M.R. Žižović and Lj.D. Kočinac

SOME REMARKS ON n-GROUPS

(Received 9.3.1988.)

Abstract. In this note we give some facts about (algebraic and topological) n-groups.

0. The notation and terminology in this note are standard and follow the ones from [1],[5] and [3]. However, we shall give a few known definitions and facts. An n-group (G,[]) is generated by a binary group (G,\circ) if

 $x_1, x_2, \dots, x_n \in G \Longrightarrow [x_1, x_2, \dots, x_n] = x_1 \circ x_2 \circ \dots \circ x_n$. An element e $\in G$ is called an identity (element) of (G, []) if for each $x \in G$ we have

[x,e,...,e] = [e,x,...,e] = = [e,e,...,x] = x ([2]). It is known that if (G,[]) is an n-group with an identity e, then it can be generated by a binary group (G,e) where

 $xoy = \left[x,y,e,\dots,e\right] \quad , \ \, x,y \in G.$ Let M denote the set $\left\{m_k \in \mathbb{N} \colon m_k = k(n-1)+1, \ k \in \mathbb{N}\right\}$. For any $x \in (G,[])$ one defines the $\underline{n\text{-order}}$ of x, denoted $\text{Ord}_n(x)$, as the least integer $m \in \mathbb{M}$ such that $\left[x^m\right] = x$; if no such integer exists we write $\text{Ord}_n(x) = \infty$. An element of finite n-order is called a torsion element of G. We put

 $T^{(m)} = \left\{x \in G: \operatorname{Ord}_n(x) = m\right\} \text{ and } T = \left\{x \in G: x \text{ is a torsion element of } G\right\}.$ G is a torsion n-group if T = G. When $x \in G$ is regarded as an element of (G, \circ) , then $\operatorname{ord}(x)$ denotes the (usual binary) order of x.

An n-group (G,[]) together with a topology given on it is said to be a topological n-group if $[]:G^n \to G$ is a continuous mapping [4].

1.1. THEOREM. Let $(G, [\])$ be an n-group with an identity e and let (G, \circ) be a binary group generating $(G, [\])$. An element $x \neq e$ in G is an identity for $(G, [\])$ if and only if it commutes with all elements in (G, \circ) and its order r (in (G, \circ)) satisfies n = kr+1 for some $k \in \mathbb{N}$.

PROOF. (\Longrightarrow) Let $x\neq e$ be an identity in (G,[]). Then we have

[y,x,x,...,x] = [x,y,x,...,x] for every $y \in G$.

Since (G,[]) is generated by (G,*) one has

 $(...((y \circ x) \circ x \circ \circ \circ x) = (...((x \circ y) \circ x \circ \circ \circ x)$

i.e. $y \in x = x \in y$.

On the other hand,

 $y = [y, x, ..., x] = (...((y \circ x) \circ x) \circ \circ \circ x) = y \circ x^{n-1},$

so that x^{n-1} =e. From this it follows n-1=kr, i.e. n=kr+1, for some $k \in \mathbb{N}$ (\Leftarrow) Conversely, if $x \neq e$ satisfies the conditions of the theorem, then

for every $y \in G$ and every i = 0, 1, ..., n-1 we have

$$[x^{i}, y, x^{n-i-1}] = x^{i} \circ y \circ x^{n-i-1} = x^{n-1} \circ y = e \circ y = y,$$

which means that x is an identity for (G,[]). The theorem is proved.

- 1.2. COROLLARY. In an n-group $(G, [\])$ with an identity all elements are identity elements if and only if $(G, [\])$ is commutative and the least common multiple K of orders of elements of (G, \bullet) satisfies n = kK+1 for some $k \in \mathbb{N}$.
- 2. Let now $(G,[\,],\mathcal{T})$ be a \mathbf{T}_2 topological n-group. Then the following statement is true:
 - 2.1. PROPOSITION. The set $T^{(m)}$ is closed in G for every $m \in M$.

PROOF. Let $x \not\in T^{(m)}$, i.e. $\llbracket x^m \rrbracket \neq x$. Since G is a T_2 space there are neighbourhoods U of x and V of $\llbracket x^m \rrbracket$ with UnV = Ø. The continuity of $\llbracket \rrbracket \rrbracket$ implies the existence of W, a neighbourhood of x, such that $\llbracket w^m \rrbracket \subset V$. Let us put H = Wn U. Then $\text{HnT}^{(m)} = \emptyset$ because otherwise there exists $y \in H$ with $\llbracket y^m \rrbracket \in T^{(m)}$, i.e. $y = \llbracket y^m \rrbracket \in H^m \rrbracket \subset V$ which is impossible.

2.2. COROLLARY. The sets $A = \{x \in G: [x^m] \neq x\}$ and $B = \{x \in G: Ord_n(x) > m \in M\}$ are open.

Let us note that $Ord_n: G \longrightarrow M \subset R$ is a real-valued function defined on G. In this connection we have

2.3. PROPOSITION. Ord_n is a lower semi-continuous function on G.

PROOF. Let x be a torsion element of G with $\operatorname{Ord}_n(x) = m_k \in M$. The set $U = \{y \in G : \operatorname{Ord}_n(y) > m_{k-1}\}$ is open by Corollary 2.2 and contains x, which means that U is a neighbourhood of x. Since $\operatorname{Ord}_n(y) \geqslant \operatorname{Ord}_n(x)$ for each $y \in U$, one concludes that Ord_n is lower semi-continuous in this case.

Now let $Ord_n(x) = \infty$. If $p \in M$ is an arbitrary element, then the set

 $\label{eq:contains x and satisfies Ord} \begin{array}{l} U = \left\{y \in G : \operatorname{Ord}_n(y) > p\right\} \text{ is open (by 2.2), contains x and satisfies } \operatorname{Ord}_n(y) > p \\ \text{for each } y \in U. \text{ So, } \operatorname{Ord}_n \text{ is lower semi-continuous in this case, too. The proposition is proved.} \end{array}$

Let C denote the set of all points in G at which Ord_n is continuous. Let us note that Ord_n is locally constant on the set TCC . Indeed, let $x \in \operatorname{CCT}^{(m)}$. As Ord_n is continuous at x, there exists a neighbourhood U of x such that $\operatorname{Ord}_n(U) \subset \{m\}$, i.e. $\operatorname{Ord}_n(y) = m$ for each $y \in U$.

We also have UCC. Therefore, as a corollary we have: If G is a torsion ${\rm T_2}$ topological n-group, then C is open in G.

2.4. THEOREM. If G is a T_2 topological n-group with the Baire property (i.e. the intersection of countably many open dense sets is dense), then $\overline{C} = G$

PROOF. We shall use one result of Fort (see 1.7.14 in [3]) which states that if $f:X \to \mathbb{R}$ is a lower semi-continuous function on a space X, then there exists $U \subset X$ which is the intersection of countably many dense open subsets of X, such that f is continuous at every point of U. In our case, as G has the Baire property, the set U is dense in G and since $U \subset C$ the theorem follows.

In particular the preceding theorem holds in the following cases: G is Čech-complete; G is countably compact; G is pseudocompact.

2.5. COROLLARY. If G is a torsion T_2 topological n-group with the Baire property, then the set G-C is nowhere dense in G.

REFERENCESS

- [1] V.D. BELOUSOV, n-arnye kvazigruppy, Štiinca, Kišinev, 1972.
- [2] G. ČUPONA and B. TRPENOVSKI, Finitarni asociativni operacii so neutralni elementi, Bilt. Druš. Mat. Fiz. SRM XII(1961), 15-24.
- [3] R. ENGELKING, General Topology, PWN, Warszawa, 1977.
- [4] G. GROMBEZ and G. SIX, On topological n-groups, Abh. math. Semin. Univ. Hamburg 41(1974), 115-124.
- [5] J. UŠAN, Kvazigrupe, Institut za matematiku, Novi Sad, 1979.

M.R. Žižović and Lj.D. Kočinac NEKE PRIMEDBE O n-GRUPAMA

U radu se daje potreban i dovoljan uslov da neki element n-grupe sa jedinicom i sam bude jedinica. Ispitana su i neka svojstva n-reda elementa u topološkim n-grupama.

Mališa Žižović, Tehnički fakultet, 32000 Čačak, Yugoslavia Ljubiša Kočinac, Filozofski fakultet, 18000 Niš, Yugoslavia