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Abstract. This paper is devoted to the investigation of the generalized implicit equilibrium problems with
weak conditions in general space. Sufficient conditions for the set of solutions to be compact and convex
are given. Our results improve some recent results in this field.

1. Introduction

Given a nonempty set K and a scalar bifunction f : K × K → R = (−∞,∞) such that f (x, x) ≥ 0 for all
x ∈ K, the scalar equilibrium problem (EP, for short) for f is to find z ∈ K such that f (z, y) ≥ 0 for all y ∈ K. It
is well known that (EP) is closely related to games theory, mechanics and physics, economics and finance,
operations research, variational inequality and complementarity problems, as well as optimization and
control problems(see, for more details , Takahashi[19] , Blum and Oettli[4], and Noor and Oettli[15] and the
references therein. At the same time, this problem has been generalized to the vector case (see [2, 4, 10, 11])
as follows. Let X and Y be Hausdorff topological vector spaces (tvs, for short), K a nonempty, closed, and
convex subset of X, and C a pointed, closed, and convex cone in Y with intC , ∅. Given a vector valued
bifunction f : K × K→ Y, the vector equilibrium problem (VEP) for f consists in finding x ∈ K such that

f (x, y) < −intC, ∀y ∈ K.

It is well known that vector equilibrium problems provide a unified model for several classes of problems,
for example, vector variational inequality problems, vector complementarity problems, vector optimization
problems, and vector saddle point problems; see, for more details, [4]-[3],[8]-[21] and the references therein.

The implicit vector equilibrium problem (IVEP), which is a generalization of (EP), (VEP), and implicit
variational inequality and complementarity problems, was introduced by Huang et al. [13] as follows:

Given a vector valued bifunction f : K × K→ Y and 1 : K→ K, find x ∈ K such that

f (1(x), y) < −intC, ∀y ∈ K.

If T : K → L(X,Y), θ : K × K → X, and 1 : K → K, then (IVEP) reduces to the generalized vector variational
inequality (GWI) of finding x ∈ K such that

⟨T(1(x)), θ(y, 1(x))⟩ < −intC(x), ∀y ∈ K,
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where L(X,Y) denotes the space of all continuous linear operators from X to Y, ⟨T(z), y⟩denotes the evaluation
of the linear operator T(z) at y.

The generalized vector equilibrium problem was first introduced in 1997 [1] as follows.
Let K a nonempty, closed, and convex subset of (tvs) X, and C a closed, and convex cone in Y with

intC , ∅. Let F : K×K→ 2Y be a set-valued mapping. The generalized vector equilibrium problem (GVEP)
for F consists in finding x ∈ K such that

F(x, y) ⊈ −intC, ∀y ∈ K.

The authors of [16] considered the generalized implicit operator equilibrium problem ( GIOEP) which
consists of finding f ∗ ∈ K such that

F(h( f ∗), 1) ⊈ −intC( f ∗),∀1 ∈ K,

where F : K × K −→ 2Y is a set-valued mapping, h : K −→ K is a mapping, X and Y are two Hausdorff
topological vector spaces, L(X,Y) is the space of all continuous linear operators from X to Y, K ⊆ L(X,Y)
is a non-empty convex set, C : K −→ 2Y is a set-valued mapping such that for each f ∈ K, C( f ) is a closed
and convex cone in Y with intC( f ) , ∅(intC( f ) is the interior of C( f )), 2Y denotes the set of all non-empty
subsets of Y. This paper is motivated and inspired by the recent paper [16] and its aim is to extend the results
given in [16] to the setting of Hausdorff topological vector spaces with mild assumptions and relaxing some
conditions.

In the rest of this section we recall some definitions and results that we need in the next section.
A subset C of Y is called a pointed and convex cone if and only if C + C ⊆ C, tC ⊆ C,∀t ≥ 0, and

C ∩ −C = {0Y} (see, for instance, [1, 4, 6–8]) The domain of a set-valued mapping W : X −→ 2Yis defined as

D(W) = {x ∈ X : W(x) , ∅}

and its graph is defined as
Gr(W) = {(x, z) ∈ X × Y : z ∈W(x)}.

Also W is said to be closed if its graph, that is, Gr(W), is a closed subset of X × Y.
A set-valued mapping T : X −→ 2Y is called upper semicontinuous (in short u.s.c.) at x0 ∈ X if for every
open set V ⊆ Y containing T(x0) there exists an open set U ⊆ X containing x0 such that T(u) ⊆ V, for all
u ∈ U. The mapping T is said to be lower semicontinuous (in short l.s.c.) at x0 ∈ X if for every open set
V ⊆ Y with T(x0) ∩ V , ∅ there exists an open set U ⊆ X containing x0 such that T(u) ∩ V , ∅,∀u ∈ U.
The mapping T is continuous at x0 if it is both u.s.c. and l.s.c. at x0. Moreover, T is u.s.c. (l.s.c.) on X if T is
u.s.c.(l.s.c.) at each point of X.We need the following basic definitions and results in the sequel.

Lemma 1.1. ([20]) Let X and Y be two Hausdorff topological spaces and T : X −→ 2Y be a mapping. The following
statements are true:
(i) For any given x0 ∈ X if T has compact value at x0 (i.e., T(x0) is a compact ), then T is u.s.c. at x0 ∈ X if and only if
for any net {xα} ⊆ X with xα −→ x0 and for every yα ∈ T(xα), there exist y0 ∈ T(x0) and a subnet {yαβ } ⊆ {yα} such
that yαβ −→ y0;
(ii) T is l.s.c. at x0 ∈ X if and only if for any net {xα} ⊆ X with xα −→ x0 and for any y0 ∈ T(x0), there exists
yα ∈ T(xα) such that yα −→ y0.

Definition 1.2. [21] Let K be a non-empty subset of topological vector space X. A set-valued mapping T : K→ 2X is
called a KKM mapping if for every finite subset {x1, x2, ..., xn} of K, Co{x1, x2, ..., xn} is contained in

⋃n
i=1 T(xi), where

Co denotes the convex hull.

The KKM-mappings were first considered by Knaster, Kuratowski and Mazurkiewicz (KKM) ([21]) in
1920, in order to guarantee the finite intersection property for values of the mapping .
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Lemma 1.3. ([5]) Let K be a nonempty subset of a topological vector space X and F : K −→ 2X be a KKM-mapping
with closed values in K. Assume that there exists a nonempty compact convex subset B of K such that ∩x∈BF(x) is
compact. Then ∩x∈KF(x) , ∅.

Remark that if F : K −→ 2X is a KKM-mapping with closed values in K, then the family {G(x) : x ∈ X} of
sets has the finite intersection property.

The following results are important in the next section.

Lemma 1.4. Let f : X −→ 2Y be a nonempty set-valued mapping. If f is u.s.c. with closed values then it is closed (
that is, its graph is closed).

Lemma 1.5. Sum of two upper semicontinuous functions is upper semicontinuous.

Proposition 1.6. If F is u.s.c. at x0, then −F is u.s.c. at x0.

Proof. Let W0 be an open set. Then there exists Vx0 such that

F(y) ⊆W0,∀y ∈ Vx0 .

If W′

is an open set and −F(x0) ⊆ W′

, then −F(x0) ⊆ W′

. Hence F(x0) ⊆ −W′

, thus there exists V′

x0
, s.t.F(y) ⊆

−W′

,∀y ∈ V′

x0
, so −F(y) ⊆W′

,∀y ∈ V′

x0
. This completes the proof.

Definition 1.7. Let f : K × K −→ Y be a vector valued bifunction and 1 : K −→ K.

(i) f (x, y) is a (±Q)− function with respect to y if, for any given x ∈ K

f (x, ty1 + (1 − t)y2) ∈ t f (x, y1) + (1 − t) f (x, y2) ±Q;

for all y1, y2 ∈ K and t ∈ [0, 1], where Q is a closed and convex cone of Y such that intQ , ∅;

(ii) 1 is a affine mapping if, for any y1, y2 ∈ K and t ∈ R,

1(ty1 + (1 − t)y2) = t1(y1) + (1 − t)1(y2).

.

2. Main results

The results of this section theorem can be viewed as an extension, improvement and repairmen of the
Theorem 3.1 given in [16] by relaxing or weakening some assumptions and it is implicit version of Corol-
lary 2 in [1] from locally convex spaces to topological vector spaces and relaxing conditions (iv)-(vi) of it.
Moreover, it is set-valued version of Theorem 3.1 and Theorem 3.2 in [18] with mild assumptions.

Theorem 2.1. Let K be a non-empty convex subset of X and h : K −→ K be a mapping and F : K × K −→ 2Y be a
set-valued mapping. Suppose that the following assumptions hold:

(a) The set-valued mapping x −→ F(1(x), y) is u.s.c. with compact values, for all y ∈ K;

(b) The mapping x −→ Y \ −intC(x) is u.s.c.;

(c) There exists a set- valued mapping G : K × K −→ 2Y such that;

(i) G(h(x), x) ⊈ −intC(x),∀x ∈ K;

(ii) G(h(x), y) − F(h(x), y) ⊆ −intC(x),∀x, y ∈ K;
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(iii) {y ∈ K : G(x, y) ⊆ −intC(x)} is convex, ∀x ∈ K.

Then the solution set of GIVEP is nonempty, i.e. there exists x∗ ∈ K such that F(h(x∗), y) ⊈ −intC(x∗),∀y ∈ K.
Moreover, the solution set is compact if the following condition is satisfied:

(d) There exist a nonempty, compact and convex subset B of K, such that for each x ∈ K \B, there exists y ∈ B such
that

F(h(x), y) ⊆ −intC( f ).

Proof. Let D be an arbitrary compact and convex subset of K.
Define T : D −→ 2D by

T(y) = {x ∈ D : F(h(x), y) ⊈ −intC(x)},∀y ∈ D.

We show that T satisfies all the assumptions of Lemma1.3. We first prove that T(y) is closed, for all y ∈ K. For this,
let {xα} be a net in T(y) such that xα −→ x∗. Define the mapping Hy : D −→ 2Y by

Hy(x) = F(h(x), y).

It follows from xα ∈ T(y) that Hy(xα) ⊈ −intC(xα). Hence, for each α,

∃zα ∈ Hy(xα) s.t. zα ∈ Y \ −intC(xα) =W(xα),

by (a) there exist z ∈ Hy(x∗) and a subnet {zαβ } such that zαβ −→ z. Also (xαβ , zαβ ) −→ (x∗, z) and (xαβ , zαβ ) ∈ GrHy.
By Lemma1.4,

(x∗, z) ∈ GrHy and z ∈ F(h(x∗, y)) (1).

On the other hand zαβ ∈ w(xαβ ) and (xαβ , zαβ ) ∈ GrW. Since W(xαβ ) is closed, by (b) and Lemma1.4, we conclude that
(x∗, z) ∈ GrW, thus

z ∈W(x∗) = Y \ −intC(x∗). (2)

From (1), (2) we have
F(h(x∗, y)) ⊈ −intC(x∗) =⇒ x∗ ∈ T(y).

Hence T(y) is closed, for all y ∈ K.
Now we prove that the mapping y −→ T(y) is a KKM− mapping. Suppose to the contrary there exists a finite subset
{y1, y2, ..., yn} of D such that

Co{y1, y2, ..., yn} ⊈ ∪
n
i=1T(yi).

Hence there exists z ∈ Co{y1, y2, ..., yn} such that

z =
n∑

i=1

λiyi,
n∑

i=1

λi = 1, λi ≥ 0, z < T(yi),∀i = 1, 2, ...,n.

Therefore
F(h(z), yi) ⊆ −intC(z) (3),

therefore by assumption c(ii), we get

G(h(z), yi) − F(h(z), yi) ⊆ −intC(z) (4).

Moreover from (3) and (4), for each i = 1, 2, ...,n, we have

G(h(z), yi) ⊆ G(h(z), yi) + 0

⊆ G(h(z), yi) + F(h(z), yi) − F(h(z), yi)

⊆ −intC(z)
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(Note that −intC(z) + −intC(z) ⊆ −intC(z).) Therefore, we conclude that

yi ∈ {y ∈ K : G(h(z), yi) ⊆ −intc(z)} ∀i = 1, 2, ...,n.

By assumption c(iii), we get

G(h(z), z =
n∑

i=1

λiyi) ⊆ −intC(z),

which contradicts c(i). Hence T is a KKM−mapping.
Since D is compact and T(y) is a closed subset of D, and T is a KKM−mapping. Hence by Lemma1.3, we have

∩y∈DT(y) , ∅.

Now, we show that
∩y∈KT(y) , ∅.

Otherwise
∩y∈KT(y) = (∩y∈DT(y)) ∩ (∩y∈K\DT(y)) = ∅.

Thus ∩y∈DT(y) ⊆ ∪y∈K\D(T(y))c. Also, it is obvious that ∩y∈DT(y) ⊆ D nd so ∩y∈DT(y) is compact.
(Note that T(y) is closed for each y ∈ D and D is compact).
Hence there exist y′1, y

′

2, ..., y
′

1 ∈ K \D such hat

∩y∈DT(y) ⊆ ∪n
i=1(T(y

′

i))
c,

which gives that
(∩y∈DT(y)) ∩ (∩n

i=1(T(y
′

i))) = ∩y∈D∪{y′1,y
′

2,...,y
′

n}
T(y) = ∅.

Thus
∩y∈Co(D∪{y′1,y

′

2,...,y
′

n})
T(y) ⊆ ∩y∈D∪{y′1,y

′

2,...,y
′

n}
T(y). (5)

Now, if we consider B = Co(D ∪ {y′1, y
′

2, ..., y
′

n}), B is compact and convex and the mapping T : B −→ 2B is a
KKM−mapping. Hence by Lemma1.3, ∩y∈BT(y) , ∅.
By (5), we get

∅ , ∩y∈BT(y) ⊆ ∩y∈D∪{y′1,y
′

2,...,y
′

1}
T(y) = ∅,

which is a contraction. Hence ∩y∈KT(y) , ∅.
Thus there exists x∗ ∈ K such that

F(h(x∗), y) ⊈ −intC(x∗),∀y ∈ K.

Now, we show that the solution set of GIVEP, which is equals to the set ∩y∈kT(y), is compact.
If the condition (d) is satisfied, to see this, we show that ∩y∈kT(y) ⊆ B.
Otherwise, there exists x0 ∈ ∩y∈kT(y) such that x0 ∈ K\B.By condition (d)∃y0 ∈ B such that F(h(x0), y0) ⊆ −intc(x0).
Thus x0 < T(y0), which is a contradiction. Thus ∩y∈KT(y) is compact, This completes the proof.

Theorem 2.1 improves conditions (2) and (3) of the following theorem ( Theorem 4.1 in [13]) and
moreover it is set-valued version of it.

Theorem 2.2. (Theorem 4.1 in [13])) Let K be a nonempty, closed, convex subset of X, 1 : K→ K and f : K×K→ Y
be a vector valued bifunction. Suppose that the following assumptions hold:

1. f (1(x), x) < −intC(x)andC(1(x)) ⊂ C(x),∀x ∈ K;

2. x→ f (x, y) and 1 are continuous ∀x ∈ K;
3. f (x, y) is C− convex with respect to y for all x ∈ K;
4. W : K→ 2Y is a point-to-set mapping such that W(z) = Y\(−intC(z)), for all z ∈ K, has closed graph in K×Y;
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5. there exists a nonempty, compact, convex subset D of K, such that for all x ∈ K\D,∃y D such that f (1(x), y)-
intC(x).

Then there exists x ∈ K such that f (1(x), y) < −intC(x), for all y ∈ K.

Remark 2.3. 1. One can show that if G(x, y) is Q− functions with respect to y, then condition (iii) in Theorem
2.1 holds.

2. One can consider Theorem as an improvement of Theorem 3.1 in [16] by relaxing condition (d) and continuity
of mapping 1 and continuity of mapping f (., y) with respect to x.
Moreover in the paper we replace L(X,Y) by a general topological vector space.

3. The proof of Theorem 3.1 in [16] contains some gaps, for instance:
Line 5 of the proof of it, how can the authors, deduce

F(h( fα), 1) ⊆W( fα) = Y \ −intC( fα),

from F(h( fα), 1) ⊈ −intC f (α).
Also, one can ask, what is the meaning of F(h( fα), 1) −→ F(h( f ), 1), where F(h( fα), 1) and F(h( f ), 1) are sets?
furthermore, how can the authors in line 9 from u.s.c. of W concluded F(h( f ), 1) ⊆ w( f )

4. We note that if h is continuous and f is continuous with respect to the first variable then the mapping
x −→ f (h(x), y) is u.s.c. and so when K is compact condition (a) holds while the following simple exmple, which
shows that the convers does not hold in general, proves that neither h nor F is continuous but the mapping
x −→ f (h(x), y)is u.s.c., moreover, in the example, if we take K = [0, 1], then F, 1 and h are satisfy all assumtions
of Theorem 3.4 and so the solution set of IVEP is nonempty and compact. But the example can not fulfill all the
conditions of Theorem 3.1 in [Filomat 2019]. Hence Theorem 3.1 extends Theorem 3.1 in [Filomat 2019].

h(x) =

−1, i f x ∈ Q ∩ [−1, 1],
0, i f x ∈ Qc

∩ [−1, 1],

F(x, y) =

{−1}, i f x ∈ Q ∩ [−1, 1],
{0}, i f x ∈ Qc

∩ [−1, 1],

Theorem 2.4. Let K be a non-empty convex subset of X, h : K −→ K be a mapping and Fi : K × K −→ 2Y be two
set-valued mappings for i = 1, 2. Let Q := ∩x∈K(−C(x)), such that intQ , ∅. Suppose that the following assumptions
hold:

(a) The set-valued mappings y −→ F2(h(x), y) and x −→ F1(y, h(x)) are u.s.c. with compact and open values
respectively, for all x, y ∈ K;

(b) The mapping x −→ Y \ −intC(x) is u.s.c.;

(c) F1(x, y) is (−Q)− function with respect to x and F2(x, y) is (+Q)− function with respect to y;

(d) 0Y ∈ F2(h(x), y) − F1(x, h(x)),∀x ∈ K;

(e) F1(h(x), y) + F1(h(x), y) ⊆ C(x),∀x ∈ K;

Then there exists x∗ ∈ K such that F1(h(x∗), y) + F2(h(x∗), y) ⊈ −intC(x∗),∀y ∈ K.

Proof. Let D be an arbitrary compact and convex subset of K.
Define T : D −→ 2D by

T(y) = {x ∈ D : F2(h(x), y) − F1(y, h(x)) ⊈ −intC(x)},∀y ∈ D.
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We show that T satisfies all the assumptions of Lemma1.3. We first prove that T(y) is closed, for all y ∈ K. For this,
let y be fixed and arbitrary and {xα} be a net in T(y) such that xα −→ x∗. Define the mapping Hy : D −→ 2Y by

Hy(x) = F2(h(x), y) − F1(y, h(x)).

It follows from xα ∈ T(y) that Hy(xα) ⊈ −intC(xα). Hence, for each α,

∃zα ∈ Hy(xα) s.t. zα ∈ Y \ −intC(xα) =: W(xα),

It follows from Lemma1.5 and Proposition1.6, Hy is u.s.c. with compact values. Hence there exists subnet {zαβ } and
z ∈ Hy(x∗) such that zαβ −→ z. Also (xαβ , zαβ ) −→ (x∗, z) and (xαβ , zαβ ) ∈ GrW. Lemma1.4 implies that (x∗, z) ∈ GrW.
That is z ∈W(x∗).
Thus Hy(x∗) ⊈ −intC(x∗). Hence T(y) is closed, for all y ∈ K.
Now we prove that the mapping y −→ T(y) is a KKM− mapping.
Suppose to the contrary there exists a finite subset {z1, z2, ..., zn} of D such that

Co{z1, z2, ..., zn} ⊈ ∪
n
i=1T(zi).

Hence there exists z ∈ Co{z1, z2, ..., zn} such that

z =
n∑

i=1

λizi,
n∑

i=1

λi = 1, λi ≥ 0, z < T(zi),∀i = 1, 2, ...,n.

Therefore
Hzi (z) ⊆ −intC(z) ∀i = 1, 2, ...,n,

By assumptions (c) and (d), it holds that

0Y ∈ F2(h(z), z) − F1(z, h(z))

⊆

n∑
i=1

λiF2(h(z), zi) +Q −
n∑

i=1

λiF1(zi, h(z)) +Q

=

n∑
i=1

λi(F2(h(z), zi) − F1(zi, h(z))) +Q +Q.

By the assumption a, we obtain
{0Y} ⊆ −intC(z) − C(z) − C(z) ⊆ −intC(z).

Hence 0Y ∈ −intC(z), which contradicts C(z) ∩ −C(z) = {0Y}. Hence T is a KKM− mapping.
Since D is compact and T(y) is a closed subset of D, and T is a KKM−mapping, by Lemma1.3, we have

∩y∈DT(y) , ∅.

Now, we show that
∩y∈KT(y) , ∅.

Otherwise
∩y∈KT(y) = (∩y∈DT(y)) ∩ (∩y∈K\DT(y)) = ∅.

Thus ∩y∈DT(y) ⊆ ∪y∈K\D(T(y))c. Also, it is obvious that ∩y∈DT(y) ⊆ D nd so ∩y∈DT(y) is compact.
(Note that T(y) is closed for each y ∈ D and D is compact).
Hence there exist y′1, y

′

2, ..., y
′

n ∈ K \D such hat

∩y∈DT(y) ⊆ ∪n
i=1(T(y

′

i))
c.
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Which gives that
(∩y∈DT(y)) ∩ (∩n

i=1(T(y
′

i))) = ∩y∈D∪{y′1,y
′

2,...,y
′

n}
T(y) = ∅.

Thus, we deduce that
∩y∈Co(D∪{y′1,y

′

2,...,y
′

n})
T(y) ⊆ ∩y∈D∪{y′1,y

′

2,...,y
′

n}
T(y). (5)

Now, if we consider B = Co(D ∪ {y′1, y
′

2, ..., y
′

n}), B is compact and convex and the mapping T : B −→ 2B is a
KKM−mapping. Hence by Lemma1.3, ∩y∈BT(y) , ∅.
By (5), we find that

∅ , ∩y∈BT(y) ⊆ ∩y∈D∪{y′1,y
′

2,...,y
′

1}
T(y) = ∅,

which is a contraction. Hence ∩y∈KT(y) , ∅.
Thus there exists x∗ ∈ K such that

F2(h(x∗), y) − F1(y, h(x∗)) ⊈ −intC(x∗),∀y ∈ D. (2)

By the assumption (e) and (2), we obtain

F1(h(x∗), y) + F2h(x∗), y) ⊈ −intC(x∗),

This completes the proof.

Remark 2.5. It seems Definition 2.4 of hemicontinuity given in [16] cannot be meaningful and the conclusion in
page 3.3 line 12 is vague.

The following theorem is a generalization of Theorem 3 in [1] from locally convex spaces to topological
spaces and moreover reducing the domain of the set-valued mapping F from compact convex to convex
and deleting conditions (ii), (iv)-(vii) of Theorem 3 in [1]. Further, it is implicit version of it.

Theorem 2.6. Let K be a nonempty convex subset of Hausdorff topological vector space X and C : K→ 2Y
\∅, where

Y is a topological vector space. The set-valued mapping F : K × K → 2Y, and single-valued mapping 1 : K → K
satisfying in the following conditions.

1. F(1(x), x) ∩ C(1(x)) , ∅,∀x ∈ K,
2. {y ∈ K : F(x, y) ∩ C(x) = ∅} is convex, ∀x ∈ K,
3. {x ∈ K : F(1(x), y) ∩ C(1(x)) , ∅} is closed, ∀x ∈ K,
4. there exist compact convex set D and compact set M of K such that

∀x ∈ K\M,∃y ∈ D,F(x, y) ∩ C(x) = ∅.

Then there exists x ∈ K such that the set

{x ∈ K : F(x, y) ∩ C(x) , ∅,∀y ∈ K},

is nonempty and compact.

Proof. Assume that H is an arbitrary convex subset of K. Define G : H→ 2K by

G(x) = {x ∈ K : F(x, y) ∩ C(x) , ∅},∀x ∈ K.

We prove that the mapping G is a KKM− mapping. Suppose to the contrary there exists a finite subset
{y1, y2, ..., yn} of H such that

Co{y1, y2, ..., yn} ⊈ ∪
n
i=1G(yi).
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Hence there exists z ∈ Co{y1, y2, ..., yn} such that

z =
n∑

i=1

λiyi,
n∑

i=1

λi = 1, λi ≥ 0, z < G(yi),∀i = 1, 2, ...,n.

Therefore
F(1(z), yi) ∩ C(1(z)) = ∅.

Thus by assumption (2),we get F(1(z), z) ∩ C(1(z)) = ∅, which is contracted by (1). Hence G is a KKM
mapping and so the family {G(x)}x∈H has the finite intersection property. It follows from condition (4) that⋂

x∈D G(x) is a closed subset of the compact set M. Consequently,
⋂

x∈D G(x) , ∅. Now we claim that⋂
x∈K

G(x) , ∅.

Otherwise ⋂
x∈K

G(x) = (
⋂
x∈D

G(x))
⋂

(
⋂

x∈K\D

G(x)) = ∅.

Hence
⋂

x∈D G(x) ⊆
⋃

x∈K\D Gc(x) and since
⋂

x∈D G(x) is compact then there exist x1, ..., xn of K\D such that⋂
x∈D G(x) ⊆

⋃n
i=1 Gc(xi). This mean that

⋂
x∈D∪{x1,x2,...,xn}

G(x) = ∅. Hence⋂
x∈H=Co(D∪{x1,x2,...,xn})

G(x) ⊆
⋂

x∈D∪{x1,x2,...,xn}

G(x) = ∅

which is contradiction with being KKM of G on H = Co(D ∪ {x1, x2, ..., xn}). Hence there exists z ∈ K such
z ∈
⋂

x∈K G(x) = (
⋂

x∈D G(x)), and so
F(z, y) ∩ C(z) , ∅,∀y ∈ K.

The compactness of {z ∈ K : F(z, y) ∩ C(z) , ∅,∀y ∈ K} directly follows from (4). This completes the proof.

Remark 2.7. It is easy to check that the result of Theorem 2.6 is still valid if one replaces the closedness of the set
{x ∈ K : F(1(x), y) ∩ C(1(x)) , ∅}, in condition (3) by the transfer closedness ( that is, if z < G(y) = {x ∈ K :
F(1(x), y) ∩ C(1(x)) , ∅} then there exists w ∈ K such that z < G(w), the closure of G(w).

The next result is a direct consequence of Theorem 2.6 which is an improvement version of Corollary 2
in [1].

Corollary 2.8. Let K be a nonempty convex subset of Hausdorff topological vector space X and P is a nonempty
subset of Y. The vector valued mappings F : K × K→ Y and 1 : K→ K satisfying the following conditions.

1. F(1(x), x) ∈ P, ∀x ∈ K,
2. {y ∈ K : F(x, y) < P} is convex, ∀x ∈ K,
3. {x ∈ K : F(1(x), y) ∈ P} is closed, ∀x ∈ K,
4. there exist compact convex set D and compact set M of K such that

∀x ∈ K\M,∃y ∈ D,F(x, y) < P.

Then there exists x ∈ K such that the set

{x ∈ K : F(x, y) ∈ P,∀y ∈ K},

is nonempty and compact.
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