Stojan Bogdanović

GENERALIZED U-SEMIGROUPS

(Received 10.5.1988.)

Abstract. In this paper we consider semigroups with the following condition $(\forall x,y)(\exists m) (xy)^m \in \langle x \rangle \cup \langle y \rangle$.

In conection with a lettice of subsemigroups of some semigroup the imporatant position is captured by v-semigroups. A semigroup v is a v-semigroup if the union of every two subsemigroups of v is a subsemigroup of v , equivalently v is v for all v in these semigroups have been considered more a time, predominantly in special cases. More detailedly about these we can find in the book of M.Petrich, [4].

In this paper we consider a generalization of U-semigroups. By Z^+ we denote the set of all positive integers.By Reg(S) (Gr(S) , E(S)) we denote the set of all regular (completely regular, idempotent) elements of a semigroup S.

For non defined notions and notations we refer to [3] and [4].

DEFINITION 1. S is a GU-semigroup (generalized U-semigroup) if for every $x,y \in S$ there exists $m \in Z^+$ such that

 $(1) \qquad (xy)^{\mathfrak{m}} \in \langle x \rangle \cup \langle y \rangle .$

LEMMA 1. Every subsemigroup and every homomorphic image of a GU-semigroup is a GU-semigroup.

A $\underline{\text{singular}}$ $\underline{\text{band}}$ is a semigroup which is either a left or a right zero semigroup.

A semigroup $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is an <u>ordinal sum of semigroups</u> S_{α} , $\alpha \in Y$, if Y is a chain, $S_{\alpha} \cap S_{\beta} = \emptyset$ if $\alpha \neq \beta$ and for any $a \in S_{\alpha}$, $b \in S_{\beta}$, $\alpha \in \beta$ implies ab = ba = b, [4].

LEMMA 2.[5]. S is an ordinal sum of singular bands if and only if $(\forall x, y \in S) \ xy \in \{x,y\}.$

LEMMA 3. Let S be a GU-semigroup and let E(S) $\neq \emptyset$. Then $(\forall e, f \in E(S)) \text{ ef } \{e, f\}$.

A semigroup S is power joined if for every x,y \in S there exist m,n \in Z⁺ such that $x^m = y^n$, (4^i) .

LEMMA 4. A power joined semigroup is a GU-semigroup.

COROLLARY 1. A nil-semigroup is a GU-semigroup.

COROLLARY 2. A periodic group is a GU-semigroup.

LEMMA 5. Let G be a group with the identity element e . Then G is a GU-semigroup if and only if G is periodic.

<u>Proof.</u> Let G be a GU-semigroup. Then for any $x \in G$ there exist $m,p,q \in Z^+$ such that $e=(xx^{-1})^m=x^p$ or $e=(xx^{-1})^m=(x^{-1})^q$. So G is periodic.

The converse follows by Corollary 2.

In any semigroup S , define a relation ${\mathcal K}$ by :

$$a \mathcal{K} b \iff (\exists m, n \in Z^+) a^m = b^n$$
.

It is immediate that ${\mathcal K}$ is an equivalence relation.

THEOREM 1. S is a left zero band of power joined semigroups if and only if

(2) $(\forall x, y \in S) (\exists m \in Z^+) (xy)^m \in \langle x \rangle .$

Proof. Let S be a left zero band Y of power joined semigroups

 S_{χ} , $\alpha \in Y$. For $x \in S_{\chi}$, $y \in S_{\eta}$ we have $xy \in S_{\chi \cap \eta} = S_{\chi}$, whence $(xy)^m = x^n$ for some $m, n \in Z^+$. Thus the condition (2) holds.

Conversely,let S satisfy (2). Let $x \mathcal{X} y$. Then $(xy)^m = x^n$, for some $m,n \in Z^+$. So each \mathcal{K} -class is a power joined subsemigroup of S. We shall show that \mathcal{K} is a congruence on S. Suppose $x \mathcal{K} y$ and $z \in S$. Then $x^m = y^n$ for some $m,n \in Z^+$, and by (2) we have that

$$(xz)^k = x^p$$
 , $(yz)^r = y^q$

for some $k,p,r,q \in Z^+$. Hence

$$(xz)^{mkq} = x^{pmq} = y^{pnq} = (yz)^{pnr}$$

Thus xz \mathcal{K} yz . On the other hand $(zx)^S = z^t$ and $(zy)^i = z^j$ for some s,t,i,j \in Z $^+$. So $(zx)^{Sj} = z^{tj} = (zy)^{it}$, i.e. $zx \mathcal{K}$ zy. Therefore, \mathcal{K} is a congruence and since a \mathcal{K} a 2 for every a \in S, we have that S is a band of power joined semigroups. It is clear that S is a left zero band of power joined semigroups.

COROLLARY 3. S is a periodic left group if and only if S is a left zero band of periodic groups.

LEMMA 6. S <u>is a completely simple GU-semigroup if and only if</u> S <u>is a left or a right periodic group.</u>

<u>Proof.</u> Let S be a completely simple GU-semigroup. Then by Lemmas 1. and 5. S is periodic. By Theorem 7.1.[1] every subsemigroup of S is simple. So E(S) is simple and by Lemmas 2. and 3. we have that E(S) is a left or a right zero band. By Theorem IV 3.9.[3] we have that S is a periodic left or right group.

Conversely,let S be a periodic left (right) group. Then by Corollary

3. S is a left (right) zero band of periodic groups. By Theorem 1. S
is a GU-semigroup.

DEFINITION 2. A chain Y of semigroups $S = \bigcup_{d \in Y} S_d$ is a GU-chain of semigroups if for every $x \in S_d$, $y \in S_d$, $d \neq S_d$ there exists $m \in Z^+$ such that $(xy)^m \in \angle x \times \bigcup \langle y \rangle$.

THEOREM 2. S is a regular GU-semigroup if and only if S is a GU-chain of periodic left and right groups.

Proof. Let S be a regular GU-semigroup.Let a = axa. Then by Lemma 3. we have that ax = axxa or xa = axxa. So $a = axa = ax^2a^2$ or $a = a^2x^2a$. Thus S is a completely regular semigroup. By Lemmas 1. and 5. we have that S is periodic. Since S is a semilattice of completely simple semigroups we have by Lemma 6. that S is a semilattice of periodic left and right groups. By Lemmas 2. and 3. and by

Theorem 5.2.[2] we have that S is a chain of periodic left and right groups. It is clear that S is a GU-chain of periodic left and right groups. The converse follows immediately.

THEOREM 3. S is a GU-semigroup if and only if S is a union Y of power joined semigroups S_{ω} , $\alpha \in Y$ and for every $x \in S_{\omega}$, $y \in S_{\omega}$, $\alpha \notin S$ there exists $m \in Z^+$ such that $(xy)^m \in \langle x \rangle \cup \langle y \rangle$.

<u>Proof.</u> Let S be a GU-semigroup.Let $x \mathcal{K} y$. Then $(xy)^m = x^n$ for some $m,n \in \mathbb{Z}^+$. So each \mathcal{K} -class is a power joined subsemigroup of S. Therefore, S is a union Y of power joined semigroups and it is clear that for every $x \in S_{o,c}$, $y \in S_{o,c}$, $x \notin S_{o,c}$, $x \notin S_{o,c}$, there exists $m \notin \mathbb{Z}^+$ such that $(xy)^m \in \mathcal{L} x \cup U \cup U \cup V$.

The converse follows by the hypothesis and by Lemma 4.

A semigroup S is \mathcal{R} -regular if for every a \in S there exists $m \in \mathbb{Z}^+$ such that $a^m \in a^m S a^m$.

THEOREM 4. The following conditions are equivalent on a semigroup S:

- (i) S is a A-regular GU-semigroup,
- (ii) S is a GU-chain Y of semigroups S_{ct}, where S_{ct}, coe Y

 is an ideal extension of a periodic left or right group K_{ct} by a nil
 semigroup and for every x e S_{ct} -K_{ct}, y e K_{ct} there exist m, n e Z + such that

 (3) (xy)^m, (yx)ⁿ e (xx) \(\frac{1}{2}\) .

Proof. (1) \Longrightarrow (11). Let S be a \mathcal{K} -regular GU-semigroup. Let a = axa. Then by Lemma 3. (ax)(xa) \in {ax,xa}. So a = ax^2a^2 or a = a^2x^2 . Thus Reg(S) = Gr(S). Hence S is a GV-semigroup. By Theorem 5.2. [2] we have that S is a chain Y of nil-extensions of rectangular groups $S_{\mathcal{K}}$, $\mathcal{K} \in Y$. By Lemma 6. $S_{\mathcal{K}}$, $\mathcal{K} \in Y$ is an ideal extension of a periodic left or right group $K_{\mathcal{K}}$. It is clear that (3) holds and that S is a GU-chain Y of semigroups $S_{\mathcal{K}}$, $\mathcal{K} \in Y$.

- (ii) ⇒ (i). This implication follows by Lemma 5. and Corollaryl. and by (3).
- (i) ⇒ (iii). By equivalence (i)<⇒ (ii) we have that S is periodic. Then by Theorem 3. we have the assertion.
 - (iii) =>(i). This implication follows immediately.

REFERENCES

- S.Bogdanović and S.Gilezan, Semigroups with completely simple kernel, Zbornik radova PMF Novi Sad 12(1982), 429-445.
- S.Bogdanović, Semigroups of Galbiati-Veronesi, Proc. of the conference "Algebra and Logic", Zagreb, 1984,9-20.
- M. Petrich, Introduction to semigroups, Merill, Ohio, 1973.
- 4. M. Petrich, Lectures in semigroups, Akad. Verlag, Berlin, 1977.
- 5. L.Rédei, Algebra I , Pergamon Press Oxford, 1967, pp. 81.

GENERALISANE U-POLUGRUPE

 $(\forall x, y)(\exists m) (xy)^m \in \langle x \rangle \lor \langle y \rangle$.

Matematički institut 11000 Beograd Knez Mihailova 35 Yugoslavia