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Abstarct. Liouville's formula for certain class of linear
operator equations of order n is derived. The result is applied
to solving a linear second order operator equation. A number
of examples which illustrate the results are given.

0, Introduction.

Let V be a commutative algebra over K (or C) and let L be
a linear operator on V, which belongs to the class Dgy(V). where
ol € kerL ( see [11 - [43 ), i.e.

L{uv) = uLv + vLu + olLuLv, for every u.,v € V.

In €11 it was shown that the only interesting cases are

ol=0and o= 1.
.The properties of the linear equation

n
0.1 « 3 pLl"*ix=q (p =D
k=0

where Py,..-.Pped €V were investigated in C11-LC31.
For the linear homogeneous equation

a n-k
(0.2) ( 3 pl )x = 0 (P, = liPyse--vpy €V )
k=0

a generalization of Wronskian is defined in C1] by the following
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from (1.2) and the above we obtain (1.1) which completes the
proof of lemma.

THEOREM 1.1. Let L €DglV) and let Xyoe000%, be (kerL)-

linearly independent solutions of (0.2) with the generalized
Wronskian W. Then W satisfies the first order equation
1}

k-1 _
AR glt T TR WX s v e ux ) = 0.

(1.3 LHix,...

PROOF. Since Hyee--0X, are solutions of (0.2) then from
(1.1) we find

L k-1
LHIZ .ooax )+ églt—d) RLILE SRR
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k-2 _ ,
Ln-kzj_(_d)k--lnn-lxj + 3 (-d)ith k+ixj+ odph k+1+1xj)
i=o

we conclude that (1.4) is walid.
REMARKS AND EXAMPLES, (i) If o= 0 (1.4) becomes
{(1.5) LN(xl.....xn) + pIN(xl....,xn) =0

and in the case «= 1 we obtain

I
k-1
(1.6)  LW(X;.....x ) + ( 1‘:)::1( DT P WXy e x ) = 0L

(ii) Let L = d/dx E;DOIU). where V is the set of n-times
differentiable real functions, kerL = R. Then (1.5) reduces to
the well-known Liouville’'s formula for differential equations

wtyl.....yn) = Cexp(- gpltx)dx).
C is arbitrary constant ( see e.g. [53 ), ¥3se--.¥, are linearly
independent solutions of

(n-1)

AR py(x)y + oo+ op ()Y = 0.

(1ii) Let L = f(x.y)d/dx + g(x,y)d/dy, where f,g are n-th
order differentiable functions. In this case V is the set of

n-th order differentiable real functions in two variables, e = 0
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and we have

W(ul ..... un) = F(h(z,y))exp(- Spl(h.eﬁde).
where F is an arbitrary differentiable function, hix,y) = C is
the general solution of ¥' = - f(x,y)/g(x,y) and © is a particu-

lar solution of fex + q@v = 1, P = pl(x,y) = pl(h,B),

In this case equation (0.2) reduces to n-th order linear
partial differential equation, with particular solutions Ujronee
U This result can be obtain also, using the results from C11.

(iv) Let L = DEDD(V). where V is a set of complex functions,
such that real and imaginary part are n-th order differentiable

functions, D is a Kolosoff's operator, defined by

Dw = tux = VY + i(uY + vx))lz, (w=u+ iv ),

kerL, is a set of analytic functions. Then the Liocuville’s
formula has the form

W(w,....,w ) = Fiz)exp( - S pl(z.E)dE )

where F 1is an arbitrary analytic function, wl,...,wn are

particular solutions of
DMz, z) + pltz.Em“‘lw(z,E) + ...+ p (z,2)0(z,2) = 0.
This, also, follows from C113].

(v) Let L =£SGI)1(V),Af = f(x+l) - f(x) where V is the set
of real functions. Then we have:

x-1 n k
Wy seneny,) = POX) M+ F -0 P (3.
i=o k=1

where P is an arbitrary periodic function with period 1, Foreovos

¥, are particular solutions of the difference equation

[&ny + p1(x>dp-1y + ...+ pn(xly = Q.

This is nothing else but the well-known result for differe-
nce equations ( see e.g. [61 - [9] )

(vi) Let [.EDl(V) be defined by Lf = f(qx) - £(x), where
g = const, g > 0, g # 1, V is the set of real functions.
Then we have:
logqx-l

n
W(yl....,yn) = P(logqxl '|| (1+ k51(—1)
i=o =

kpk(qk)).

where P is an arbitrary periodic function with period 1.
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n
Lx1 S an
(0.3) W(xl.....zn) = :
n-1 n-1
L xl woww: D xn

where Ay---..X, are particular sclutions of (0.2). Farticular

solutions HyeeoevoX, are (kerL)-linearly dependent if and only
H(xl..v.,xn) = 0 ( see £11 ).

REMARK 0.1. In the case of differential equations, (0.3)
is the standard Wronskian, but in the case of difference
equations this is an equivalent form of Casoratian [61 - [103.

In this note we will derive a generalization of the well-
known Liouville's formula for the equation (0.2). The obtained
result will be applied to solving second-order equations. As

examples we will considered differential, difference and
functional equations.

1. Liouville’'s formula.
e S 8§ lOFmula.

LEMMA 1.1. Let LED,(V) and let W be given by (0.3). Then

x1+le1 - xn+den
o sn-2) . onei n-2. n-1
(1.1) LH(xl.....xnl = L x1+dL X} ... L xn+dL i,
Lnxl L™x

where KpoeoesX, ev.

PROOF. We will prove (1.1) by using the inductien. For n=2
it is trivial. Supposing that (1.1) helds for n-1, we obtain

n
- _1y0+k -n-1
(1.2) LN(xl.....xnl = L{ é{l( 1) (L xk’“k)

n
- _q1,h+k n n-1 n
= k§=l‘ 1) ((L xk)NkHL xk)Lﬂkﬂl(L xk)[‘wk)'

where "k is the determinant of order n-1 obtained from
Hlxl.....xn) by missing the n-th row and k-th collumn.
Using the induction hypothesis we find
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(vii) Let LEDI(V) be defined by Lf = f(wx) - f(x), where w
is given function, wx = w(x), wrx = wiwbF ), v is the set of
real functions. Then, for the linear functional equation

£z + pl(x)f(wn'lx) * ..+ P (X)f(x) = 0,

the Wronskian satisfies the first order equation

W(fl(wx).....fn(wxn + pltx)ﬂ(fn(x).....t'l(x)) = 0,

where fl""'fn are particular solutions of the above equation.

2. Second order equations.

In this section we will consider the second-order equation

(2.1) L% + pLx + qx = 0, p,qEV

where LGD“(V). Then the Liouville’'s fomula becomes
(2.2)  LW(u,v) + (p -olq)Wlu,v) = 0,

where W(u,v) is generalized Hronskian and u,v are particular
solutions of (2.1).

THEOREM 2.1. Let L€ Dy(V) and let u be a nontrivial
particular solution of (2.1) and u +elLu is not proper zero
devisor in V. If v and w are nontrivial particular solutions of
of the system
(2.3) ubv - vLu = w
then

v Lw + (p -elqiw = 0,

(i) v satisfies (2.1);

(ii) u, v are (kerL)-linearly independent:
(iii) The general solution of (2.1) is x = au + bv.
where a,b€ kerl are arbitrary.

PROOF. (1) Since u is the nontrivial solution of (2.1) then
uteLu # 0, and we find (u+ olLu)L%y = (v+ olLvIL%u + Lw. which

gives (u+ oLu)(Liy + PLV + qv ) = 0, wherefrom follows that v
satisfies the equation (2.1).

{il) Since w is a nontrivial solution of (2.3), i.e. w = o,

we obtain that u, v are tkerL)-linearly independent ( see €131,
Theorem 1 ).

(i1i) From the above and Theorem S from C1} the form of

general solution of (2.1) follows immediately which compeltes the
proof of the theorem.
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REMARKS AND EXAMPLES. The general solutions of the equations
(2.4) y" + plx)y’ +q(x)y = 0,

(2.5) f£22__ + 2fqz._ + g%z

- + (pf + ffx+ gfylzx

xy ¥y
+ (pg + fgz+ggy)zy + gz = 0,

(2.6) D%(z,%) + plz,z)Dulz,%) + q(z,2)w(z.2) = 0,

(2.7) A?y + plx)Ay + q(x)y = 0,

-
(2.8) y(g°x) + P(x)y(gx) + Q(x)yix) = 0,
2.9) Ynez 4 Pnyn+1 + Qnyn =0,

(2.10) flwPx) + plx)f(wx) + q(x)f(x) = 0,

are given by
(2.4") y = Cju + Cou sexp(- Spdx)u-zdx.

( Cl' C2 are arbitrary constants ):

(2.5") z = Fy(h(x,y))u + Fy(htx.y)lu Sexp(- Sp(h.ﬂ)do:u'zde,

where Fl' F2 are arbitrary differentiable functions, hix,y) = C
is the general solution of y' = -fix,y)/gi{x.y) and © is a parti-

cular solution of fex + gey =1, p = plx,v)} = pth,8);

(2.6") wlz,2) = Fi(2)u + Fy(z)u Sexpt- Sp(z.i)di)u‘zdi.

where l-"l and F2 are arbitrary analytic functions;

z-1 k
(2.7) y = P.(xtu + P (x)u Y ¢ [V (1-p(Hr+q(9)) )ruklutk+l),
1 g k=0 j=0

where Pl' E are arbitrary periocdic functions with period 1.

This formula can be found. for example, in L7313, L[8].
logqx-l

(2.8') y = Pj(logxiu + Bytlogxiu 3 (floq hruig Fuiq ¥,

k=0 j=0o

where Pl, Pz are arbitrary periodic functions with period 1.

(2.9°) g, = Cu + Cu 2: ( [1 lelukuk+1)

( Cl. C2 are arbitrary constants ):

(2.10") £(x) = Clix!u(x) + Cz(x)v(x)

where Cl and C2 are arbitrary soclutions of Cilwx) - C(x) = 0, and
u, v. v’ satisfy the system
viwx) - ulwx)vix)/ulx) = v (x)/ulx), v i{wx) + pix)v'(x) = 0.

39




In the above examples u 1is the particular nontrivial
solution of the equations (2.4) - (2.10).
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Vlajke Lj. Kocié

LIOUVILLEOVA FORMULA ZA NEKE KLASE LINEARNIH JEDNACINA
I NJENE FRIMENE

Liouvilleova formula =za neke klase linearnih operatorskih
jednaé¢ina je izvedena. Rezultat je primenjen na resavanije

linearne jednatine drugog reda. Vise primera ilustruje dobijene
rezultate.
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