is finite, and
it is called degree-finite if it is both image-finite and domain finite.
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We note that if A,B and C are finite sets of cardinality |A| = k, |B| = m and |C| = n, then φ ∈ R(A,B) and
ψ ∈ R(B,C) can be treated as k × m and m × n fuzzy matrices over H , and φ ◦ ψ is the matrix product.
Analogously, for f ∈ F (A) and 1 ∈ F (B) we can treat f ◦ φ as the product of a 1 × k matrix f and a k × m
matrix φ, and φ ◦ 1 as the product of a k ×m matrix R and an m × 1 matrix 1t (the transpose of 1).

A fuzzy relation R ∈ R(W) is reflexive if R(u,u) = 1, for each u ∈ W, it is symmetric if R(u, v) = R(v,u),
for all u, v ∈ W, and it is transitive if R(u, v) ∧ R(v,w) ⩽ R(u,w), for all u, v,w ∈ W. A reflexive and transitive
fuzzy relation is called a fuzzy quasi-order, and a reflexive, symmetric and transitive fuzzy relation is called
a fuzzy equivalence. Moreover, a reflexive and transitive crisp relation is called a quasi-order, and a reflexive,
symmetric and transitive crisp relation is called an equivalence relation or just an equivalence. If Q is a fuzzy
quasi-order on a set W, then a fuzzy relation EQ defined by EQ = Q∧Q−1 is a fuzzy equivalence on W, and
is called a natural fuzzy equivalence of Q. A fuzzy quasi-order Q on W is called a fuzzy order if for all u, v ∈W
we have that Q(u, v) = Q(v,u) = 1 implies u = v, i.e., if we have that EQ(u, v) = 1 implies u = v.

Let Q be a fuzzy quasi-order on a set W. For each w ∈ W, the Q-afterset of w is the fuzzy set Qw ∈ HW

defined by Qw(u) = Q(w,u), for any u ∈ W, while the Q-foreset of w is the fuzzy set Qw
∈ HW defined by

Qw(u) = Q(u,w), for any u ∈ W (see [2, 17, 18, 55]). The set of all Q-aftersets will be denoted by W/Q, and
the set of all Q-foresets will be denoted by W\Q. If E is a fuzzy equivalence on W, then for each w ∈ W we
have that Ew = Ew, and it is called an equivalence class of w (corresponding to the fuzzy equivalence E).

3. Fuzzy multimodal logics

There are plenty many-valued logics which differ in their syntax as well as in their semantics. There are
also various studies of modal expansions of many-valued logics (cf. [7, 9, 10, 24, 59, 60]). In the listed papers,
logic systems are interpreted in MTL-algebras or residuated lattices, and in [19] for a Heyting-valued modal
language. Here, a fuzzy multimodal logic over a Heyting algebra will be defined in a similar fashion.

In the sequel, unless otherwise stated, H = (H,∧,∨,→, 0, 1) will be a complete Heyting algebra and I will
be a non-empty set of indices. An alphabet of a many-valued multimodal logic H ({□i,♢i,□i

−,♢i
−
}i∈I) consists

of an enumerable set of propositional symbols PV, a set of truth constants H = {t | t ∈ H}, logical connectives ∧
(conjunction) and→ (implication), and four families of modal operators: {□i}i∈I and {□i

−
}i∈I (necessity operators)

and {♢i}i∈I and {♢i
−
}i∈I (possibility operators).

The set of formulas ΦI,H of a many-valued modal logic is the smallest set containing propositional
symbols and truth constants, and is closed under logical connectives and modal operators:

A ::= t | p | A ∧ B | A→ B | □iA | ♢iA | □i
−A | ♢i

−A

where t ∈ H, p ∈ PV, i ∈ I, and A and B are formulas from ΦI,H . In fact, symbols t, p, and A,B are
meta-variables that range over H, PV and ΦI,H , respectively. The following well-known abbreviations will
be used:

¬A ≡ A→ 0 (negation),(1)
A↔ B ≡ (A→ B) ∧ (B→ A) (equivalence),(2)
A ∨ B ≡ ((A→ B)→ B) ∧ ((B→ A)→ A) (disjunction).(3)

Recall that 0 is the least element in H and 0 is the corresponding truth constant. Also, 0→ 0 gives the top
element 1. The set of all formulas over the alphabet H ({□i,♢i}i∈I), i.e., the set of those formulas from ΦI,H
that do not contain any of the modal operators □i

− and ♢i
−, i ∈ I, will be denoted by ΦI,H

+ . Similarly, the set
of all formulas over the alphabet H ({□i

−,♢i
−
}i∈I), i.e., the set of those formulas fromΦI,H that do not contain

any of the modal operators □i and ♢i, i ∈ I, will be denoted by ΦI,H
− . For the sake of simplicity, formulas

from ΦI,H
+ will be called plus-formulas, and formulas from ΦI,H

− will be called minus-formulas.
A fuzzy Kripke frame is a structure F = (W, {Ri}i∈I) where W is a non-empty set of possible worlds (or states

or points) and Ri ∈ F (W ×W) is a binary fuzzy relation on W, for every i ∈ I, called the accessibility fuzzy
relation of the frame. It is usually assumed that I is a finite set with n elements, and then F is called a fuzzy
Kripke n-frame.
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A fuzzy Kripke model forΦI,H is a structureM = (W, {Ri}i∈I,V) such that (W, {Ri}i∈I) is a fuzzy Kripke frame
and V : W × (PV ∪H) → H is a truth assignment function, called the evaluation of the model, which assigns
an H-truth value to propositional variables (and truth constants) in each world, such that V(w, t) = t, for
every w ∈ W and t ∈ H. It is usually assumed that I is a finite set with n elements, and then M is called a
fuzzy Kripke n-model.

Note that the defined notion of a Kripke n-model for H should not be identified with the notion of an
n-model defined in [34], i.e., models with the assignment function V restricted to the propositional variables
p1, . . . , pn and thereby to n-formulas, formulas formed from p1, . . . , pn.

The truth assignment function V can be inductively extended to a function V : W ×ΦI,H → H by:

V(w,A ∧ B) = V(w,A) ∧ V(w,B);(V1)
V(w,A→ B) = V(w,A)→ V(w,B);(V2)

V(w,□iA) =
∧
u∈W

Ri(w,u)→ V(u,A), for every i ∈ I;(V3)

V(w,♢iA) =
∨
u∈W

Ri(w,u) ∧ V(u,A), for every i ∈ I;(V4)

V(w,□i
−A) =

∧
u∈W

Ri(u,w)→ V(u,A), for every i ∈ I;(V5)

V(w,♢i
−A) =

∨
u∈W

Ri(u,w) ∧ V(u,A), for every i ∈ I.(V6)

Note that the same symbols are used for ∧ and→ in both sides of formulas (V1)–(V6). The meaning is clear
from the context, so we keep the notation simple. For each world w ∈W the truth assignment V determines
a function Vw : ΦI,H → H given by Vw(A) = V(w,A), for every A ∈ ΦI,H , and vice versa, for each A ∈ ΦI,H
the truth assignment V determines a function VA : W → H given by VA(w) = V(w,A), for every w ∈W.

Usually, we will denote the models with M, M′, N, N′ etc., not emphasizing specifically the alphabet
H ({□i,♢i,□i

−,♢i
−
}i∈I), except when necessary. If W is a finite set, then we will say thatM is a fuzzy Kripke

model with a finite number of worlds (states).
LetM = (W, {Ri}i∈I,V) andM′ = (W′, {R′i }i∈I,V′) be two fuzzy Kripke models, and let Φ ⊆ ΦI,H be some

set of formulas. Worlds w ∈ W and w′ ∈ W′ are said to be Φ-equivalent if V(w,A) = V′(w′,A), for all A ∈ Φ.
Moreover, M andM′ are said to be Φ-equivalent fuzzy Kripke models if each w ∈ W is Φ-equivalent to some
w′ ∈W′, and vice versa, if each w′ ∈W′ is Φ-equivalent to some w ∈W.

Two fuzzy Kripke models M = (W, {Ri}i∈I,V) and M′ = (W′, {R′i }i∈I,V′) are said to be isomorphic if there
exists a bijective function ϕ : W → W′ such that Ri(u, v) = R′i (ϕ(u), ϕ(v)) and V(w, p) = V′(ϕ(w), p), for all
i ∈ I, p ∈ PV and u, v,w ∈W.

4. Simulations and bisimulations

Two types of simulations and four types of bisimulations for fuzzy automata were introduced in [13].
In a similar fashion, we also define two types of simulations and four types of bisimulations between two
fuzzy Kripke models. Additionally, we define a fifth type of bisimulation called regular bisimulation, as in
the case of social networks (cf. [30]). Each of these types of simulations and bisimulations is defined using
an appropriate system of fuzzy relation inequations, consisting of three types of inequations.

Let M = (W, {Ri}i∈I,V) and M′ = (W′, {R′i }i∈I,V′) be two fuzzy Kripke models and let φ ∈ R(W,W′)
be a non-empty fuzzy relation. If φ satisfies

Vp ⩽ V′p ◦ φ
−1, for every p ∈ PV, (fs-1)

φ−1
◦ Ri ⩽ R′i ◦ φ

−1, for every i ∈ I, (fs-2)

φ−1
◦ Vp ⩽ V′p, for every p ∈ PV, (fs-3)
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then it is called a forward simulation between M and M′, and if it satisfies only (fs-2) and (fs-3), then it is
called a forward presimulation betweenM andM′. On the other hand, if φ satisfies

Vp ⩽ φ ◦ V′p, for every p ∈ PV, (bs-1)

Ri ◦ φ ⩽ φ ◦ R′i , for every i ∈ I, (bs-2)
Vp ◦ φ ⩽ V′p, for every p ∈ PV, (bs-3)

then it is called a backward simulation betweenM andM′, and if it satisfies only (bs-3) and (bs-2), it is called
a backward presimulation betweenM andM′.

Next, if both φ and φ−1 are forward simulations, i.e., if

Vp ⩽ V′p ◦ φ
−1, V′p ⩽ Vp ◦ φ, for every p ∈ PV, (fb-1)

φ−1
◦ Ri ⩽ R′i ◦ φ

−1, φ ◦ R′i ⩽ Ri ◦ φ, for every i ∈ I, (fb-2)

φ−1
◦ Vp ⩽ V′p, φ ◦ V′p ⩽ Vp, for every p ∈ PV. (fb-3)

then we call φ a forward bisimulation betweenM andM′, and if φ satisfies only (fb-2) and (fb-3), then we call
it a forward prebisimulation betweenM andM′. Similarly, if both φ and φ−1 are backward simulation, i.e. if

Vp ⩽ φ ◦ V′p, V′p ⩽ φ
−1
◦ Vp, for every p ∈ PV, (bb-1)

Ri ◦ φ ⩽ φ ◦ R′i , R′i ◦ φ
−1 ⩽ φ−1

◦ Ri, for every i ∈ I, (bb-2)

Vp ◦ φ ⩽ V′p, V′p ◦ φ
−1 ⩽ Vp, for every p ∈ PV. (bb-3)

then we call φ a backward bisimulation betweenM andM′, and if φ satisfies only (bb-2) and (bb-3), then we
call it a backward prebisimulation betweenM andM′.

We also define two “mixed” types of bisimulations. Namely, if φ is a forward simulation and φ−1 is a
backward simulation, i.e., if

Vp ⩽ V′p ◦ φ
−1, V′p ⩽ Vp ◦ φ

−1, for every p ∈ PV, (fbb-1)

φ−1
◦ Ri = R′i ◦ φ

−1, for every i ∈ I, (fbb-2)

φ−1
◦ Vp ⩽ V′p, V′p ◦ φ

−1 ⩽ Vp, for every p ∈ PV, (fbb-3)

then we say that φ is a forward-backward bisimulation betweenM andM′, and if only (fbb-2) and (fbb-3) hold,
we say that φ is a forward-backward prebisimulation betweenM andM′.

Similarly, if φ is a backward simulation and φ−1 is a forward simulation, i.e., if

V′p ⩽ Vp ◦ φ, Vp ⩽ φ ◦ V′p, for every p ∈ PV, (bfb-1)

φ ◦ R′i = Ri ◦ φ, for every i ∈ I, (bfb-2)
φ ◦ V′p ⩽ Vp, Vp ◦ φ ⩽ V′p, for every p ∈ PV, (bfb-3)

then we say that φ is a backward-forward bisimulation betweenM andM′, and if only (bfb-2) and (bfb-3) hold,
then we say that φ is a backward-forward prebisimulation betweenM andM′.

Finally, if φ is both a forward and backward bisimulation, i.e., if

Vp ⩽ V′p ◦ φ
−1, V′p ⩽ Vp ◦ φ, Vp ⩽ φ ◦ V′p , V′p ⩽ φ

−1
◦ V′p , for every p ∈ PV, (rb-1)

φ−1
◦ Ri = R′i ◦ φ

−1, φ ◦ R′i = Ri ◦ φ, for every i ∈ I, (rb-2)

φ−1
◦ Vp ⩽ V′p , φ ◦ V′p ⩽ Vp , Vp ◦ φ ⩽ V′p , V′p ◦ φ

−1 ⩽ Vp , for every p ∈ PV, (rb-3)

then we call φ a regular bisimulation betweenM andM′, and if φ satisfies only (rb-2) and (rb-3), then we call
it a regular prebisimulation betweenM andM′. Note that the prefix “regular” comes from the social network
analysis (cf. [30, 56]).
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For any θ ∈ { f s, bs, f b, bb, f bb, b f b, rb}, a fuzzy relation which satisfies (θ-1), (θ-2) and (θ-3) will be called
a simulation/bisimulation of type θ or a θ-simulation/bisimulation betweenM andM′, and a fuzzy relation satis-
fying (θ-2) and (θ-3) will be called a presimulation/prebisimulation of type θ or a θ-presimulation/prebisimulation
between M and M′. In addition, if M and M′ are the same fuzzy Kripke model, then we use the name
simulation/bisimulation of type θ or θ-simulation/bisimulation on the fuzzy Kripke modelM.

It can be easily verified that

φ−1
◦ Vp = Vp ◦ φ, for every p ∈ PV, (19)

φ ◦ V′p = V′p ◦ φ
−1, for every p ∈ PV. (20)

It follows that the definitions of forward and backward simulations/presimulations differ only in the sec-
ond conditions (fs-2) and (bs-2), which are mutually dual. Similarly, the definitions of all five types of
bisimulations/prebisimulations differ only in the second conditions (θ-2), for θ ∈ { f b, bb, f bb, b f b, rb}, and
conjunctions of conditions (θ-1) and (θ-3) in these definitions can be replaced by

V′p = Vp ◦ φ, Vp = φ ◦ V′p, for every p ∈ PV. (21)

However, although the definitions of bisimulations with condition (21) seem simpler, in the further text we
will see that the original definitions are much more suitable for testing the existence of bisimulations and
computing the greatest ones, in cases when they exist.

The meaning of simulations and bisimulations can best be explained in the case whenM andM′ are crisp
(Boolean-valued) Kripke models and φ is an ordinary crisp (Boolean-valued) binary relation. The condition
(fs-1) means that if the valuation V assigns the value “true” to the propositional variable p in some world w,
then the valuation V′ assigns to this variable the value “true” in some world w′ which simulates w. On the
other hand, the condition (fs-3) means that if w′ simulates w and the valuation V assigns the value “true” to
the propositional variable p in the world w, then the valuation V′ also assigns to this variable the value “true”
in the world w′. The meaning of the conditions (fs-2) and (bs-2) can be explained as follows: (fs-2) means that
if u′ simulates u and v is accessible from u, then there is v′ accessible from u′ which simulates v, and (bs-2)
means that if u is accessible from v and u′ simulates u, then u′ is accessible from some v′ which simulates v.
This is explained in Figure 1. In both cases, accessibility is considered with respect to Ri, for each i ∈ I.

u φ u′

Ri

v

u φ u′

v

RiR′i

v′φ v′

R′i

φ

Figure 1: A forward simulation (the condition (fs-2), on the left) and backward simulation (the condition (bs-2), on the right).

Most researchers who have dealt with simulations and bisimulations in different contexts have consid-
ered only forward simulations and forward bisimulations, for which they have used the names strong simu-
lations and strong bisimulations, or just simulations and bisimulations (cf., e.g., [20, 36, 37, 47]). The greatest
bisimulation equivalence has usually been called a bisimilarity. However, our research is motivated by the
study of different types of simulations and bisimulations between fuzzy automata, so here we also intend to
study different types of simulations and bisimulations between Kripke models of fuzzy multimodal logics.

It has been noted in [13] that every forward simulation between two fuzzy automata is a backward sim-
ulation between the reverse fuzzy automata. This means that forward and backward simulations, forward
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and backward bisimulations, and backward-forward and forward-backward bisimulations, are mutually
dual concepts. Here, we consider such duality for fuzzy Kripke models.

For a fuzzy Kripke model M = (W, {Ri}i∈I,V), its reverse fuzzy Kripke model is the fuzzy Kripke model
M−1 = (W, {R−1

i }i∈I,V).
Let a mapping θ 7→ θd from the set { f s, bs, f b, bb, f bb, b f b, rb} into itself be defined as follows:(

f s bs f b bb f bb b f b rb
bs f s bb f b b f b f bb rb

)
Now we can state and prove the following:

Theorem 4.1. LetM = (W, {Ri}i∈I,V) andM′ = (W′, {R′i }i∈I,V′) be two fuzzy Kripke models, letM−1 = (W, {R−1
i }i∈I,

V) andM′−1 = (W′, {R′−1
i }i∈I,V′) be the reverse fuzzy Kripke models forM andM′, respectively, let φ ∈ R(W,W′)

be a fuzzy relation, and let θ ∈ { f s, bs, f b, bb, f bb, b f b, rb}.
Then the following is true:

(a) φ is a simulation/bisimulation of type θ between modelsM andM′ if and only if φ is a simulation/bisimulation
of type θd between the reverse fuzzy Kripke modelsM−1 andM′−1.

(b) The assertion (a) remains valid if the terms simulation and bisimulation are replaced with presimulation
and prebisimulation, respectively.

Proof. We will prove only the assertion in (a) concerning the case θ = f s. The others can be proved similarly.
Let φ be forward simulation between M and M′, i.e., let φ satisfy (fs-1), (fs-2) and (fs-3). As we know,

conditions (fs-1) and (fs-3) can be easily transformed into (bs-1) and (bs-3), respectively, using (19) and (20).
Also, for each i ∈ I we have that

φ−1
◦ Ri ⩽ R′i ◦ φ

−1
⇒

(
φ−1
◦ Ri

)−1
⩽

(
R′i ◦ φ

−1
)−1

⇒ R−1
i ◦ φ ⩽ φ ◦ R′−1

i ,

and it follows that φ satisfies (bs-2) for modelsM−1 andM′−1.

We also state the following lemma that can be easily proved.

Lemma 4.2. Let θ ∈ { f s, bs, f b, bb, f bb, b f b, rb}.

(a) If {φα}α∈Y are simulations/bisimulations of type θ between modelsM andM′, then
∨
α∈Y φα is also a simula-

tion/bisimulation of type θ between these models.
(b) If φ1 is a simulation/bisimulation of type θ between modelsM andM′ and φ2 is a simulation/bisimulation of

type θ between modelsM′ andM′′, then φ1 ◦ φ2 is a simulation/bisimulation of type θ betweenM andM′′.
(c) The assertions (a) and (b) remain valid if the terms simulation and bisimulation are replaced with presimulation

and prebisimulation, respectively.

Now, several useful notions and notation will be introduced in the same manner as in [14].
For non-empty sets of worlds W and W′ and fuzzy subsets η ∈ F (W) and ξ ∈ F (W′), fuzzy relations

η\ξ ∈ R(W,W′) and η/ξ ∈ R(W,W′) are defined as follows:

(η\ξ)(w,w′) = η(w)→ ξ(w′), (22)
(η/ξ)(w,w′) = ξ(w′)→ η(w), (23)

for arbitrary w ∈W and w′ ∈W′. Let us note that η\ξ = (ξ/η)−1 and η/ξ = (ξ\η)−1.
Next we state the well-know results by Sanchez (cf. [49–51]).

Lemma 4.3. Let W and W′ be non-empty sets of worlds and let η ∈ F (W) and ξ ∈ F (W′).

(a) The set of all solutions to the inequation η ◦ χ ⩽ ξ, where χ is an unknown fuzzy relation between W and W′,
is the principal ideal of R(W,W′) generated by the fuzzy relation η\ξ.
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(b) The set of all solutions to the inequation χ ◦ ξ ⩽ η, where χ is an unknown fuzzy relation between W and W′,
is the principal ideal of R(W,W′) generated by the fuzzy relation η/ξ.

In other words, the following residuation properties hold:

η ◦ χ ⩽ ξ ⇔ χ ⩽ η\ξ, χ ◦ ξ ⩽ η ⇔ χ ⩽ η/ξ. (24)

Note that (η\ξ) ∧ (η/ξ) = η↔ ξ, where η↔ ξ is a fuzzy relation between W and W′ defined by

(η↔ ξ)(w,w′) = η(w)↔ ξ(w′), (25)

for arbitrary w ∈W and w′ ∈W′.
Next, let W and W′ be non-empty sets of worlds and let α ∈ R(W), β ∈ R(W′) and γ ∈ R(W,W′). The

right residual of γ by α is a fuzzy relation α\γ ∈ R(W,W′) defined by

(α\γ)(w,w′) =
∧
u∈W

α(u,w)→ γ(u,w′), (26)

for all w ∈W and w′ ∈W′, and the left residual of γ by β is a fuzzy relation γ/β ∈ R(W,W′) defined by

(γ/β)(w,w′) =
∧

u′∈W′

β(w′,u′)→ γ(w,u′), (27)

for all w ∈W and w′ ∈W′. We think of the right residual α\γ as what remains of on the right after “dividing”
γ on the left by α, and of the left residual γ/β as what remains of γ on the left after “dividing” γ on the right
by β. In other words,

α ◦ γ′ ⩽ γ ⇔ γ′ ⩽ α\γ, γ′ ◦ β ⩽ γ ⇔ γ′ ⩽ γ/β, (28)

for all α ∈ R(W), β ∈ R(W′) and γ′, γ ∈ R(W,W′). In the case when W = W′, these two concepts become
the well-known concepts of right and left residuals of fuzzy relations on a set (cf. [28]).

The following statements in the next lemma are also results by Sanchez (cf. [49–51]).

Lemma 4.4. Let W and W′ be non-empty sets of worlds and let α ∈ R(W), β ∈ R(W′) and γ ∈ R(W,W′).

(a) The set of all solutions to the inequation α ◦ χ ⩽ γ, where χ is an unknown fuzzy relation between W and W′,
is the principal ideal of R(W,W′) generated by the right residual α\γ of γ by α.

(b) The set of all solutions to the inequation χ ◦ β ⩽ γ, where χ is an unknown fuzzy relation between W and W′,
is the principal ideal of R(W,W′) generated by the left residual γ/β of γ by β.

As stated in the Introduction, now we will define isotone function ϕ on the lattice of fuzzy relations
by which we will reduce problem of computation of the greatest (pre)simulation/(pre)bisimulation to the
problem of computing the greatest post-fixed point, contained in a given fuzzy relation. Let’s emphasize
once again that greatest simulation/bisimulation do not always have to exist and in that case we just have
decision-making procedure whether there is a simulation or bisimulation of a given type. First, we define
initial fuzzy relations which are obtained from residuals and propositional variables in the model.

LetM = (W, {Ri}i∈I,V) andM′ = (W′, {R′i }i∈I,V′) be two fuzzy Kripke models. We define fuzzy relations
πθ ∈ R(W,W′), for θ ∈ { f s, bs, f b, bb, f bb, b f b, rb}, in the following way:

π f s = πbs =
∧

p∈PV

(Vp\V′p), (29)

π f b = πbb = π f bb = πb f b = πrb =
∧

p∈PV

[(Vp\V′p) ∧ (Vp/V′p)] =
∧

p∈PV

(Vp ↔ V′p). (30)
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Moreover, we define functions ϕθ : R(W,W′)→ R(W,W′), for θ ∈ { f s, bs, f b, bb, f bb, b f b, rb}, as follows:

ϕ f s(φ) =
∧
i∈I

[(R′i ◦ φ
−1)/Ri]−1, (31)

ϕbs(φ) =
∧
i∈I

Ri\(φ ◦ R′i ), (32)

ϕ f b(φ) =
∧
i∈I

[(R′i ◦ φ
−1)/Ri]−1

∧ [(Ri ◦ φ)/R′i ] = ϕ
f s(φ) ∧ [ϕ f s(φ−1)]−1, (33)

ϕbb(φ) =
∧
i∈I

[Ri\(φ ◦ R′i )] ∧ [R′i\(φ
−1
◦ Ri)]−1 = ϕbs(φ) ∧ [ϕbs(φ−1)]−1, (34)

ϕ f bb(φ) =
∧
i∈I

[(R′i ◦ φ
−1)/Ri]−1

∧ [R′i\(φ
−1
◦ Ri)]−1 = ϕ f s(φ) ∧ [ϕbs(φ−1)]−1, (35)

ϕb f b(φ) =
∧
i∈I

[Ri\(φ ◦ R′i )] ∧ [(Ri ◦ φ)/R′i ] = ϕ
bs(φ) ∧ [ϕ f s(φ−1)]−1, (36)

ϕrb(φ) =
∧
i∈I

[Ri\(φ ◦ R′i )] ∧ [(Ri ◦ φ)/R′i ] ∧ [(R′i ◦ φ
−1)/Ri]−1

∧ [R′i\(φ
−1
◦ Ri)]−1

= ϕ f s(φ) ∧ [ϕbs(φ−1)]−1
∧ ϕbs(φ) ∧ [ϕ f s(φ−1)]−1 = ϕ f b(φ) ∧ ϕbb(φ), (37)

for any φ ∈ R(W,W′). Notice that in the expression “ϕθ(α−1)” (θ ∈ { f s, bs}) a function from R(W′,W) into
itself is denoted by ϕθ.

The following theorem provides alternative forms of the second and third conditions in the definitions
of simulations and bisimulations, using initial fuzzy relations πθ, and the corresponding functions ϕθ for
θ ∈ { f s, bs, f b, bb, f bb, b f b, rb}. These forms are more suitable for the construction of algorithms that will be
given in the sequel.

Theorem 4.5. Let θ ∈ { f s, bs, f b, bb, f bb, b f b, rb} and let M = (W, {Ri}i∈I,V) and M′ = (W′, {R′i }i∈I,V′) be two
fuzzy Kripke models. A fuzzy relation φ ∈ R(W,W′) satisfies the conditions (θ-2) and (θ-3) if and only if it satisfies

φ ⩽ ϕθ(φ), φ ⩽ πθ. (38)

Proof. We will prove only the case θ = f s. The assertion concerning the case θ = bs follows by the duality,
and according to Eqs. (30) and (33)-(37), all other assertions can be obtained by the first two.

Consider an arbitrary φ ∈ R(W,W′). According to Lemma 4.3(b), φ satisfies the condition (fs-3) if and
only if φ−1 ⩽ V′p/Vp = (Vp\V′p)−1, for all p ∈ PV, which is equivalent to φ ⩽ Vp\V′p, for all p ∈ PV. Hence, we
have

φ ⩽
∧

p∈PV

(Vp\V′p) = π f s.

Therefore, φ satisfies (fs-3) if and only if φ ⩽ π f s.
On the other hand, φ satisfies (fs-2) if and only if

φ−1(w′,w) ∧ Ri(w,u) ⩽ (R′i ◦ φ
−1)(w′,u),

for all w,u ∈W, w′ ∈W′ and i ∈ I. According to the adjunction property (2), this is equivalent to

φ−1(w′,w) ⩽
∧
u∈W

[Ri(w,u)→ (R′i ◦ φ
−1)(w′,u))] = ((R′i ◦ φ

−1)/Ri)(w′,w),

for all w ∈W, w′ ∈W′ and i ∈ I, which is further equivalent to

φ(w,w′) ⩽
∧
i∈I

[(R′i ◦ φ
−1)/Ri]−1(w,w′) = (ϕ f s(φ))(w,w′),

for all w ∈W and w′ ∈W′. Therefore, φ satisfies (fs-3) if and only if φ ⩽ ϕ f s(φ).
Now, we conclude that a fuzzy relation φ ∈ R(W,W′) satisfies (fs-2) and (fs-3) if and only if it satisfies

(38) (for θ = f s), which has to be proved.
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5. Testing the existence and computing the greatest simulations and bisimulations

In this section we provide a method for testing the existence of simulations and bisimulations between
fuzzy Kripke models, and for computing the greatest ones, in the cases when they exist.

Let W and W′ be non-empty sets of worlds and let ϕ : R(W,W′) → R(W,W′) be an isotone function,
i.e., let α ⩽ β implies ϕ(α) ⩽ ϕ(β), for all α, β ∈ R(W,W′). A fuzzy relation α ∈ R(W,W′) is called a post-fixed
point of ϕ if α ⩽ ϕ(α), and is called a fixed point of ϕ if α = ϕ(α). The well-known Knaster-Tarski fixed point
theorem (stated and proved in a more general context, for complete lattices) asserts that the set of all post-
fixed points of ϕ form a complete lattice (cf. [48]). Moreover, for any fuzzy relation π ∈ R(W,W′) we have
that the set of all post-fixed points of ϕ contained in π is also a complete lattice. According to Theorem 4.5,
our main task is to find an efficient procedure for computing the greatest post-fixed point of the function
ϕθ contained in the fuzzy relation πθ, for each θ = { f s, bs, f b, bb, f bb, b f b, rb}.

Note that the set of all post-fixed points of an isotone function on a complete lattice less than or equal
to a given element is always non-empty, because it contains the least element of this lattice. However, a
trivial case may occur that this set consist only of that single element. In our case, since we are dealing with
a complete lattice of fuzzy relations and isotone functions on it of the form ϕθ, the empty relation may be
the only post-fixed point contained in the corresponding fuzzy relation πθ, and in this case there is no any
simulation/bisimulation of type θ. We remember that we defined simulations and bisimulations, as well as
presimulations and prebisimulations, so that they must be non-empty.

If the set of all post-fixed points of the function ϕθ contained in πθ includes at least one non-empty
fuzzy relation, then the greatest post-fixed point of ϕθ contained in πθ is non-empty, and we will see that it
is the greatest presimulation/prebisimulation of type θ, but it is not necessary a simulation/bisimulation of
this type. We will show that it can be easily tested whether this greatest presimulation/prebisimulation of
type θ is a simulation/bisimulation of this type, by simply checking if it satisfies the condition (θ-1).

Therefore, our task is actually to find an efficient procedure for computing the greatest post-fixed point
of ϕθ contained in πθ, and to check if it is non-empty and if it satisfies the condition (θ-1).

Let ϕ : R(W,W′)→ R(W,W′) be an isotone function and π ∈ R(W,W′). We define a sequence {φk}k∈N of
fuzzy relations from R(W,W′) by

φ1 = π, φk+1 = φk ∧ ϕ(φk) for each k ∈N. (39)

The sequence {φk}k∈N is obviously descending. If we denote by φ̂ the greatest post-fixed point ofϕ contained
in π, we can verify that

φ̂ ⩽
∧
k∈N

φk. (40)

Now, two questions arise. First, under what conditions does the equality in (40) hold? Second, under
what conditions is this sequence {φk}k∈N finite? If this sequence is finite, then it is not hard to show that there
exists k ∈N such that φk = φm, for every m ⩾ k, i.e., there exists k ∈N such that the sequence stabilizes on k.
We can recognize that the sequence has stabilized when we find the smallest k ∈N such that φk = φk+1. In
this case φ̂ = φk, and we have an algorithm which computes φ̂ in a finite number of steps. Some conditions
under which equality holds in (40) or the sequence is finite can be found in [28, 29].

The next two theorems are essentially proved in [29] (see also [14]), but for the sake of completeness we
state them here.

A sequence {φk}k∈N of fuzzy relations from R(W,W′) is called image-finite if the set
⋃

k∈N Im(φk) is finite.
Clearly, {φk}k∈N is finite if and only if it is image-finite. Next, a function ϕ : R(W,W′)→ R(W,W′) is called
image-localized if there exists a finite K ⊂ H such that for each fuzzy relation φ ∈ R(W,W′) we have

Im(ϕ(φ)) ⊆ ⟨K ∪ Im(φ)⟩, (41)

where ⟨X⟩ stands for the subalgebra of H generated by the set X ⊆ H. Such K will be called a localization
set of the function ϕ. A fuzzy Kripke model M = (W, {Ri}i∈I,V) is called image-finite if the relation Ri is
image-finite, for every i ∈ I, it is called domain-finite if the relation Ri is domain-finite, for every i ∈ I, and it
is called degree-finite if the relation Ri is degree-finite, for every i ∈ I.
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Theorem 5.1. Let the function ϕ be image-localized, let K be its localization set, let π ∈ R(W,W′), and let {φk}k∈N
be the sequence of fuzzy relations in R(W,W′) defined by (39). Then⋃

k∈N

Im(φk) ⊆ ⟨K ∪ Im(π)⟩. (42)

If, moreover, ⟨K ∪ Im(π)⟩ is a finite subalgebra of H , then the sequence {φk}k∈N is finite.

Theorem 5.2. LetM = (W, {Ri}i∈I,V) andM′ = (W′, {R′i }i∈I,V′) be two image-finite fuzzy Kripke models.
For any θ ∈ { f s, bs, f b, bb, f bb, b f b, rb} the function ϕθ is isotone and image-localized.

Proof. Let φ1, φ2 ∈ R(W,W′) be fuzzy relation such that φ1 ⩽ φ2, and consider the following systems of
fuzzy relation inequations:

χ−1
◦ Ri ⩽ R′i ◦ φ

−1
1 , for every i ∈ I, (43)

χ−1
◦ Ri ⩽ R′i ◦ φ

−1
2 , for every i ∈ I, (44)

where χ ∈ R(W,W′) is an unknown fuzzy relation. Using Lemma 4.3(b) and the definition of an inverse
relation, it can be easily shown that the set of all solutions to system (43) (resp. (44)) form a principal ideal
of R(W,W′) generated by ϕ f s(φ1) (resp. ϕ f s(φ2)). Since for every i ∈ I we have that R′i ◦ φ

−1
1 ⩽ R′i ◦ φ

−1
2 ,

we conclude that every solution to (43) is a solution to (44). Consequently, ϕ f s(φ1) is a solution to (44), so
ϕ f s(φ1) ⩽ ϕ f s(φ2). Therefore, we proved that ϕ f s is an isotone function.

Next, let K =
⋃

i∈I(Im(Ri)∪ Im(R′i )) and let φ ∈ R(W,W′) be an arbitrary fuzzy relation. It is evident that
Im(ϕ f s(φ)) ⊆ ⟨K ∪ Im(φ)⟩, and since fuzzy relations Ri and R′i are image-finite, for every i ∈ I, then K is also
finite. This confirms that the function ϕ f s is image-localized.

Now we are ready for the main result of the paper. The next theorem provides algorithms for computing
the greatest presimulations or prebisimulations of a given type between two fuzzy Kripke models and
consequently gain the greatest simulations or bisimulations of a given type, when they exist.

Theorem 5.3. LetM = (W, {Ri}i∈I,V) andM′ = (W′, {R′i }i∈I,V′) be fuzzy Kripke models, let θ ∈ { f s, bs, f b, bb, f bb,
b f b, rb}, and let a sequence {φk}k∈N of fuzzy relations from R(W,W′) be defined by

φ1 = π
θ, φk+1 = φk ∧ ϕ

θ(φk) for each k ∈N. (45)

If ⟨Im(πθ) ∪
⋃

i∈I(Im(Ri) ∪ Im(R′i ))⟩ is a finite subalgebra of H , then the following is true:

(a) the sequence {φk}k∈N is finite and descending, and there is the least natural number k such that φk = φk+1;
(b) if φk is non-empty, then it is the greatest fuzzy relation in R(W,W′) which satisfies (θ-2) and (θ-3), i.e., φk is

the greatest presimulation/prebisimulation of type θ betweenM andM′;
(c) if φk is non-empty and satisfies (θ-1), then it is the greatest fuzzy relation in R(W,W′) which satisfies (θ-1),

(θ-2) and (θ-3), i.e., φk is the greatest simulation/bisimulation of type θ betweenM andM′;
(d) if φk is empty or does not satisfy (θ-1), then there is not any fuzzy relation in R(W,W′) satisfying (θ-1), (θ-2),

and (θ-3), i.e., there is not any simulation/bisimulation of type θ betweenM andM′.

Proof. We will prove only the case θ = f s. All other cases can be proved in a similar manner.
So, let ⟨Im(π)θ ∪

⋃
i∈I(Im(Ri) ∪ Im(R′i ))⟩ be a finite subalgebra of H .

(a) According to Theorems 5.2 and 5.1, the sequence {φk}k∈N is finite and descending, so there are
k,m ∈ N such that φk = φk+m, whence φk+1 ⩽ φk = φk+m ⩽ φk+1. Thus, there is k ∈ N such that φk = φk+1,
and consequently, there is the least natural number having this property.

(b) By φk = φk+1 = φk ∧ ϕ f s(φk) we obtain that φk ⩽ ϕ f s(φk), and also, φk ⩽ φ1 = π f s. Therefore, by
Theorem 4.5 it follows that φk satisfies (fs-2) and (fs-3).

Let α ∈ R(W,W′) be an arbitrary fuzzy relation which satisfies (fs-2) and (fs-3). As we have already
noted, α satisfies (fs-3) if and only if α ⩽ π f s = φ1. Next, suppose that α ⩽ φn, for some n ∈ N. Then for
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every i ∈ I we have that α−1
◦ Ri ⩽ R′i ◦ α

−1 ⩽ R′i ◦ φ
−1
n , and according to Lemma 4.4(b), α−1 ⩽ (R′i ◦ φ

−1
n )/Ri,

i.e., α ⩽ [(R′i ◦ φ
−1
n )/Ri]−1 = ϕ f s(φn). Therefore, α ⩽ φn ∧ ϕ f s(φn) = φn+1. Now, by induction we obtain that

α ⩽ φn, for every n ∈ N, and hence, α ⩽ φk. This means that φk is the greatest fuzzy relation in R(W,W′)
satisfying (fs-2) and (fs-3).

(c) This follows immediately from (b).
(d) Suppose thatφk does not satisfy (fs-1). Letφ ∈ R(W,W′) be an arbitrary fuzzy relation which satisfies

(fs-1), (fs-2) and (fs-3). According to (b) of this theorem, φ ⩽ φk, so we have that Ri ⩽ R′i ◦ φ
−1 ⩽ R′i ◦ φ

−1
k .

But, this contradicts our starting assumption that φk does not satisfy (fs-1). Hence, we conclude that there
is not any fuzzy relation in R(W,W′) which satisfies (fs-1), (fs-2) and (fs-3).

Algorithm 5.4. [Testing the existence and computing the greatest simulations and bisimulation] The input of this
algorithm are two fuzzy Kripke modelsM = (W, {Ri}i∈I,V) andM′ = (W′, {R′i }i∈I,V′). The algorithm decides
whether there is a simulation or bisimulation betweenM andM′ of a given typeθ ∈ { f s, bs, f b, bb, f bb, b f b, rb},
and when it exists, the output of the algorithm is the greatest simulation/bisimulation of type θ.

The procedure is to construct a sequence of fuzzy relations {φk}k∈N, in the following way:

(A1) In the first step we compute πθ and we set φ1 = πθ.
(A2) After the kth step let a fuzzy relation φk has been constructed.
(A3) In the next step we construct the fuzzy relation φk+1 by means of the formula φk+1 = φk ∧ ϕθ(φk).
(A4) Simultaneously, we check whether φk+1 = φk.
(A5) The first time we find a number k such that φk+1 = φk, the procedure of constructing the sequence

{φk}k∈N terminates, and if φk is non-empty, then it is the greatest presimulation/prebisimulation
betweenM andM′ of type θ. If φk is empty, then there is not any presimulation/prebisimulation nor
simulation/bisimulation of type θ betweenM andM′;

(A6) If φk is non-empty, in the final step we check whether it satisfies (θ-1). If φk satisfies (θ-1), then it is the
greatest simulation/bisimulation between M and M′ of type θ, and if φk does not satisfy (θ-1), then
there is not any simulation/bisimulation betweenM andM′ of type θ.

If the underlying Heyting algebra H is locally finite, in the sense that each finitely generated subalgebra
of H is finite, then the algorithm terminates in a finite number of steps, for arbitrary finite fuzzy Kripke
models over H . Inter alia, examples of locally finite Heyting algebras include Gödel algebras and linearly
ordered Heyting algebras. On the other hand, if H is not locally finite, then the algorithm terminates in a
finite number of steps under conditions determined by Theorems 5.1 and 5.3.

However, regardless of the local finiteness of the underlying Heyting algebra and the fulfillment of the
conditions of Theorems 5.1 and 5.3, the conditions under which there exists the greatest simulation/bisim-
ulation of a given type and the greatest simulation/bisimulation itself are characterized by the following
theorem.

If the underlying Heyting algebra H satisfies condition (6), we have the following.

Theorem 5.5. LetM = (W, {Ri}i∈I,V) andM′ = (W′, {R′i }i∈I,V′) be two finite fuzzy Kripke models, let θ ∈ { f s, bs,
f b, bb, f bb, b f b, rb}, let {φk}k∈N be the sequence of fuzzy relations from R(W,W′) defined by (45), and let

φ =
∧
k∈N

φk. (46)

Then the following is true:

(a) if φ is non-empty, then it is the greatest fuzzy relation in R(W,W′) which satisfies (θ-2) and (θ-3), i.e., it is
the greatest presimulation/prebisimulation of type θ betweenM andM′;

(b) if φ is non-empty and satisfies (θ-1), then it is the greatest fuzzy relation in R(W,W′) which satisfies (θ-1),
(θ-2) and (θ-3), i.e., it is the greatest simulation/bisimulation of type θ betweenM andM′;

(c) if φ is empty or does not satisfy (θ-1), then there is not any fuzzy relation in R(W,W′) which satisfies (θ-1),
(θ-2) and (θ-3), i.e., there is not any simulation/bisimulation of type θ betweenM andM′.
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Proof. Only the case θ = f s will be proved. All other cases can be proved similarly.
(a) For arbitrary i ∈ I, w ∈W and w′ ∈W′ we have that∧

k∈N

(R′i ◦ φ
−1
k )

 (w′,w) =
∧
k∈N

(R′i ◦ φ
−1
k )(w′,w) =

∧
k∈N

 ∨
u′∈W′

R′i (w
′,u′) ∧ φ−1

k (u′,w)


=

∨
u′∈W′

∧
k∈N

R′i (w
′,u′) ∧ φ−1

k (u′,w)

 (by (7))

=
∨

u′∈W′

R′i (w
′,u′) ∧

∧
k∈N

φ−1
k (u′,w)


 (by (5))

=
∨

u′∈W′

(
R′i (w

′,u′) ∧ φ−1(u′,w)
)
= (R′i ◦ φ

−1)(w′,w),

which means that∧
k∈N

R′i ◦ φ
−1
k = R′i ◦ φ

−1,

for every i ∈ I. The use of condition (7) is justified by the facts that W′ is finite, and that {φ−1
k (u′,w)}k∈N is a

non-increasing sequence, so {R′i (w
′,u′) ∧ φ−1

k (u′,w)}k∈N is also a non-increasing sequence.
Now, for all k ∈Nwe have that

φ ⩽ φk+1 ⩽ ϕ
f s(φk) = [(R′i ◦ φ

−1
k )/Ri]−1,

which is equivalent to

φ−1
◦ Ri ⩽ R′i ◦ φ

−1
k .

As the last inequation holds for every k ∈Nwe have that

φ−1
◦ Ri ⩽

∧
k∈N

R′i ◦ φ
−1
k = R′i ◦ φ

−1,

for every i ∈ I. Therefore, φ satisfies (fs-2). Moreover, φ ⩽ φ1 = π f s, so φ also satisfies (fs-3).
Next, let α ∈ R(W,W′) be an arbitrary fuzzy relation satisfying (fs-2) and (fs-3). According to Theorem

4.5, α ⩽ ϕ f s(α) and α ⩽ π f s = φ1. By induction, we can easily prove that α ⩽ φk for every k ∈ N, therefore,
α ⩽ φ. This means that φ is the greatest fuzzy relation R(W,W′) which satisfies (fs-2) and (fs-3).

The assertion (b) follows immediately from (a), whereas the assertion (c) can be proved in the same way
as the assertion (d) of Theorem 5.3.

According to the previous theorem, if there is the greatest presimulation/prebisimulation of type θ, it is
equal to the infimum of the sequence {φk}k∈N defined by formula (45). Computing that infimum requires
computing all members of the sequence, which can only be effectively done when this sequence is finite, in a
way described in Algorithm 5.4. However, what to do if this sequence is not finite, i.e., if Algorithm 5.4 fails
to terminate in a finite number of steps? In such situations we could “approximate” fuzzy simulations and
bisimulations with crisp simulations and bisimulations. We will show how Algorithm 5.4 can be modified
to test the existence and compute the greatest crisp simulations and bisimulations. The modified algorithm
always terminates in a finite number of steps, independently of the properties of the underlying structure
of truth values. Also, in Section 6 many interesting examples are given concerning the crisp simulations
and bisimulations from which the following conclusions are drawn. First, the greatest crisp simulations
and bisimulations cannot be obtained simply by taking the crisp parts of the greatest fuzzy simulations
and bisimulations. Second, there are cases in which there is a fuzzy simulation/bisimulation of a given type



M. Stanković et al. / Filomat 37:3 (2023), 711–743 727

between two fuzzy Kripke models, but there is not any crisp simulation/bisimulation of this type between
them.

Let W and W′ be non-empty finite sets of worlds, and let Rc(W,W′) denote the set of all crisp relations
from R(W,W′). For each fuzzy relation φ ∈ R(W,W′) we have that φc

∈ Rc(W,W′), where φc denotes the
crisp part of a fuzzy relation φ, i.e., a function φc : W ×W′

→ {0, 1} defined by φc(w,w′) = 1 if φ(w,w′) = 1,
and φc(w,w′) = 0, if φ(w,w′) < 1, for arbitrary w ∈ W and w′ ∈ W′. Equivalently, φc is considered as an
ordinary crisp relation between W and W′ given by φc = {(w,w′) ∈W ×W′

| φ(w,w′) = 1}.
For each function ϕ : R(W,W′)→ R(W,W′) we define a function ϕc : Rc(W,W′)→ Rc(W,W′) by

ϕc(φ) = (ϕ(φ))c for any φ ∈ Rc(W,W′).

If ϕ is isotone, then it can be easily shown that φc is also an isotone function.

Theorem 5.6. Let W and W′ be non-empty finite sets, let ϕ : R(W,W′)→ R(W,W′) be an isotone function and let
π ∈ R(W,W′) be a given fuzzy relation. A crisp relation ϱ ∈ Rc(W,W′) is the greatest crisp solution in R(W,W′)
to the system

χ ⩽ ϕ(χ), χ ⩽ π, (47)

if and only if it is the greatest solution in Rc(W,W′) to the system

ξ ⩽ ϕc(ξ), ξ ⩽ πc, (48)

where χ is an unknown fuzzy relation and ξ is an unknown crisp relation.
Furthermore, a sequence {ϱk}k∈N ⊆ R(W,W′) defined by

ϱ1 = π
c, ϱk+1 = ϱ ∧ ϕ

c(ϱk) for every k ∈N (49)

is a finite descending sequence of crisp relations, and the least member of this sequence is the greatest solution to the
system (48) in Rc(W,W′).

Proof. The proof of this theorem can be obtained simply by translating the proof of Theorem 5.8 from [28]
to the case of relations between the two sets.

Taking ϕ to be any of the functions ϕθ, for θ ∈ { f s, bs, f b, bb, f bb, b f b, rb}, Theorem 5.6 gives algorithms
for deciding whether there is a crisp simulation/bisimulation of a given type between two fuzzy Kripke
models, and computing the greatest one, when it exists. As it can be seen in Theorem 5.6, these algorithms
always terminate in a finite number of steps, independently of the properties of the underlying structure
of truth values.

It is worth noting that functions (ϕθ)c, for all θ ∈ { f s, bs, f b, bb, f bb, b f b, rb}, can be characterized as
follows:

(w,w′) ∈ (ϕ f s)c(ϱ) ⇔ (∀i ∈ I)(∀u ∈W)Ri(w,u) ⩽ (R′i ◦ ϱ
−1)(w′,u)

(w,w′) ∈ (ϕbs)c(ϱ) ⇔ (∀i ∈ I)(∀u ∈W)Ri(u,w) ⩽ (ϱ ◦ R′i )(u,w
′)

(ϕ f b)c(ϱ) = (ϕ f s)c(ϱ) ∧ [(ϕ f s)c(ϱ−1)]−1

(ϕbb)c(ϱ) = (ϕbs)c(ϱ) ∧ [(ϕbs)c(ϱ−1)]−1

(ϕ f bb)c(ϱ) = (ϕ f s)c(ϱ) ∧ [(ϕbs)c(ϱ−1)]−1

(ϕb f b)c(ϱ) = (ϕbs)c(ϱ) ∧ [(ϕ f s)c(ϱ−1)]−1

(ϕrb)c(ϱ) = (ϕ f s)c(ϱ) ∧ [(ϕbs)c(ϱ−1)]−1
∧ (ϕbs)c(ϱ) ∧ [(ϕ f s)c(ϱ−1)]−1

for all ϱ ∈ Rc(W,W′), w ∈W and w′ ∈W′.
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6. Computational examples for testing the existence and computing the greatest simulations
and bisimulations

In this section we give examples which demonstrate the application of algorithms and clarify relation-
ships between different types of simulations and bisimulations.

It is generally known that every linearly ordered Heyting algebra is a Gödel algebra (cf. [19]) and every
Gödel algebra is a Heyting algebra with the Dummett condition (x → y) ∨ (y → x) = 1 (cf. [11]). Also,
every Boolean algebra is a Heyting algebra, with A → B given by ¬A ∨ B, or ¬¬A = A. Therefore, several
examples are on the standard Gödel modal logic over [0, 1], while the last example is on the Boolean algebra
of all subsets of some set A.

In the sequel, for anyθ ∈ { f s, bs, f b, bb, f bb, b f b, rb}, byφθ we will denote the greatest simulation/bisimula-
tion of type θ between two given fuzzy Kripke models, if it exists. On the other hand, by φθ∗ we will denote
the greatest fuzzy relation satisfying (θ-2) and (θ-3). It can be empty, but if it is non-empty, it is the
greatest presimulation/prebisimulation of type θ. Analogously, ϱθ will denote the greatest crisp simula-
tion/bisimulation of type θ, if it exists, and ϱθ∗ the greatest crisp relation satisfying (θ-2) and (θ-3). If it is
non-empty, it is the greatest crisp presimulation/prebisimulation of type θ.

Example 6.1. Let M = (W, {Ri}i∈I,V) and M′ = (W′, {R′i }i∈I,V′) be two fuzzy Kripke models over the
Gödel structure, where W = {u, v,w}, W′ = {u′, v′} and set I = {1}. Fuzzy relations R1, R′1 and fuzzy sets Vp,
Vq, V′p and V′q are represented by the following fuzzy matrices and vectors:

R1 =

1 0 0.9
1 0.1 0.5
1 0 1

 , Vp =

 1
0.2
1

 , Vq =

 1
0.7
1

 , (50)

R′1 =
[
1 0.2
1 0.2

]
, V′p =

[
1

0.2

]
, V′q =

[
1

0.7

]
. (51)

Using algorithms for testing the existence of simulations and bisimulations between fuzzy Kripke models
M andM′ and computing the greatest ones, we have:

φ f s
∗ = φ

f s =

1 0.2
1 1
1 0.2

 , φbs
∗ = φ

bs =

1 0.2
1 1
1 0.2

 ,

φ f b
∗ = φ

f b =

 1 0.2
0.2 1
1 0.2

 , φbb
∗ =

0.1 0.1
0.1 0.1
0.1 0.1

 ,

φ f bb
∗ =

0.2 0.2
0.1 0.1
0.2 0.2

 , φb f b
∗ = φ

b f b =

 1 0.2
0.2 1
1 0.2

 , φrb
∗ =

0.1 0.1
0.1 0.1
0.1 0.1

 ,

whileφbb,φ f bb andφrb do not exist, sinceφbb
∗ ,φ f bb

∗ andφrb
∗ do not satisfy (bb-1), ( f bb-1) and (rb-1), respectively.

Algorithms for testing the existence and computing crisp simulations and bisimulations yield:

ϱ f s
∗ = ϱ

f s =

1 0
1 1
1 0

 , ϱbs
∗ = ϱ

bs =

1 0
1 1
1 0

 ,

while ϱ f b
∗ , ϱbb

∗ , ϱ f bb
∗ , ϱb f b

∗ and ϱrb
∗ are empty, so ϱ f b, ϱbb, ϱ f bb, ϱb f b and ϱrb do not exist. Therefore, we have that

there are no the greatest crisp f b- and b f b-bisimulations, regardless of the fact that there are the greatest
fuzzy bisimulations of these types.
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If we consider the reverse fuzzy Kripke models forM andM′, we have the opposite situation. Namely,
in this case there are no f b- and b f b-bisimulations, while there are the greatest f s- and bs-simulations, as
well as the greatest bb- and f bb-bisimulations. Since regular bisimulations are self-dual, there is not any
regular bisimulation even between the reverse fuzzy Kripke models.

The following example illustrates the situation where there are all five types of bisimulations, and they
are mutually identical, which also holds for all types of crisp bisimulations.

Example 6.2. Let us replace R1, Vp and Vq in (50) with

R1 =

0.9 1 1
0.4 0.4 0.5
0.4 0.5 0.5

 , Vp =

0.40.3
0.3

 , Vq =

0.90.4
0.4

 , (52)

and R′1, V′p and V′q in (51) with

R′1 =
[
0.9 1
0.4 0.5

]
, V′p =

[
0.4
0.3

]
, V′q =

[
0.9
0.4

]
. (53)

Then, we have:

φ f s
∗ = φ

f s =

1 0.3
1 1
1 1

 , φbs
∗ = φ

bs =

 1 0.3
0.9 1
0.9 1

 ,

φ f b
∗ = φ

f b = φbb
∗ = φ

bb = φ f bb
∗ = φ

f bb = φb f b
∗ = φ

b f b = φrb
∗ = φ

rb =

 1 0.3
0.3 1
0.3 1

 ,

and also:

ϱ f s
∗ = ϱ

f s =

1 0
1 1
1 1

 , ϱbs
∗ = ϱ

bs =

1 0
0 1
0 1

 ,

ϱ f b
∗ = ϱ

f b = ϱbb
∗ = ϱ

bb = ϱ f bb
∗ = ϱ

f bb = ϱb f b
∗ = ϱ

b f b = ϱrb
∗ = ϱ

rb =

1 0
0 1
0 1

 .

The next example concerns simulations and bisimulations between fuzzy Kripke models with two fuzzy
relations, i.e., it concerns a modal language with two quadruples of modal operators.

Example 6.3. Let M = (W, {Ri}i∈I,V) and M′ = (W′, {R′i }i∈I,V′) be two fuzzy Kripke models over the
Gödel structure, where W = {u, v,w}, W′ = {u′, v′} and set I = {1, 2}. Fuzzy relations R1,R2, R′1,R

′

2 and fuzzy
sets Vp, Vq, V′p and V′q are represented by the following fuzzy matrices and vectors:

R1 =

0.7 0.6 0.6
1 0.6 0.6
1 0.5 0.5

 , R2 =

0.8 0.7 0.7
0.5 0.9 0.9
0.5 0.9 0.9

 , Vp =

0.90.8
0.8

 , Vq =

0.80.4
0.4

 ,

R′1 =
[
0.7 0.6
1 0.6

]
, R′2 =

[
0.8 0.7
0.5 0.9

]
, V′p =

[
0.9
0.8

]
, V′q =

[
0.8
0.4

]
.
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Algorithms for testing the existence and computing simulations and bisimulations between fuzzy Kripke
modelsM andM′ yield:

φ f s
∗ = φ

f s =

 1 0.4
0.7 1
0.7 1

 , φbs
∗ = φ

bs =

 1 0.4
0.8 1
0.8 1

 , φ f b
∗ =

0.5 0.4
0.4 0.5
0.4 0.5

 , φbb
∗ = φ

bb =

 1 0.4
0.4 1
0.4 1

 ,

φ f bb
∗ = φ

f bb =

 1 0.4
0.4 1
0.4 1

 , φb f b
∗ =

0.5 0.4
0.4 0.5
0.4 0.5

 , φrb
∗ =

0.5 0.4
0.4 0.5
0.4 0.5

 ,

and φ f b
∗ , φb f b

∗ and φrb
∗ do not satisfy ( f b-1), (b f b-1) and (rb-1), respectively, which means that φ f b, φb f b and

φrb do not exist.
On the other hand, algorithms for testing the existence and computing crisp simulations and bisimula-

tions yield:

ϱ f s
∗ = ϱ

f s =

1 0
0 1
0 1

 , ϱbs
∗ = ϱ

bs =

1 0
0 1
0 1

 , ϱbb
∗ = ϱ

bb =

1 0
0 1
0 1

 , ϱ f bb
∗ = ϱ

f bb =

1 0
0 1
0 1

 .

In this case, ϱ f b
∗ , ϱb f b

∗ and ϱrb
∗ are empty, so there are no ϱ f b, ϱb f b and ϱrb.

The following example shows what the simulations and bisimulations look like between a fuzzy Kripke
modelM = (W, {Ri}i∈I,V) and itself. We give this example to clearly see all variations and differences between
various types of simulations and bisimulations.

Example 6.4. LetM = (W, {Ri}i∈I,V) be a fuzzy Kripke model over the Gödel structure, where W = {u, v,w}
and set I = {1}. A fuzzy relation R1 and fuzzy sets Vp, Vq, are represented by the following fuzzy matrices
and vectors:

R1 =

0.7 0.5 0.2
0.4 0.8 1
1 0.3 0.8

 , Vp =

0.60.5
0.1

 , Vq =

0.30.7
0.8

 . (54)

If we setM′ =M, then we have:

φ f s
∗ = φ

f s =

 1 0.5 0.1
0.3 1 0.1
0.3 0.5 1

 , φbs
∗ = φ

bs =

 1 0.5 0.1
0.3 1 0.1
0.3 0.7 1

 ,

φ f b
∗ = φ

f b =

 1 0.2 0.1
0.2 1 0.1
0.1 0.1 1

 , φbb
∗ = φ

bb =

 1 0.3 0.1
0.3 1 0.1
0.1 0.1 1

 ,

φ f bb
∗ = φ

f bb =

 1 0.3 0.1
0.2 1 0.1
0.1 0.1 1

 , φb f b
∗ = φ

b f b =

 1 0.2 0.1
0.3 1 0.1
0.1 0.1 1

 , φrb
∗ = φ

rb =

 1 0.2 0.1
0.2 1 0.1
0.1 0.1 1

 .

On the other hand, all crisp simulations and bisimulations are equal to the equality relation (identity matrix).

The last example of this section shows what the simulations and bisimulations look like between two
fuzzy Kripke models where underlying structure is Boolean algebra. It is especially interesting that the
Boolean algebra in this example is not linearly ordered.

Example 6.5. Let A = {a, b, c} be an arbitrary set of three elements and let P(A) be the power set of
A. Structure (P(A),∪,∩,′ , ∅,A) with operations of union, intersection, and complementation, and the
distinguished subsets ∅ and A, is called the Boolean algebra of all subsets of A, or the power set algebra on A.
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LetM = (W, {Ri}i∈I,V) andM′ = (W′, {R′i }i∈I,V′) be two fuzzy Kripke models over the power set algebra
on A, where W = {u, v,w}, W′ = {u′, v′} and set I = {1}. Fuzzy relations R1, R′1 and fuzzy sets Vp, Vq, V′p and
V′q are represented by the following fuzzy matrices and vectors:

R1 =

 A ∅ A
{a, b} {b, c} {a, c}

A ∅ A

 , Vp =

 A
{b}
A

 , Vq =

 A
{b, c}

A

 ,

R′1 =
[
A {b}
A {b, c}

]
, V′p =

[
A
{b}

]
, V′q =

[
A
{b, c}

]
.

Algorithms for testing the existence and computing simulations and bisimulations between fuzzy Kripke
modelsM andM′ yield:

φ f s
∗ = φ

f s =

A {b}
A A
A {b}

 , φbs
∗ = φ

bs =

A {b}
A A
A {b}

 , φ f b
∗ = φ

f b =

 A {b}
{b} A
A {b}

 , φbb
∗ =

{a, b} {b}{b} A
{a, b} {b}

 ,

φ f bb
∗ =

{a, b} {b}
{b} {a, b}
{a, b} {b}

 , φb f b
∗ = φ

b f b =

 A {b}
{b} A
A {b}

 , φrb
∗ =

{a, b} {b}
{b} {a, b}
{a, b} {b}

 ,

and φbb
∗ , φ f bb

∗ and φrb
∗ do not satisfy (bb-1), ( f bb-1) and (rb-1), respectively, which means that φbb, φ f bb and

φrb do not exist.
On the other hand, algorithms for testing the existence and computing crisp simulations and bisimula-

tions yield:

ϱ f s
∗ = ϱ

f s =

A ∅

A A
A ∅

 , ϱbs
∗ = ϱ

bs =

A ∅

A A
A ∅

 ,

while ϱ f b
∗ , ϱbb

∗ , ϱ f bb
∗ , ϱb f b

∗ and ϱrb
∗ are empty, so there are no ϱ f b, ϱbb, ϱ f bb, ϱb f b and ϱrb, similar like in Example 6.1.

7. Afterset and foreset fuzzy Kripke models

In this section, we present several ways to reduce the number of worlds of a fuzzy Kripke model while
preserving its semantic properties. In other words, we provide a construction of a reduced fuzzy Kripke
model which is ΦI,H -equivalent, ΦI,H

+ -equivalent or ΦI,H
− -equivalent to the original fuzzy Kripke model.

The following theorem was proved in [55] (see also [31]).

Theorem 7.1. Let Q be a fuzzy quasi-order on a set W and E the natural fuzzy equivalence of Q. Then

(a) For arbitrary w,u ∈W the following conditions are equivalent:

(i) E(w,u) = 1;

(ii) Ew = Eu;

(iii) Qw = Qu;

(iv) Qw = Qu.

(b) Functions Qw 7→ Ew of W/Q to W/E, and Qw 7→ Qw of W/Q to W\Q are bijective functions.

If W is a finite set with n members, then a fuzzy quasi-order Q on W is viewed as an n × n fuzzy matrix
with entries in H (it is usually identified with that matrix, which is called a fuzzy quasi-order matrix). In
that case Q-aftersets are row vectors, whereas Q-foresets are column vectors of this matrix. The previous
theorem says that the ith and jth row vectors of this matrix are equal if and only if its ith and jth column
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vectors are equal, and vice versa. Moreover, we have that a fuzzy quasi-order Q is a fuzzy order if and only
if all its row vectors are different, or equivalently, if and only if all its column vectors are different.

Let F = (W, {Ri}i∈I) be a fuzzy Kripke frame over H and let Q be a fuzzy quasi-order on W. For each
i ∈ I we can define a fuzzy relation RW/Q

i : W/Q ×W/Q→ H by

RW/Q
i (Qu,Qv) =

∨
w,w′∈W

Q(u,w) ∧ Ri(w,w′) ∧Q(w′, v), (55)

or equivalently

RW/Q
i (Qu,Qv) = (Q ◦ Ri ◦Q)(u, v) = Qu ◦ Ri ◦Qv, (56)

for all u, v ∈ W. According to the statement (a) of Theorem 7.1, RW/Q
i is well-defined, for each i ∈ I, and we

have that F/Q = (W/Q, {RW/Q
i }i∈I) is a fuzzy Kripke frame, called the afterset fuzzy Kripke frame of Fw.r.t. Q.

In addition, ifM = (W, {Ri}i∈I,V) is a fuzzy Kripke model, then we define the fuzzy functions RW/Q
i as in

(55), for every propositional variable p ∈ PV we define a fuzzy set VW/Q
p ∈ F (W/Q) by

VW/Q
p (Qw) =

∨
u∈W

Vp(u) ∧Q(u,w) = (Vp ◦Q)(w) = Vp ◦Qw, (57)

for any w ∈W, and we define a function VW/Q : (W/Q) × (PV ∪H)→ H by

VW/Q(Qw, p) = VW/Q
p (Qw) and VW/Q(Qw, t) = t,

for all w ∈ W, p ∈ PV and t ∈ H. We inductively extend VW/Q to a function VW/Q : (W/Q) × ΦI,H → H as
in (V1)-(V6), and for each A ∈ ΦI,H we define a fuzzy set VW/Q

A ∈ F (W/Q) by VW/Q
A (Qw) = VW/Q(Qw,A), for

each A ∈ ΦI,H . Then we have thatM/Q = (W/Q, {RW/Q
i }i∈I,VW/Q) is a fuzzy Kripke model, which is called

the afterset fuzzy Kripke model of M w.r.t. Q. If E is a fuzzy equivalence, then M/E will be called the factor
fuzzy Kripke model ofMw.r.t. E.

In the same way, using foresets instead of aftersets, we can define the foreset fuzzy Kripke model of M
w.r.t. Q. However, this does not give anything new because the afterset and the foreset fuzzy Kripke models
ofMw.r.t. Q are isomorphic.

The following theorem can be regarded as a counterpart of the well-known Second Isomorphism
Theorem from algebra (cf. [8] §2.6). The proof of this theorem can be obtained directly from the proof of
Theorem 3.3 from [55], so it is omitted.

Theorem 7.2. LetM = (W, {Ri}i∈I,V) be a fuzzy Kripke model and let P and Q be fuzzy quasi-orders onM such that
P ⩽ Q. Then a fuzzy relation Q/P on W/P defined by

Q/P(Pw,Pu) = Q(w,u), for all w,u ∈W, (58)

is a fuzzy quasi-order on W/P and fuzzy Kripke modelsM/Q and (M/P)/(Q/P) are isomorphic.

Remark 7.3. For any given fuzzy quasi-order Q on a fuzzy Kripke model M = (W, {Ri}i∈I,V), the rule
w 7→ Qw defines a surjective function of W onto W/Q. This means that the afterset fuzzy Kripke model
M/Q has smaller or equal number of worlds than the fuzzy Kripke modelM.

LetM = (W, {Ri}i∈I,V) be a fuzzy Kripke model. It is easy to see that for any θ ∈ { f s, bs, f b, bb, f bb, b f b, rb}
the equality relation on W satisfies (θ-1), (θ-2) and (θ-3), i.e., it is a θ-simulation/bisimulation onM (between
M and itself). It follows that the union of all θ-simulations/bisimulations onM is non-empty, and it is also
a θ-simulation/bisimulation, i.e., it is the greatest θ-simulation/bisimulation on M. We can also easily verify
that the greatest θ-simulation (for θ ∈ { f s, bs}) and the greatest θ-bisimulation (for θ ∈ { f bb, b f b}) are fuzzy
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quasi-orders, while the greatest θ-bisimulation (for θ ∈ { f b, bb, rb}) is a fuzzy equivalence. This emphasizes
the importance of studying θ-simulations that are fuzzy quasi-orders, which will be called θ-simulation
fuzzy quasi-orders (for θ ∈ { f s, bs}), as well as of studying θ-bisimulations that are fuzzy equivalences, which
will be called θ-bisimulation fuzzy equivalences (for θ ∈ { f b, bb, rb}).

In the following text, special attention will be paid to forward and backward simulation fuzzy quasi-
orders and forward and backward bisimulation fuzzy equivalences on a Kripke model.

The following two theorems establish connections between a modelM and its afterset modelM/Q, that
can be regarded as counterparts of the well-known First Isomorphism Theorem from algebra.

Theorem 7.4. LetM = (W, {Ri}i∈I,V) be a fuzzy Kripke model, let Q be a fuzzy quasi-order on W, and letM/Q =
(W/Q, {RW/Q

i }i∈I,VW/Q) be the afterset fuzzy Kripke model with respect to Q. Then the following is valid:

(A) A fuzzy relation φ ∈ R(W,W/Q) defined by

φ(u,Qv) = Q(u, v), for all u, v ∈W, (59)

is a backward simulation betweenM andM/Q.

(B) If Q is a forward simulation onM, then φ is a forward simulation betweenM andM/Q.

Proof. (A) We first notice that φ is a well-defined function, in the sense that for all u, v1, v2 ∈ W such that
Qv1 = Qv2 we have that φ(u,Qv1 ) = φ(u,Qv2 ). Indeed, according to Theorem 7.1 we have that Qv1 = Qv2 and

φ(u,Qv1 ) = Q(u, v1) = Qv1 (u) = Qv2 (u) = Q(u, v2) = φ(u,Qv2 ).

Further, for arbitrary u, v ∈W, p ∈ PV and i ∈ I

Vp(u) ⩽ (Q ◦ Vp ◦Q)(u) =
∨
w∈W

Q(u,w) ∧ Vp ◦Q(w) =
∨
w∈W

φ(u,Qw) ∧ VW/Q
p (Qw) = (φ ◦ VW/Q

p )(u), (60)

(Ri ◦ φ)(u,Qv) =
∨
w∈W

Ri(u,w) ∧ φ(w,Qv) =
∨
w∈W

Ri(u,w) ∧Q(w, v) = (Ri ◦Q)(u, v)

⩽ (Q ◦Q ◦ Ri ◦Q)(u, v) =
∨
w∈W

Q(u,w) ∧ (Q ◦ Ri ◦Q)(w, v)

=
∨

Qw∈W/Q

φ(u,Qw) ∧ RW/Q
i (Qw,Qv) = (φ ◦ RW/Q

i )(u,Qv), (61)

(Vp ◦ φ)(Qv) =
∨
w∈W

Vp(w) ∧ φ(w,Qv) =
∨
w∈W

Vp(w) ∧Q(w, v) = (Vp ◦Q)(v) = VW/Q
p (Qv). (62)

Note that the inequalities in (60) and (61) follow from the fact that α ⩽ α ◦ S and α ⩽ S ◦ α, for each
fuzzy relation or fuzzy set α, and each reflexive fuzzy relation S on a given set. Therefore, φ is a backward
simulation betweenM andM/Q.
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(B) For arbitrary u, v ∈W, p ∈ PV and i ∈ I we have

(VW/Q
p ◦ φ−1)(u) =

∨
Qw∈W/Q

VW/Q
p (Qw) ∧ φ−1(Qw,u) =

∨
w∈W

(Vp ◦Q)(w) ∧Q−1(w,u)

= (Vp ◦Q ◦Q−1)(u) ⩾ Vp(u) (due to the transitivity of Q ◦Q−1), (63)

(φ−1
◦ Ri)(Qv,u) =

∨
w∈W

φ−1(Qv,w) ∧ Ri(w,u) =
∨
w∈W

Q−1(v,w) ∧ Ri(w,u) = (Q−1
◦ Ri)(v,u), (64)

(RW/Q
i ◦ φ−1)(Qv,u) =

∨
Qw∈W/Q

RW/Q
i (Qv,Qw) ∧ φ−1(Qw,u)

=
∨
w∈W

(Q ◦ Ri ◦Q)(v,w) ∧Q−1(w,u) = (Q ◦ Ri ◦Q ◦Q−1)(v,u), (65)

(φ−1
◦ Vp)(Qv) =

∨
w∈W

φ−1(Qv,w) ∧ Vp(w) =
∨
w∈W

Q−1(v,w) ∧ Vp(w)

= (Q−1
◦ Vp)(v) = (Vp ◦Q)(v) = VW/Q

p (Qv). (66)

From (63) and (66) it immediately follows that φ satisfies ( f s-1) and ( f s-3). With the additional assumption
that Q is a forward simulation, and due to reflexivity of Q, (64) and (65) yield

(φ−1
◦ Ri)(u,Qv) = (Q−1

◦ Ri)(u, v) ⩽ (Ri ◦Q−1)(u, v) ⩽ (Q ◦ Ri ◦Q ◦Q−1)(u, v) = (RW/Q
i ◦ φ−1)(u,Qv).

Therefore, φ satisfies ( f s-2), so it is a forward simulation.

Remark 7.5. If we define VW/Q
p ∈ F (W/Q) and φ ∈ R(W,W/Q) by

VW/Q
p (Qv) = (Q ◦ Vp)(v), φ(u,Qv) = Q−1(u, v) = Q(v,u), for all u, v ∈W, p ∈ PV, (67)

then without any additional assumption we have that φ is a forward simulation between M and M/Q,
and with the additional assumption that Q−1 is a backward simulation on M we get that φ is a backward
simulation betweenM andM/Q. This can be easily shown, in a similar way as in the proof of Theorem 7.4.

Theorem 7.6. Let M = (W, {Ri}i∈I,V) be a fuzzy Kripke model, let E be a fuzzy equivalence on W, and let M/E =
(W/E, {RW/E

i }i∈I,VW/E) be the afterset fuzzy Kripke model with respect to E.

(A) A fuzzy relation φ ∈ R(W,W/E) defined by

φ(u,Ev) = E(u, v), for all u, v ∈W, (68)

is both a forward and a backward simulation betweenM andM/E.

(B) The following conditions are equivalent:

(i) E is a forward (resp. backward) bisimulation fuzzy equivalence onM;

(ii) φ is a forward (resp. backward) bisimulation betweenM andM/E;

(iii) φ is a backward-forward (resp. forward-backward) bisimulation betweenM andM/E.

Proof. (A) Since E = E−1 and E ◦ Vp = Vp ◦ E, for each p ∈ PV, it follows directly from Theorem 7.4 and
Remark 7.5 that φ is both a forward and a backward simulation.

(B) We will prove only the assertions that refer to forward bisimulations. Claims concerning backward
bisimulations can be proved in a similar way.

(i)⇒(ii) and (i)⇒(iii). Suppose that E is a forward bisimulation. This means that E ◦ Ri ⩽ Ri ◦ E and
E ◦ Vp = Vp ◦ E ⩽ Vp, for all i ∈ I and p ∈ PV. According to (A) we have that φ is a forward and backward
simulation, so it remains to prove that φ−1 is a forward simulation.
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For arbitrary u, v ∈W, p ∈ PV and i ∈ I we have

VW/E
p (Ev) = (Vp ◦ E)(v) =

∨
w∈W

Vp(w) ∧ E(w, v) =
∨
w∈W

Vp(w) ∧ φ(w,Ev) = (Vp ◦ φ)(v), (69)

(φ ◦ RW/E
i )(u,Ev) =

∨
Ew∈W/E

φ(u,Ew) ◦ RW/E
i (Ew,Ev) =

∨
w∈W

E(u,w) ∧ (E ◦ Ri ◦ E)(w, v)

= (E ◦ E ◦ Ri ◦ E)(u, v) = (E ◦ Ri ◦ E)(u, v) ⩽ (Ri ◦ E ◦ E)(u, v) = (Ri ◦ E)(u, v)

=
∨
w∈W

Ri(u,w) ∧ E(w, v) =
∨
w∈W

Ri(u,w) ∧ φ(w,Ev) = (Ri ◦ φ)(u,Ev), (70)

(φ ◦ VW/E
p )(u) =

∨
Ew∈W/E

φ(u,Ew) ∧ VW/E
p (Ew) =

∨
w∈W

E(u,w) ∧ (Vp ◦ E)(w)

= (E ◦ E ◦ Vp ◦ E)(u) = (E ◦ Vp)(u) ⩽ Vp(u). (71)

Thus, φ−1 is a forward simulation, whence we get that φ is a forward bisimulation, and also a backward-
forward bisimulation. In the same way we prove the assertion that refers to backward bisimulations.

(ii)⇒(i) and (iii)⇒(i). Suppose that φ is a forward bisimulation or a backward-forward bisimulation, i.e.,
that φ−1 is a forward simulation. According to (71) we get E ◦ Vp = φ ◦ VW/E

p ⩽ Vp, for each p ∈ PV, and
according to (70) we get

(E ◦ Ri ◦ E)(u, v) = (φ ◦ RW/E
i )(u,Ev) ⩽ (Ri ◦ φ)(u,Ev) = (Ri ◦ E)(u, v),

for all u, v ∈W and i ∈ I. From there we conclude that E ◦ Ri ◦ E ⩽ Ri ◦ E, which yields

E ◦ Ri ⩽ E ◦ Ri ◦ E ⩽ Ri ◦ E.

Therefore, E is a forward bisimulation.

The following theorems provide conditions under which the factor Kripke modelsM andM/E areΦI,H -
equivalent, ΦI,H

+ -equivalent andΦI,H
− -equivalent, respectively. They are proven under the assumption that

the underlying complete Heyting algebra H is linearly ordered.

Theorem 7.7. LetM = (W, {Ri}i∈I,V) be a image-finite fuzzy Kripke model over a linearly ordered Heyting algebra,
let E be a forward bisimulation fuzzy equivalence onM, andM/E = (W/E, {RW/E

i }i∈I,VW/E) be the factor fuzzy Kripke
model with respect to E. A fuzzy relation φ ∈ R(W,W/E) defined by

φ(u,Ev) = E(u, v), for all u, v ∈W, (72)

is a forward bisimulation and the following is true:

φ(u,Qv) ⩽
∧

A∈ΦI,H
+

VA(u)↔ VW/E
A (Ev), for all u, v ∈W. (73)

Consequently,M andM/E are ΦI,H
+ -equivalent fuzzy Kripke models.

Proof. The fact that φ is a forward bisimulation follows from Theorem 7.6. By induction on complexity of a
formula A ∈ ΦI,H

+ we will prove that

φ(u,Ev) ⩽ VA(u)↔ VW/E
A (Ev), for all u, v ∈W and every A ∈ ΦI,H

+ . (74)

Induction basis: If A = p ∈ PV, then from the fact that φ is forward bisimulation we have

φ−1
◦ Vp ⩽ VW/E

p , φ ◦ VW/E
p ⩽ Vp,
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and according to Lemma 4.3, it follows

φ−1 ⩽ VW/E
p /Vp = (Vp\VW/E

p )−1 , φ ⩽ Vp/VW/E
p ,

whence

φ ⩽ Vp\VW/E
p , φ ⩽ Vp/VW/E

p ,

i.e.,

φ ⩽ (Vp\VW/E
p ) ∧ (Vp/VW/E

p ) = Vp ↔ VW/E
p .

Therefore, (74) holds for any propositional variable p, and it trivially holds for any truth constant t.
Induction step: a) Let A = B ∧ C and let (74) hold for B and C, i.e., φ ⩽ VB ↔ VW/E

B and φ ⩽ VC ↔ VW/E
C .

This yields

φ ⩽ (VB ↔ VW/E
B ) ∧ (VC ↔ VW/E

C ).

Using the property of Heyting algebras (x1 ↔ y1) ∧ (x2 ↔ y2) ⩽ (x1 ∧ x2)↔ (y1 ∧ y2), we get

φ(u,Ev) ⩽ (V(u,B)↔ VW/E
B (Ev)) ∧ (V(u,C)↔ VW/E

C (Ev))

⩽ (V(u,B) ∧ V(u,C))↔ (VW/E
B (Ev) ∧ VW/E

C (Ev))

= V(u,B ∧ C)↔ VW/E
B∧C(Ev)

= VA(u)↔ VW/E
A (Ev),

for all u ∈W and Ev ∈W/E, and we conclude that (74) holds for A = B ∧ C.
b) Let A be of the form B→ C and let (74) hold for B and C. In a similar way as a), using the property of

Heyting algebras (x1 ↔ y1) ∧ (x2 ↔ y2) ⩽ (x1 → x2)↔ (y1 → y2), we prove that (74) also holds for A.
c) Let A = ♢iB and (74) let hold for B, i.e.,

φ ⩽ VB ↔ VW/E
B = (VB\VW/E

B ) ∧ (VB/VW/E
B ).

Then it follows that

φ ⩽ VB\VW/E
B and φ−1 ⩽

(
VB\VW/E

B

)−1
= VW/E

B /VB,

and according to Lemma 4.3 we finally get φ−1
◦ VB ⩽ VW/E

B . Now we have

φ−1
◦ VA = φ

−1
◦ Ri ◦ VB ⩽ RW/E

i ◦ φ−1
◦ VB according to (fb-2)

⩽ RW/E
i ◦ VW/E

B = VW/E
A ,

for every i ∈ I. Hence, from φ−1
◦ VA ⩽ VW/E

A we can conclude that φ−1 ⩽ VW/E
A /VA = (VA\VW/E

A )−1, whence
φ ⩽ VA\VW/E

A . In a similar way we can conclude that φ ⩽ VA/VW/E
A , which means that

φ ⩽ (VA\VW/E
A ) ∧ (VA/VW/E

A ) = VA ↔ VW/E
A .

Therefore, we have proved that (74) holds for A = ♢iB.
d) Suppose that A = □iB and (74) holds for B. In a similar way as in c), from φ ⩽ VB ↔ VW/E

B , we
conclude

φ−1
◦ VB ⩽ VW/E

B , φ ◦ VW/E
B ⩽ VB.



M. Stanković et al. / Filomat 37:3 (2023), 711–743 737

Since underlying structure is linearly ordered, values φ(u,Qv) = φ−1(Ev,u), VA(u) and VW/E
A (Ev) can be

compared with each other for every u ∈W, Ev ∈W/E, therefore, case analysis can be used.
If φ−1(Qv,u) ⩽ VA(u) ∧ VW/E

A (Ev) and VA(u) , VW/E
A (Ev), then

φ(u,Ev) = φ−1(Ev,u) ⩽ VA(u) ∧ VW/E
A (Ev) = VA(u)↔ VW/E

A (Ev).

In case VA(u) = VW/E
A (Ev) we have that VA(u)↔ VW/E

A (Ev) = 1, which gives φ(u,Ev) ⩽ VA(u)↔ VW/E
A (Ev).

Hence, we only need to consider case where φ−1(Ev,u) > VA(u) ∧ VW/E
A (Ev). Without loss of generality,

we can assume that φ−1(Ev,u) > VA(u), and then we have:

VA(u) = φ−1(Ev,u) ∧ VA(u)

= φ−1(Ev,u) ∧
∧
w∈W

(Ri(u,w)→ VB(w))

=
∧
w∈W

[
φ−1(Ev,u) ∧

(
Ri(u,w)→ VB(w)

)]
(property (5))

=
∧
w∈W

[
φ−1(Ev,u) ∧

(
φ−1(Ev,u) ∧ Ri(u,w)→ VB(w)

)]
(property (9))

= φ−1(Ev,u) ∧
∧
w∈W

[
φ−1(Ev,u) ∧ Ri(u,w)→ VB(w)

]
(property (5)) (75)

Since the relation φ is a forward bisimulation, it satisfies (fb-2), i.e.

φ−1
◦ Ri ⩽ RW/E

i ◦ φ−1, for every i ∈ I.

Next, since RW/E
i is image-finite, for any w ∈W we can find Ez ∈W/E such that

φ−1(Ev,u) ∧ Ri(u,w) ⩽ RW/E
i (Ev,Ez) ∧ φ−1(Ez,w),

and it follows(
φ−1(Ev,u) ∧ Ri(u,w)

)
→ VB(w) ⩾

(
φ−1(Ez,w) ∧ RW/E

i (Ev,Ez)
)
→ VB(w).

Now, two cases need to be analyzed. First, if VB(w) = VW/E
B (Ez), then(

φ−1(Ez,w) ∧ RW/E
i (Ev,Ez)

)
→ VB(w) ⩾ RW/E

i (Ev,Ez)→ VB(w) = RW/E
i (Ev,Ez)→ VW/E

B (Ez).

On the other hand, if VB(w) , VW/E
B (Ez), then by the induction hypothesis we have that

φ−1(Ez,w) ⩽ (VB(w)↔ VW/E
B (Ez)) ⩽ VB(w).

Thus,(
φ−1(Ez,w) ∧ RW/E

i (Ev,Ez)
)
→ VB(w) = 1 ⩾ RW/E

i (Ev,Ez)→ VW/E
B (Ez).

In both cases, we have shown that for any w ∈W, we can find Ez such that(
φ−1(Ev,u) ∧ Ri(u,w)

)
→ VB(w) ⩾ RW/E

i (Ev,Ez)→ VW/E
B (Ez).

Therefore,∧
w∈W

(
φ−1(Ev,u) ∧ Ri(u,w)

)
→ VB(w) ⩾

∧
z∈W

RW/E
i (Ev,Ez)→ VW/E

B (Ez) = VW/E
A (Ev)
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and using (75) we conclude:

VA(u) ⩾ φ−1(Ev,u) ∧ VW/E
A (Ev).

Because of the assumption that φ−1(Ev,u) > VA(u), we have

VA(u) ⩾ VW/E
A (Ev) and φ−1(Ev,u) > VW/E

A (Ev).

Since φ−1(Ev,u) > VW/E
A (Ev), by the same reasoning we can prove that VW/E

A (Ev) ⩾ VA(u). Hence, we have
VA(u) = VW/E

A (Ez), and since φ(u,Ev) = φ−1(Ev,u) it follows

φ(u,Ev) ⩽ VA(u)↔ VW/E
A (Ev) = 1

when φ−1(Ev,u) > VA(u) ∧ VW/E
A (Ev). This completes the proof of the theorem.

In a similar way we prove the following two theorems.

Theorem 7.8. LetM = (W, {Ri}i∈I,V) be a domain-finite fuzzy Kripke model over a linearly ordered Heyting algebra,
let E be a backward bisimulation fuzzy equivalence on W, and letM/E = (W/E, {RW/E

i }i∈I,VW/E) be the factor fuzzy
Kripke model with respect to E. A fuzzy relation φ ∈ R(W,W/E) defined by

φ(u,Ev) = E(u, v), for all u, v ∈W, (76)

is a backward bisimulation and the following is true:

φ(u,Ev) ⩽
∧

A∈ΦI,H
−

VA(u)↔ VW/E
A (Ev). (77)

Consequently,M andM/E are ΦI,H
− -equivalent fuzzy Kripke models.

Proof. This follows from the previous theorem since a backward bisimulation between two models is a
forward bisimulation between the reverse models.

Theorem 7.9. LetM = (W, {Ri}i∈I,V) be a degree-finite fuzzy Kripke model over a linearly ordered Heyting algebra,
let E be a regular bisimulation fuzzy equivalence on W, and let M/E = (W/E, {RW/E

i }i∈I,VW/E) be the factor fuzzy
Kripke model with respect to E. A fuzzy relation φ ∈ R(W,W/E) defined by

φ(u,Ev) = E(u, v), for all u, v ∈W, (78)

is a regular bisimulation and the following is true:

φ(u,Ev) ⩽
∧

A∈ΦI,H

VA(u)↔ VW/E
A (Ev). (79)

Consequently,M andM/E are ΦI,H -equivalent fuzzy Kripke models.

Proof. This follows immediately from the previous two theorems.

8. Computational examples for reductions of fuzzy Kripke models

In this section we provide examples which demonstrate the application of theorems from the previous
section in the state reduction of fuzzy Kripke models. As in Section 6, several examples are based on the
standard Gödel modal logic over the real unit interval [0, 1], while the last example is on the Boolean
algebra.

As we already said in the previous section, the greatest bisimulation of type θ ∈ { f b, bb, rb} on a fuzzy
Kripke model M is a fuzzy equivalence, which will be denoted by Eθ, while the greatest bisimulation of
type θ ∈ { f bb, b f b} onM is a fuzzy quasi-order, which will be denoted by Qθ.

The following example illustrates a situation where E f b reduces the number of worlds of the model, but
none of the other bisimulations do so.
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Example 8.1. LetM = (W, {R1},V) be the fuzzy Kripke model from Example 6.1, i.e., let the fuzzy relation
R1 and fuzzy sets Vp, Vq, be represented by the following fuzzy matrix and vectors:

R1 =

1 0 0.9
1 0.1 0.5
1 0 1

 , Vp =

 1
0.2
1

 , Vq =

 1
0.7
1

 . (80)

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke modelMwe have:

E f b =

 1 0.2 1
0.2 1 0.2
1 0.2 1

 , Ebb =

 1 0.1 0.5
0.1 1 0.1
0.5 0.1 1

 , Erb =

 1 0.1 0.5
0.1 1 0.1
0.5 0.1 1

 ,

Q f bb =

 1 0.2 1
0.1 1 0.1
0.5 0.2 1

 , Qb f b =

 1 0.1 0.5
0.2 1 0.2
1 0.1 1

 .

Hence, E f b is a forward bisimulation fuzzy quasi-order with two different aftersets, and we have:

E f b
◦ R1 ◦ E f b =

1 0.2 1
1 0.2 1
1 0.2 1

 , Vp ◦ E f b = Vp =

 1
0.2
1

 , Vq ◦ E f b = Vq =

 1
0.7
1

 .

Now, from (56) and (57) we get the related afterset modelM/E f b = (W/E f b, {RW/E f b

1 },VW/E f b
) where

RW/E f b

1 =

[
1 0.2
1 0.2

]
, VW/E f b

p =

[
1

0.2

]
, VW/E f b

q =

[
1

0.7

]
,

i.e., we get the model with a smaller number of worlds isomorphic to the modelM′ from Example 6.1. Ac-
cording to Theorem 7.7 we have that the modelsM andM/E f b are ΦI,H

+ -equivalent.
On the other hand, Ebb, Erb, Q f bb and Qb f b are fuzzy equivalences and fuzzy quasi-orders whose equiva-

lence classes and aftersets are all different (such fuzzy equivalences and fuzzy quasi-orders are called fuzzy
equalities and fuzzy orders, respectively). For that reason, they cannot reduce the number of worlds of the
model.

What we can also conclude from there is that the greatest forward-backward bisimulation and the great-
est backward-forward bisimulation are not necessarily fuzzy equivalences.

If we consider the reverse modelM−1 = (W, {R1}
−1,V), then we have that the greatest backward bisim-

ulation on M−1 reduces the number of worlds of this model, and in this case the related afterset model is
ΦI,H
− -equivalent toM−1, but other types of bisimulations onM−1 cannot reduce its number of worlds.

Example 8.2. LetM = (W, {R1},V) be the fuzzy Kripke model from Example 6.2, i.e., let the fuzzy relation
R1 and fuzzy sets Vp and Vq be given as follows:

R1 =

0.9 1 1
0.4 0.4 0.5
0.4 0.5 0.5

 , Vp =

0.40.3
0.3

 , Vq =

0.90.4
0.4

 . (81)

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke modelMwe have:

E f b = Ebb = Erb = Q f bb = Qb f b =

 1 0.3 0.3
0.3 1 1
0.3 1 1

 .
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Let us denote all these fuzzy equivalences by E. Then, we have:

E ◦ R1 ◦ E =

0.9 1 1
0.4 0.5 0.5
0.4 0.5 0.5

 , Vp ◦ E = Vp =

0.40.3
0.3

 , Vq ◦ E = Vq =

0.90.4
0.4

 ,

and from (56) and (57) we get the related factor fuzzy Kripke modelM/E = (W/E, {RW/E
1 },VW/E), where

RW/E
1 =

[
0.9 1
0.4 0.5

]
, VW/E

p =

[
0.4
0.3

]
, VW/E

q =

[
0.9
0.4

]
,

i.e., the modelM′ from Example 6.2 with smaller number of states.
Also, according to Theorem 7.9, the modelsM andM/E are ΦI,H -equivalent. Clearly, these models are

also ΦI,H
+ -equivalent and ΦI,H

− -equivalent.

The next example illustrates a situation where no type of bisimulation can reduce the number of worlds
of a model.

Example 8.3. Let M = (W, {Ri}i∈I,V) be a fuzzy Kripke model over the Gödel structure [0, 1], where W =
{u, v,w} and set I = {1}. Fuzzy relation R1 and fuzzy sets Vp, Vq, are represented by the following fuzzy
matrix and vectors:

R1 =

0.7 0.5 0.5
0.8 0.8 0.9
1 0.4 0.8

 , Vp =

0.60.5
0.5

 , Vq =

0.30.7
0.7

 . (82)

Using the algorithms for computing the greatest bisimulations on the fuzzy Kripke modelMwe have:

E f b = Ebb = Erb = Q f bb = Qb f b =

 1 0.3 0.3
0.3 1 0.8
0.3 0.8 1

 .

Clearly, this fuzzy equivalence is a fuzzy equality, i.e., all its equivalence classes are different. This means
that the number of worlds of the related factor fuzzy Kripke model is the same as the number of worlds of
the original fuzzy Kripke modelM.

The following example illustrates a situation where all three types of bisimulation fuzzy equivalences
can reduce the number of worlds of a fuzzy Kripke model, but provide factor fuzzy Kripke models with
different number of worlds.

Example 8.4. Let M = (W, {Ri}i∈I,V) be a fuzzy Kripke model over the Gödel structure [0, 1], where W =
{u, v,w, z} and set I = {1}. Fuzzy relation R1 and fuzzy sets Vp and Vq are represented by the following fuzzy
matrix and vectors:

R1 =


1 1 1 1
0 0.1 0 0

0.9 0.5 1 1
0.9 0.5 1 1

 , Vp =


1

0.2
1
1

 , Vq =


1

0.7
1
1

 .

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke modelMwe have:

E f b =


1 0.1 0.5 0.5

0.1 1 0.1 0.1
0.5 0.1 1 1
0.5 0.1 1 1

 , Ebb =


1 0.2 1 1

0.2 1 0.2 0.2
1 0.2 1 1
1 0.2 1 1

 , Erb =


1 0.1 0.5 0.5

0.1 1 0.1 0.1
0.5 0.1 1 1
0.5 0.1 1 1

 ,
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Q f bb =


1 0.1 0.5 0.5

0.2 1 0.2 0.2
1 0.1 1 1
1 0.1 1 1

 , Qb f b =


1 0.2 1 1

0.1 1 0.1 0.1
0.5 0.2 1 1
0.5 0.2 1 1

 .

Clearly, E f b and Erb provide factor fuzzy Kripke models with 3 worlds, whereas Ebb provides the factor
fuzzy Kripke model with 2 worlds. However, the factor model with respect to E f b cannot be further reduced
by the greatest forward bisimulation, but it can be easily verified that it can be reduced by the backward
bisimulation, which again provides a factor model with 2 worlds.

The last example illustrates a situation where the fuzzy Kripke model is over partially ordered Boolean
algebra and hence none of the theorems 7.7, 7.8 and 7.9 do not hold. Still, in this example E f b reduces the
number of worlds of the model, but none of the other bisimulations do so.

Example 8.5. LetM = (W, {R1},V) be the fuzzy Kripke model from Example 6.5, i.e., let the fuzzy relation
R1 and fuzzy sets Vp, Vq, be represented by the following fuzzy matrix and vectors:

R1 =

 A ∅ A
{a, b} {b, c} {a, c}

A ∅ A

 , Vp =

 A
{b}
A

 , Vq =

 A
{b, c}

A

 . (83)

Using algorithms for computing the greatest bisimulations on the fuzzy Kripke modelMwe have:

E f b =

 A {b} A
{b} A {b}
A {b} A

 , Ebb =

 A {b} {a, b}
{b} A {b}
{a, b} {b} A

 , Erb =

 A {b} {a, b}
{b} A {b}
{a, b} {b} A

 ,

Q f bb =

 A {b} {a, b}
{b} A {b}
A {b} A

 , Qb f b =

 A {b} A
{b} A {b}
{a, b} {b} A

 .

Hence, E f b is a forward bisimulation fuzzy quasi-order with two different aftersets and we have:

E f b
◦ R1 ◦ E f b =

A {b} A
A {b, c} A
A {b} A

 , Vp ◦ E f b = Vp =

 A
{b}
A

 , Vq ◦ E f b = Vq =

 A
{b, c}

A

 .

Now, from (56) and (57) we get the related afterset modelM/E f b = (W/E f b, {RW/E f b

1 },VW/E f b
) where

RW/E f b

1 =

[
A {b}
A {b, c}

]
, VW/E f b

p =

[
A
{b}

]
, VW/E f b

q =

[
A
{b, c}

]
,

i.e., we get the model with a smaller number of worlds isomorphic to the model M′ from Example 6.5.
However, since the underlying structure is not linearly ordered, we cannot apply Theorem 7.7.

On the other hand, Ebb, Erb, Q f bb and Qb f b are fuzzy equivalences and fuzzy quasi-orders whose equiv-
alence classes and aftersets are all different and for that reason, they cannot reduce the number of worlds
of the model.
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