Milutin Obradović, M.K. Aouf and Shigeyoshi Owa

A CHARACTERIZATION OF THE CLASS OF STARLIKE FUNCTIONS OF COMPLEX ORDER

(Received 25.4.1988)

Abstract. Let S(b) ($b\neq 0$, complex) denote the class of functions f analytic in |z|<1, normalized so that f(0)=f'(0)-1=0 and starlike of order b. A necessary and sufficient condition that $f \in S(b)$ is given.

1. Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disc U={z:|z|<1}.

A function $f \in A$ is said to be a starlike function of order b if and only if $f(z)/z \neq 0$, $z \in U$, and

(1)
$$\operatorname{Re}\left\{1+\frac{1}{b}\left(z\frac{f'(z)}{f(z)}-1\right)\right\} > 0$$

for some b (b \neq 0, complex) and for all z \in U. We denote by S(b) the class of all such functions. The class S(b) was introduced by Nasr and Aouf in [3]. In the same paper they investigated certain properties of the class S(b).

We note that for b equal to 1, $1-\alpha$ $(0\leqslant \alpha<1)$, $\cos \lambda e^{-i\lambda}$ (λ is real and $|\lambda|<\pi/2$) and $(1-\alpha)\cos \lambda e^{-i\lambda}$ $(0\leqslant \alpha<1$, $|\lambda|<\pi/2$) we have the class of starlike functions (S*), starlike functions of order α (S*(α)), spirallike functions (S*) and spirallike functions of order α (S* α). All of these special subclasses are the subclasses of univalent functions in U. More about these classes we can see in [1].

Let f and g be analytic in the unit disc U. The function f is subordinate to g, written $f \leq g$ or $f(z) \leq g(z)$, if g is univalent,

f(0)=g(0) and $f(U)\subset g(U)$.

For the proof of our result in the part 2 of this paper we need the following lemma given by Miller and Mocanu in [2] (see Remark on the page 191).

LEMMA 1. Let q be univalent in U and ϕ be analytic in a domain D containing q(U), with ϕ (w) \neq 0 when weq(U). Set Q(z)=zq^(z) ϕ (q(z)) and suppose that Q is starlike (univalent) in U (i.e. Q(0)=0, Q^(0) \neq 0 and Re{zQ^(z)/Q(z)}>0, zeU). If p is analytic in U, with p(0)=q(0), p(U) and

(2)
$$zp'(p)\phi(p(z)) \ll zq'(z)\phi(q(z)) = Q(z)$$
,

then $p \leqslant q$, and q is the best dominant of (2).

In the end of this part, we note that the univalent function q is said to be a <u>dominant of the differential subordination</u> (2) if $p \lt q$ for all p satisfying (2). If \tilde{q} is a dominant of (2) and $\tilde{q} \lt q$ for all dominants q of (2), then \tilde{q} is said to be the <u>best dominant</u> of (3) (for more details see [2]).

2. A characterization of the class S(b)

In this part we give a necessary and sufficient condition for a function $f \in A$ to be in the class S(b).

THEOREM 1. Let $f \in A$. A necessary and sufficient condition that $f \in S(b)$ ($b \neq 0$, complex) is that for each real number k, -1 < k < 1, the function defined by

(3)
$$F_k(z) = (\frac{kf(z)}{f(kz)})^{1/2b}, F_k(0) = 1, F_0(z) = (\frac{f(z)}{z})^{1/2b}$$

be analytic in U and subordinate to $\frac{1-kz}{1-z}$, $z \in U$, or equivalently that

(4) $Re\{F_k(z)\}>(1+k)/2, z\in U.$

PROOF. First, let $f \in S(b)$ (b\neq 0, complex). In Lemma 1 we choose $q(z) = \frac{1-kz}{1-z}$ (-1<k<1), and $\phi(w) = \frac{1}{w}$. Then q is univalent in U and

$$Q(z) = zq^{*}(z)\phi(q(z)) = z\frac{q^{*}(z)}{q(z)} = \frac{(1-k)z}{(1-z)(1-kz)}$$
 is starlike in U.

Really,

$$\mbox{Re}\{z\ \frac{Q'(z)}{Q(z)}\}\ =\ \frac{1}{2}\ \mbox{Re}\{\frac{1+z}{1-z}\ +\ \frac{1+kz}{1-kz}\}\ >\ 0\,,\quad z\ \mbox{\ensuremath{\not\in}}\ U\,.$$

Therefore, the conditions of Lemma 1 are satisfied and we have that for p analytic in U, with p(0)=1, the following implication

(5)
$$\frac{zp'(z)}{p(z)} < \frac{(1-k)z}{(1-z)(1-kz)} = Q(z) \Rightarrow p(z) < \frac{1-kz}{1-z} = q(z)$$

is true, and q is the best dominant. Now, let show that for the function $p(z)=F_k(z)=(\frac{kf(z)}{f(kz)})^{1/2b}$, where $f\in S(b)$, the left side of implication (5) is satisfied. In that sense, let show that the function

$$z \frac{F_k'(z)}{F_k(z)} = \frac{1}{2b} \left[z \frac{f'(z)}{f(z)} - kz \frac{f'(kz)}{f(kz)} \right]$$

is subordinate to the function Q(z). Really, since $f \in S(b)$, from (1) we have

(6)
$$1 + \frac{1}{b} \left(z \frac{f'(z)}{f(z)} - 1\right) < \frac{1+z}{1-z};$$

and from there and subordinate principle,

(7)
$$1 + \frac{1}{b} \left(kz \frac{f''(kz)}{f(kz)} - 1\right) < \frac{1+kz}{1-kz}, -1 < k < 1.$$

Further, $f_1 \leqslant g_1$ and $f_2 \leqslant g_2$ imply that $f_1 - f_2 \leqslant g_1 - g_2$ if $g_1 - g_2$ is univalent. In our cases, (6) and (7), because

$$\frac{1+z}{1-z} - \frac{1+kz}{1-kz} = \frac{2(1-k)z}{(1-z)(1-kz)}$$

is starlike as we have shown previously, we get

$$\frac{1}{b} \ [z \ \frac{f'(z)}{f(z)} - kz \ \frac{f'(kz)}{f(kz)} \] < \frac{2(1-k)z}{(1-z)(1-kz)},$$

i.e.

$$\frac{1}{2b} \; [z\; \frac{f'(z)}{f(z)} - kz\; \frac{f'(kz)}{f(kz)}] = \; z\; \frac{F_k'(z)}{F_k(z)} \, {<\hspace{-.07in}\triangleleft} \; Q(z)\;,$$

which was to be proved. The result follows from (5).

We note that the previous proof of necessert part of Theorem 1 is different than those given in [5] and [6] for similar situation.

For the proof of sufficient part of Theorem 1 we employ the manner due to Robertson [5]. Namely, let \mathbf{F}_k defined by (3) satisfy the condition (4). Then it is equivalent to condition

(8)
$$\left|\frac{1+k}{F_k(z)} - 1\right| < 1, z \in U.$$

If we put

(9)
$$\Psi(z) = \frac{1+k}{F_k(z)} - 1 = (1+k) \left(\frac{f(kz)}{kf(z)}\right)^{1/2b} - 1,$$

then we conclude that the function Ψ is analytic in U and $|\Psi(z)|<1$, for all k, 0< k<1. Let show that the function f satisfies (1). Let t=1-k, 0< t<1. Since

$$\mathcal{E}(kz) = f(z-tz) = f(z) + \sum_{n=1}^{\infty} \frac{f^{(n)}(z)}{n!} (-tz)^n, |tz|<1-|z|,$$

we have

$$\Psi(z) = (2-t) \left[\frac{f(z-tz)}{(1-t)f(z)} \right]^{1/2b} - 1$$

$$= 1 - \left[1 + \frac{1}{b} \left(z \frac{f'(z)}{f(z)} - 1 \right) \right] t + \theta(t)$$

as $t\rightarrow 0$, |z|<1. From there, since $|\Psi(z)|<1$, we obtain

$$1-\text{Re}\{1+\frac{1}{b}\ (z\ \frac{f'(z)}{f(z)}-1)\}t+\delta'(t)<1$$
,

which implies

$$-\text{Re}\left\{1+\frac{1}{b}\left(z\frac{f'(z)}{f(z)}-1\right)\right\}+O(1)<0$$

i.e.

Re{1+
$$\frac{1}{b}$$
 (z $\frac{f'(z)}{f(z)}$ - 1)}>0, z \in U.

For z=0 the function $1+\frac{1}{b}(z\frac{f'(z)}{f(z)}-1)$ does not vanish so we have $\operatorname{Re}\{1+\frac{1}{b}(z\frac{f'(z)}{f(z)}-1)\}>0$ and $f\in S(b)$.

Putting b=(1- α)cos λ e^{-i λ} in Theorem 1 we have COROLLARY 1. Let $f \in A$ and α and λ be real numbers satisfying $0 \le \alpha < 1$, $|\lambda| < \pi/2$. A necessary and sufficient condition that $f \in S_{\alpha}^{\lambda}$ is that for each real number k, -1 < k < 1,

$$\operatorname{Re}\{\left[\frac{kf(z)}{f(kz)}\right]^{\delta(1+itg\lambda)}\} > \frac{k+1}{2}, \quad z \in U,$$

where

$$\delta = \frac{1}{2(1-\alpha)} \cdot$$

This is the earlier result given by Selinger in [6]. In a special case when b=1, we have that the condition

$$Re\{\left[\frac{kf(z)}{f(kz)}\right]^{1/2}\}>\frac{k+1}{2}, z \in U,$$

for each k, is necessary and sufficient for $f \in A$ to be in S*. This is the former result obtained by Robertson [5].

Letting k -- 1 in Theorem 1, we get

COROLLARY 2. Let f € S(b) (b ≠ 0, complex). Then

$$\operatorname{Re}\left\{\left(\frac{f(z)}{-f(-z)}\right)^{1/2b}\right\}>0, z \in U.$$

In the end, for k=0 in Theorem 1, we obtain COROLLARY 3. If $f \in S(b)$ ($b \neq 0$, complex), then

$$\operatorname{Re} \{ \left(\frac{f(z)}{z} \right)^{1/2b} \} > \frac{1}{2}, \quad z \in U,$$

or equivalently,

$$(\frac{f(z)}{z})^{1/2b} < \frac{1}{1-z}$$
.

We note that from the last relation we have also

$$\left(\frac{z}{f(z)}\right)^{1/2b}$$
 1-z,

and from there

$$\left| \frac{z}{f(z)} \right|^{1/2b} - 1 \right| \leq |z|, z \in U,$$

which is the result given in [4].

REFERENCES

- [1] A.W.GOODMAN, Univalent functions, Vol. I,II (1983), Tampa , Florida
- [2] S.S.MILLER and P.T.MOCANU, On some classes of first-order differential subordinations, Michigan Math. J. 32 (1985), 185-195.
- [3] M.A.NASR and M.K.AOUF, Starlike function of complex order, Journal of Natural Sci. and Math., Vol. 25, No. 1 (1985), 1-12.
- [4] M.OBRADOVIC, M.K.AOUF and S.OWA, On some results for starlike functions of complex order, to appear.
- [5] M.S.ROBERTSON, A characterization of the class of starlike univalent functions, Michigan Math. J. 26 (1979), 65-69.
- [6] V.M.SLLINGER, A characterization of the class of spirallike univalent functions, Mathematica (Cluj), Vol. 28 (51), No. 2, 1986, 181-183.

Department of Mathematics Faculty of Technology and Metallurgy 4 karnegieva Street 11000 belgrade Yugoslavia Department of Mathematics Faculty of Science University of Catar P.O.Box 2713 Doha - Catar

Department of Mathematics Kinki University Higashi-Osaka, Osaka 577 Japan