Momir Stanojević

ON HYPERSPACE OF COMPACT SUBSETS OF k-SPACES

(Received 25.5.1988.)

Abstract.Let X be a Hausdorff space and $\mathcal{Z}(X)$ be the hyperspace of compact subsets of X. For a Hausdorff space X let kX be the space on the set X generated by the family of k-closed subsets of the space X. In this paper we establish som of the properties of the spaces: $\mathcal{Z}(kX)$, $k \mathcal{Z}(X)$, $\mathcal{Z}^{(n)}(kX)$ and so on. Among other, we prove that te following conditions are equivalent: $\mathcal{Z}(X)$ is a k-space. $\mathcal{Z}^{(n)}(X)$ is a k-space.

For a space X, let $\exp(X)$ be the collection of all non-empty closed subsets of X with the Vietoris exponential topology.

Troughout this paper all spaces are assumed to be Hausdorff.

The Vietoris topology on $\exp (X)$ is the one generated by collection of the form

$$\label{eq:continuity} \langle \, \textbf{U}_1, \, \, \textbf{U}_2, \dots, \textbf{U}_n \rangle \, = \, \left\{ \, \textbf{F} \in \exp(\textbf{X}) : \textbf{F} \subset \, \, \bigcup_{i=1}^n \, \, \textbf{U}_i \, , \textbf{F} \cap \, \textbf{U}_i \neq \, \emptyset \, , 1 \, \notin i \, \notin \, n \, \, \right\} \; ,$$

with $\mathbf{U}_1, \mathbf{U}_2, \ldots, \mathbf{U}_n$, open subsets of X.

Let $\mathbb{Z}(X)$ denote the subspace of exp (X) consisting of all non-empty compact subsets of X. Take $\mathbb{Z}(X)$ with Vietoris topology, then $\mathbb{Z}(X)$ is called the hyperspace of compact sets of X(|2|, |3|, |6|).

The set of all non-empty compact subsets of a space X will be denoted by $\mathbf{Z}(X)_{\mbox{set}}$

AMS Subject Classification (1980:54B20, 54D50,UDK 513.83.

Put formally $Z(X) = Z^{(1)}(X)$, and for n > 1, let

$$Z^{(n)}(x) = Z(Z^{(n-1)}(x)).$$

An element of $\mathbb{Z}(X)$ will be denoted by K and an element of $\mathbb{Z}^{(n)}(X)$ by $K^{(n-1)}(|4|,|5|)$.

The union mapping

$$u = u^{(1)} : Z^{(2)}(X) \rightarrow Z(X),$$

given by $u(K^{(1)}) = \bigcup \{K: K \in K^{(1)}\}$, is well defined and continuous (see |3|, |6|).

For n >1, let

$$u^{(n)}: \not = (n+1)(x) \rightarrow \not = (n)(x)$$
.

So we get an inverse sequence

$$(Z^{(n)}(x), u^{(n)}, n \in \mathbb{N}),$$

and let

$$\mathcal{I}^{(n)}(x) = \lim_{n \to \infty} (\mathcal{I}^{(n)}(x), u^{(n)}, n \in \mathbb{N}),$$

be the limit space (see |5|, of a compact space X).

Remark. Using the continuity of the functor \mathcal{Z} (see |9|, |2|), it is easy to see that the limit space $\mathcal{Z}^{(\omega)}(X)$ has the property $\mathcal{Z}(\mathcal{Z}^{(\omega)}(X)) \approx \mathcal{Z}^{(\omega)}(X)$. The following definiton gives the notion of k-space.

DEFINITION. A subset A of a space X is called k-closed if A \(\) K is relatively closed in K for every compact K \(\) X. A space X is a k-space if every k-closed subset of X is closed (for some equivalent definitions see |1|, |2|, |7|).

For every Hausdorff space X there exists exactly one k-spece that has the same underlying set and the same compact subspaces (see [1], T.2.2. and [2]). Let Y be the family of all k-closed subsets of X. The set X with the topology generated by the family Y of a closed subsets will be denoted by kX. Clearly, a subset of kX is open if and only if its intersection with any compact subspace K of the space X is open in K. The topology of kX is finer that the topology of X. The spaces X and kX have the same compact subspaces, $Z(X)_{\text{set}} = Z(kX)_{\text{set}}, \text{ and the same topology on those spaces. The formula } X_X(x) = x \text{ defines a continuous k-mapping } Z_X:kX \to X(f:X) \text{ are compact sets}.$

If Y is a k-space and F:Y \rightarrow X is a continuous one to one k-maping, then Y \approx kX(|1|, T.2.2.).

Let X be a k-space. Then is not necessarily that the hyperspace $\cancel{Z}(X)$ is a k-space. In |8|, V.V. Popov gave some examples of k-spaces whose hyperspace of compact sets are not k-space.

Another examples can be obtained in this way:

2. **EXAMPLE.** Let X_1 and X_2 be two k-spaces whose Cartesian product $X_1 \times X_2$ is not a k-space (see |2|, Example 3.3.29.). The sum $X_1 = X_1 \oplus X_2$ is a k-space. Let

$$\mathcal{X} = \left\{ \{ x_1, x_2 \} \ : \ x_1 \in X_1, x_2 \in X_2 \right\} \subset \mathcal{Z}(X).$$

It is easy to see that the set $\mathcal X$ is a closed subspace of $\mathcal Z(X)$ and $\mathcal X$ is homeomorphic to the Cartesian product $X_1 \times X_2$. Therefore $\mathcal X$ is not k-space. Since $\mathcal X$ is a closed subspace of $\mathcal Z(X)$, then $\mathcal Z(X)$ also is not a k-space.

Let $J_i(X) = \{ K \in \mathcal{L}(X) : \operatorname{card} K \leq i, i \in \mathbb{N} \}$. Then $J_i(X)$ is a closed subspace of the hyperspace $\mathcal{L}(X)$ and $J_1(X) \approx X$ (see |6|). The mapping $j_i: X^i \longrightarrow J_i(X)$, defined by $j_i((x_1, x_2, \dots, x_i)) = \{x_1, x_2, \dots, x_i\}$, is a perfect mapping (1).

In |1|, Arhangel'skii (see also |2|, T. 3.7.25.) has proved the following statement.

 THEOREM. Let f:X → Y be a perfect mapping. Then X is a k-space if and only if Y is a k-space.

From the last theorem we deduce the following.

- 4. COROLLARY. Let X be a space. Then
 - (i) The space X is a k-space iff J, (X) is a k-space.
 - (ii) If X^{i} is not k-space, then $\mathcal{L}(X)$ is not a k-space.

For a space X we have the following set - rellations:

$$Z(x)_{set} = Z(kx)_{set} = kZ(x)_{set} = kZ(kx)_{set}$$

and the topological inclusions

⁽¹⁾ A continuous mapping $f:X \to Y$ is perfect if f is closed and $f^{-1}(y)$ is compact for every $y \in Y$.

5. PROPOSITION. Let X be a space. Then

PROOF. First, we prove that the spaces $\mathcal{Z}(X)$ and $\mathcal{Z}(kX)$ have the same compact subsets, i. e., $\mathcal{Z}^{(2)}(kX)_{\text{set}} = \mathcal{Z}^{(2)}(X)_{\text{set}}$. Since $\mathcal{Z}(X) \leqslant \mathcal{Z}(kX)$, then $\mathcal{Z}^{(2)}(kX)_{\text{set}} \subset \mathcal{Z}^{(2)}(X)_{\text{set}}$. Let $\mathcal{Z} \subset \mathcal{Z}(X)$ be a compact set. Then the set $|\mathcal{X}| = U\{K: K \in \mathcal{K}\}$ is a compact subset in X and in kX. The mapping i: $\mathcal{Z}(kX) \to \mathcal{Z}(X)$ defined by $\forall K \in \mathcal{Z}(kX)$, $i(K) = K \in \mathcal{Z}(X)$, is a continuous mapping. The set $i^{-1}(\mathcal{K}) = \mathcal{K} \subset \mathcal{Z}(kX)$ is closed, and $\mathcal{K} \subset \mathcal{Z}(\mathcal{X}) \subset \mathcal{Z}(kX)$. Hence, \mathcal{K} is a compact subset of $\mathcal{Z}(kX)$.

We shall prove that a set $\mathcal H$ is closed in k $\mathcal Z$ (kX) if and only if $\mathcal H$ is closed in k $\mathcal Z$ (X).

Let A be a closed subset of $k \not\equiv (X)$. Since $k \not\equiv (X) \not \subseteq k \not\equiv (kX)$, then A is closed in $k \not\equiv (kX)$.

Suppose that \mathscr{L} is not closed in $\mathscr{K}(X)$. Then the set \mathscr{L} is not k-closed in $\mathscr{L}(X)$. Thus , there exists a compact set $\mathscr{K} \subset \mathscr{L}(X)$ such that $\mathscr{K} \cap \mathscr{K}$ is not relatively compact in \mathscr{K} . The set \mathscr{K} is also compact in \mathscr{L} (kX). Since $\mathscr{N} \cap \mathscr{K}$ is not relatively closed in $\mathscr{K} \subset \mathscr{L}$ (kX), then \mathscr{K} is not closed in k \mathscr{L} (kX).

For a space X, let

$$(k \cancel{Z})^{(2)}(X) = k \cancel{Z}(k \cancel{Z}(X))$$

and

$$(k \not\equiv)^{(n)}(x) = k \not\equiv ((k \not\equiv ^{(n-1)}(x)).$$

In this notation we have the following

6. COROLLARY. Let X be a space. Then

$$(k \not\equiv)^{(n)}(x) \approx k \not\equiv^{(n)}(kx) \approx k \not\equiv^{(n)}(x).$$

- 7. THEOREM. The following properties of a space X are equivalent:
- (i) Z(X) is a k-space.
- (ii) $\mathbb{X}^{(n)}(X)$ is a k-space, for $n \ge 2$.
- (iii) $\mathbb{X}^{(\omega)}(X)$ is a k space.

PROOF. (iii) \Rightarrow (ii) \Rightarrow (i). The space $\mathcal{L}(X)$ is homeo-morphic to the closed subspace of $\mathcal{L}^{(n)}(X)$, and $\mathcal{L}^{(n)}(X)$, $n \in \mathbb{N}$, is homeomorphic to the closed subspace of $\mathcal{L}^{(\omega)}(X)$. Therefore, if $\mathcal{L}^{(n)}(X)$ is a k-space, then $\mathcal{L}(X)$ is a k-space, and if $\mathcal{L}^{(\omega)}(X)$ is a k-space, then $\mathcal{L}^{(n)}(X)$, $n \in \mathbb{N}$, is a k-space.

(i) \Rightarrow (ii). Let $\mathcal{Z}(X)$ be a k-space. It is enought to prove that $\mathcal{Z}^{(2)}(X)$ is a k-space.

We are going to prove that the union mapping u: $\not\downarrow^{(2)}(X) \longrightarrow \not\not\vdash(X)$ is a continuous k-mapping. It is easy to see that the mapping u is a continuous mapping (for a compact space X, see for example |4|).

Let $K \in \mathcal{L}(X)$. Then

$$u^{-1}(K) = \{c^{(1)} \in \mathcal{Z}^{(2)}(X) : u(c^{(1)}) = |c^{(1)}| = K\},$$

and

$$u^{-1}(K) < \exp^{(2)}(K) = Z^{(2)}(K) = \langle \langle K \rangle \rangle$$
.

The space $\mathcal{Z}^{(2)}(K)$ is a compact subspace of $\mathcal{Z}^{(2)}(X)$. Since the mapping u is a continuous mapping, then the set $u^{-1}(K)$ is a closed subset of $\mathcal{Z}^{(2)}(K) \subset \mathcal{Z}^{(2)}$ (X). It follows that $u^{-1}(K)$ is a compact subset of $\mathcal{Z}^{(2)}(X)$.

Let $\mathcal{K}\subset\mathcal{I}(X)$ be a compact set. Then $|\mathcal{K}|=\cup$ { K: $K\in\mathcal{K}$ } is a compact subset of X, $|\mathcal{K}|\in\mathcal{I}(X)$. The set $u^{-1}(\mathcal{K})$ is a closed subset of $\mathcal{I}^{(2)}(X)$. Since $u^{-1}(\mathcal{K})\subset\mathcal{I}^{(2)}(|\mathcal{K}|)=\langle\langle |\mathcal{K}|\rangle\rangle$, we have that $u^{-1}(\mathcal{K})$ is a compact subset of $\mathcal{I}^{(2)}(X)$.

Hence, the union mapping u is a continuous k-mapping.

From the assumption that the hyperspace $\mathcal{I}(X)$ is a k-space, we have that the union mapping u: $\mathcal{I}^{(2)}(X) \to \mathcal{I}(X)$ is a perfect mapping (see [1], T.2.1. and [2], T.3.7.18.).

From the theorem 3. it follows that $\mathcal{I}^{(2)}(X)$ is a k-space.

(i) \Longrightarrow (iii). Let $\mathcal{Z}(X)$ be a k-space. Since all bonding mapping $u^{(n)}$ of the inverse sequence ($\mathcal{Z}^{(n)}(X)$, $u^{(n)}$, $n \in \mathbb{N}$) are perfect, then all projections $p_n \colon \mathcal{Z}^{(\omega)}(X) \to \mathcal{Z}^{(n)}(X)$ also are perfect mappings (see |2|,T.3.7.12.). Therefore $\mathcal{Z}^{(\omega)}(X)$ is a k - space.

From this theorem we have the following result:

8. COROLLARY. Let X be a space. Then:

(i) If $\mathbb{Z}(kX) \approx k \mathbb{Z}(X)$, then $\mathbb{Z}^{(n)}(kX) \approx k \mathbb{Z}^{(n)}(X)$.

(ii) If $\mathbb{Z}(kX) \approx k \mathbb{Z}(X)$, then $\mathbb{Z}^{(\omega)}(kX) \approx k \mathbb{Z}^{(\omega)}(X)$.

REFERENCES

- A.V. ARHANGEL'SKII, Bikompaktnye množestva i topologija prostranstv, Trudy Mosk.matem.ob-va,(1965),13, 3-55.
- 2 R.ENGELKING, General Topology, Warszawa, (1977). Moskva, 1986.
- 3 K.KURATOVSKII, Topologija, Moskva, I (1966) and II (1969).
- [4] M.M. MARJANOVIĆ, Exponentially complete spaces IV, Publ. Inst.Math. 16(30),(1973), 103-117.
- [5] M.M.MARJANOVIĆ and S.T. VREĆICA, Another hyperspace representation of the Hilbert cube, Bull.Acad.Serbe Sci.LXXXVIII,Sci.math.14,(1985), 11-19.
- [6] E.A.MICHAEL, TOpologies on spaces of subsets, Trans.Amer.Math.Soc., 71,(1951),152-182.
- [7] E.A.MICHAEL, A quintuple quotient quest, Gen. Topology and its Appl., 2,(1972),91-138.
- [8] V.V. POPOV, Prostranstvo bikompaktnyh podmnožestv i k-prostranstva, Obščaja topologija. Prostranstva funkcii i razmernost, Moskva, Izd-vo MGU, (1985), 121-130.
- [9] P.ZENOR, On the completeness of the space of compact subsets, Proc. Amer. Math. Soc., 26, (1970), 190-192.

Momir Stanojević

O HIPERPROSTORU KOMPAKTNIH PODSKUPOVA k-PROSTORA

Neka je X Hausdorff-ov prostor i $\chi(X)$ hiperprostor kompaktnih podskupova prostora X. Za Hausdorff-ov prostor X, sa kX je označen prostor na skupu X koji je generisan familijom k-zatvorenih podskupova prvobitnog prostora X. U ovom radu ispituju se neka svojstva prostora: $\chi(X)$, $\chi(X)$, $\chi(X)$ i sličnih. Pored ostalog dokazuje se da su sledeći iskazi ekvivalentni: $\chi(X)$ je k-prostor. $\chi(X)$ je k-prostor.

Mašinski fakultet ul. Beogradska 14. 18 000 N I Š

JUGOSLAVIJA