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Abstract. We investigate the global existence, continuous dependence and exponential stability for mild
solutions of a class of delay partial integro-differential equation with random impulsive moments. The
results are obtained by using the Leray-Schauder alternative fixed point theory and Banach contraction
principle.

1. Introduction

The study of global existence and qualitative properties, of a solution for partial differential equations
and integro differential equations are very limited. Partial differential and partial integro-differential
equations (PIDE) arise in many engineering and scientific disciplines. PIDE play very essential role in real
world modelling problems with derivative and integral terms. Yong Chen [10] studied the second-order
convergent IMEX scheme for solving the 2-dimensional PIDE with spatial delays arising in option pricing
under the hard-to-borrow jump-diffusion models. There are problems in science and engineering that
deal with PIDE’s. Takács [29] studied qualitative properties of space-dependent SIR models with constant
delay and their numerical solutions, by constructing a delay PIDE using biological sciences. Agarwal [2]
studied stability of partial functional integro-differential equations and phase transition dynamics with the
memory of visco-elasticity. Fractional PIDE with spatial-time delay is discussed in [8]. State delay for a
first order hyperbolic PIDE is discussed in [43]. Second-order PIDE can be seen in [9]. Further, PIDEs are
used in privacy-preserving, ensuring secure communication, ship course-keeping, population dynamics,
mathematical physics, nuclear science, finance and heat transfer. For further reading and more details, refer
[3, 4, 8, 12, 25, 27, 44] and the references therein.

Impulsive differential equations are well known in modelling problems from many areas of science
and engineering. There has been much research activity concerning the theory of impulsive differential
equations see [22, 26]. The impulses may exists at deterministic or random points. E. Hernández et al.,
[13–16] has studied the impulsive global partial differential equations and the references therein. Further,
Sivasankaran et al. [28] studied the existence of global solutions for second-order impulsive abstract
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partial differential equations using Leray–Schauder’s alternative fixed point theorem. Vijayakumar et
al. in [37, 38] proved the existence of global solutions for second-order impulsive differential equations
with nonlocal conditions using Leray–Schauder’s alternative fixed point theorem. Milan [23] studied
the sufficient conditions for the existence of global solutions of nonlinear functional-differential evolution
equations whose linear parts are infinitesimal generators of strongly continuous and analytic semigroups.
Moreover, the fractional order PIDE with spatial-time and multiple delays are studied in [8, 12, 43]. There
are lot of papers which investigate the properties of deterministic impulses see [5, 17] and the references
therein.

Considerable attention have been given to the fixed impulses in the field of nonlinear differential systems,
where the impulses do not always occur at fixed time points in the system state. There is a possibility that
it occurs at random time points in the system state, since the real world system states are often subject
to random changes. Moreover, the solutions follow a stochastic process when the impulse arrival time
is taken at random. It is certainly different from the fixed impulse approach. However, a few research
works have been done based on the stability of various differential systems, including random impulses.
For example, Shujin Wu et. al.,[39–42] studied the qualitative properties of random impulsive differential
system. In [6], the author studied the existence and exponential stability of a random impulsive semilinear
functional differential equation through the fixed point technique under non-uniqueness. In [7, 30], the
authors established the existence, uniqueness and stability results through Banach fixed point method for
the system of random impulsive differential equations. In [31], the author studied the existence results
for the random impulsive differential inclusions with delays. Further, Agarwal,R. P et. al.,[1], studied
the exponential stability of differential equations with random impulses at random times. In [34], the
problem of pth moment global exponential stability for functional differential equations and scalar chaotic
delayed equations under random impulsive effects have been studied. In [32, 33, 36], the study of unstable
continuous time delay systems controlled by the random impulses has been investigated. Recently, in
[19, 20] the authors studied the exponential stability of stochastic differential systems, when the impulse
arrival time is taken at random. Till the date, there has been no result established based on exponential
stability of random impulsive PIDEs. It is different from the stochastic differential equations. This is the
motivation behind our study on random impulsive PIDEs in this paper. We have utilized the techniques
developed in [11, 22, 24, 26] to establish our results.

The paper is organized as follows: In section 2, the useful notations, definitions and preliminary
facts are briefly recalled. In section 3, we investigate the existence of mild solutions of partial delay
integro-differential equations with random impulses by using Leray - Schauder alternative fixed point
theory and Banach contraction principle. In section 4, we establish the global existence of solutions for
random impulsive partial delay integro-differential equations by using Leray - Schauder alternative fixed
point theory and Banach contraction principle. In section 5, we study the stability through continuous
dependence on initial conditions. Finally in section 6, we study the exponential stability using Leray -
Schauder alternative fixed point theory.

2. Preliminaries

Let X be a real separable Hilbert space and Ω a nonempty set. Assume that {τk}
∞

k=1 be a sequence of
independent exponentially distributed random variable with parameter λ, and each random variable τk is

defined from Ω to Dk
de f .
= (0, dk) for k = 1, 2, . . ., where 0 < dk < +∞. For the sake of simplicity, we denote

ℜτ = [τ,+∞),ℜ+ = [0,+∞).
We consider integrodifferential equation of the form

x′(t) = Ax(t) +
∫ t

0
F
(
t, s, x(σ(s))

)
ds, t , ξk, t ≥ τ,

x(ξk) = bk(τk)x(ξ−k ), k = 1, 2, · · · ,
xt0 = φ

(1)
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where A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators S(t)
with domain D(A) ⊂ X; the nonlinear operator F : ∆ × C → X, C = C([−r, 0],X) is the set of continuous and
bounded functions mapping [−r, 0] into X with some given r > 0; σ : ℜ+ → ℜ+; ξ0 = t0 and ξk = ξk−1 + τk
for k = 1, 2, · · · , Here t0 ∈ Rτ is an arbitrary real number. Obviously, t0 = ξ0 < ξ1 < ξ2 < · · · < lim

k→∞
ξk = ∞;

bk : Dk → R for each k = 1, 2, · · · ; x(ξ−k ) = lim
t↑ξk

x(t) according to their paths with the norm ∥x∥t = sup
t−r≤s≤t

|x(s)|

for each t satisfying τ ≤ t ≤ T ∥ · ∥ is any given norm in X, here ∆ denotes the set{(t, s) : 0 ≤ s ≤ t < ∞}.
{Gt, t ≥ 0} denotes the simple counting process generated by {ξn}, that is, {Gt ≥ n} = {ξn ≤ t}, and Ft

denotes the σ-algebra generated by {Gt, t ≥ 0}. Then (Ω,P, {Ft}) is a probability space. Let L2 = L2(Ω,Ft,X)
denote the Hilbert space of all Ft - measurable square integrable random variables with values in X.

Assume that T > t0 is any fixed time to be determined later and let B denote the Banach space
B

(
[t0 − r,T],L2

)
, the family of all Ft-measurable, C-valued random variables ψ with the norm

∥ψ∥B =

 sup
t0≤t≤T

E∥ψ∥2t

1/2 .
Let L0

2(Ω,B) denote the family of all F0 - measurable, B - valued random variable φ.

Remark 2.1. For any given time t > 0 and integer n ≥ 1, ξn and Gt are related by {Gt ≥ n} = {ξn ≤ t}. It is
understood that, {ξn ≤ t} is the event that the nth arrival occurs by time t, implies that Gt, the number of arrivals by
time t, must be at least n. Similarly, {Gt ≥ n} implies {ξn ≤ t}, yielding the equality. The counting process {Gt, t ≥ 0}
is a stochastic process in time. The given filtration Ft represents the evolution of knowledge about the random system
through time. The information at time t carried by filtration Ft determines the value of the random variable ξk.

Lemma 2.2. [1] The probability that there will be exactly k impulses until the time t, t ≥ t0,where impulse mo-
ments ξk, k = 1, 2, · · · follow exponential distribution with parameter λ, is given by the equality P(I[ξk,ξk+1)(t)) =
λk(t−t0)k

k! e−λ(t−t0), where, the events, I[ξk ,ξk+1)(t) = {ω ∈ Ω : ξk(ω) < t < ξk+1(ω)}, k = 1, 2, · · · .

Remark 2.3. In [1], the expected value of the solution x(t) for the random impulsive differential equation is given as

E[∥x(t)∥] =
∞∑

k=0

E[∥x(t)∥|I[ξk ,ξk+1)(t)]P(I[ξk ,ξk+1)(t)),

where the impulse moments ξk, k = 1, 2, · · · follow exponential distribution with parameter λ.

Definition 2.4. [11, 24] A semigroup {S(t); t ≥ t0} is said to be exponentially stable if there are positive constants
M ≥ 1 and γ > 0 such that ∥S(t)∥ ≤ Me−γ(t−t0) for all t ≥ t0. A semigroup {S(t), t ≥ t0} is said to be uniformly
bounded if ∥S(t)∥ ≤ M for all t ≥ t0, where M ≥ 1 is some constant. If M = 1, then the semigroup is said to be
contraction semigroup.

Definition 2.5. [21] A map F (t, s, x) : ∆ × C → X, for all t ∈ [τ,T], F (t, ·, ·) satisfies L2-Caratheodory, if
(i) s→F (t, s, x) and is measurable for each x ∈ C;
(ii) x→F (t, s, x) is continuous for almost all t ∈ [τ,T];
(iii) for each positive integer m > 0, there exists αm ∈ L1 ([τ,T],R+) such that

sup
E∥x∥2≤m

E ∥F(t, s, x)∥2 ≤ αm(t), for t ∈ [τ,T], a.e.

Definition 2.6. For a given T ∈ (t0,+∞), a stochastic process {x(t) ∈ B, t0 − r ≤ t ≤ T} is called a mild solution to
equation (1) in (Ω,P, {Ft}), if
(i) x(t) ∈ X is Ft−adapted for t ≥ t0;
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(ii) x(t0 + s) = φ(s) ∈ L0
2(Ω,B) when s ∈ [−r, 0]

x(t) =

+∞∑
k=0

( k∏
i=1

bi(τi)S(t − t0)φ(0) +
k∑

i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t

ξk

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

)
I[ξk,ξk+1)(t), t ∈ [t0,T],

(2)

where
n∏

j=m
(·) = 1 as m > n,

k∏
j=i

b j(τ j) = bk(τk)bk−1(τk−1) · · · bi(τi), and IA(·) is the index function, i.e.,

IA(t) =
{

1, if t ∈ A,
0, if t < A.

Our existence theorem is based on the following theorem, which is a version of the topological transver-
sality theorem.

Lemma 2.7. Let B be a convex subset of a Banach space E and assume that 0 ∈ B. Let F : B → B be a completely
continuous operator and let U(F) =

{
x ∈ B : x = λ Fx for some 0 < λ < 1

}
;

then either U(F) is unbounded or F has a fixed point.

3. Existence of mild solution

In this section, we prove the existence theorem by using the following hypothesis.
(H1): The function F : [t0,T] × [t0,T] × C → X is continuous, F(t, s, 0) = 0, and it satisfies the Lipschitz
condition with respect to x, ie.,

E∥F(t, s, x1) − F(t, s, x2)∥2 ≤ L(t, s,E∥x1∥
2,E∥x2∥

2)E∥x1 − x2∥
2
s , (t, s) ∈ ∆, x1, x2 ∈ X,

where L : [t0,T] × [t0,T] ×ℜ+ ×ℜ+ →ℜ+ and is monotonically nondecreasing with respect to the second
and third arguments.
(H2): There exists a continuous function p : [t0,T] × [t0,T]→ (0,∞) such that

E∥F(t, s, x)∥2 ≤ p(t, s)H(E∥x∥2s ), (t, s) ∈ ∆, x ∈ X,

where H :ℜ+ → (0,∞) is a continuous nondecreasing function.
(H3): σ : [t0,T]→ [t0,T], is a continuous functions such that σ(t) ≤ t.
(H4): E

{
∥b j(τ j)∥2

}
≤ C for all τ j ∈ D j, j = 1, 2, · · · ., where C > 0.

Theorem 3.1. If the hypothesis (H2)− (H4) hold, then system (1) has a mild solution x(t), defined on [t0,T] provided
that the following inequality is satisfied

M1

∫ T

t0

e−λ(1−max{1,C})(s−t0)p(s, s)ds <

∫
∞

c1

ds
H(s)

, (3)

where M1 = 2M2(T − t0)2 and c1 = 2M2E∥φ∥2.

Proof. Let T be an arbitrary number t0 < T < +∞ satisfying (3) . We transform the problem (1) into a fixed
point problem. We consider the operator Φ : B → B defined by

Φx(t) =



φ(t − t0), t ∈ [t0 − r, t0],
+∞∑
k=0

 k∏
i=1

bi(τi)S(t − t0)φ(0) +
k∑

i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t

ξk

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

]
I[ξk,ξk+1)(t), t ∈ [t0,T].
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In order to use the transversality theorem, first we establish the priori estimates for the solutions of the
integral equation and λ ∈ (0, 1),

x(t) =



λ φ(t − t0), t ∈ [t0 − r, t0],

λ
+∞∑
k=0

 k∏
i=1

bi(τi)S(t − t0)φ(0) +
k∑

i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t

ξk

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

]
I[ξk,ξk+1)(t), t ∈ [t0,T],

Thus by (H2) − (H4), we have

E∥x(t)∥2 ≤ 2E
[ +∞∑

k=0

[
∥

k∏
i=1

bi(τi)∥2∥S(t − t0)∥2∥φ(0)∥2|I[ξk ,ξk+1)(t)
]
P(I[ξk,ξk+1)(t))

+
[ +∞∑

k=0

[ k∑
i=1

∥

k∏
j=i

b j(τ j)∥
{ ∫ ξi

ξi−1

∥S(t − s)∥∥
∫ s

0
F(s, µ, x(σ(µ)))dµ∥ds

}
+

∫ t

ξk

∥S(t − s)∥∥
∫ s

0
F(s, µ, x(σ(µ)))dµ∥ds

]2
|I[ξk ,ξk+1)(t)P(I[ξk,ξk+1)(t))

]]
,

E∥x∥2t ≤ 2M2E∥φ∥2
+∞∑
k=0

k∏
i=1

C
λk(t − t0)k

k!
e−λ(t−t0)

+2M2(T − t0)E
[ ∫ t

t0

∥∥∥∥∥∫ s

0
F(s, µ, x(σ(µ)))dµ

∥∥∥∥∥2 ds
]

×

+∞∑
k=0

k∏
i=1

max{1,C}
λk(t − t0)k

k!
e−λ(t−t0)

≤ 2M2E∥φ∥2e−λ(1−C)(t−t0)

+2M2(T − t0)E
[ ∫ t

t0

∥∥∥∥∥∫ s

0
F(s, µ, x(σ(µ)))dµ

∥∥∥∥∥2 ds
]
× e−λ(1−max{1,C})(t−t0),

then

E∥x∥2t ≤ 2M2e−λ(1−C)(t−t0)E
[
∥φ∥2
]

+2M2e−λ(1−max{1,C})(t−t0)(T − t0)
∫ t

t0

[∫ s

0
E
∥∥∥F(s, µ, x(σ(µ)))dµ

∥∥∥2] ds

≤ 2M2e−λ(1−C)(t−t0)E
[∥∥∥φ∥∥∥2]

+2M2e−λ(1−max{1,C})(t−t0)(T − t0)
∫ t

t0

[∫ s

0
p(s, µ)H(E∥x(σ(µ))∥2s )dµ

]
ds

≤ 2M2e−λ(1−C)(t−t0)E
[∥∥∥φ∥∥∥2]

+2M2e−λ(1−max{1,C})(t−t0)(T − t0)
∫ t

t0

[∫ s

0
p(s, µ)H(E∥x(µ)∥2s )dµ

]
ds

≤ 2M2e−λ(1−C)(t−t0)E
[∥∥∥φ∥∥∥2]

+2M2e−λ(1−max{1,C})(t−t0)(T − t0)2
∫ t

t0

p(s, s)H(E∥x∥2s )ds.
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Since the last term on the right hand side of the above inequality also increases in t, we have

sup
t0≤v≤t

E∥x∥2v ≤ 2M2e−λ(1−C)(t−t0)E
[∥∥∥φ∥∥∥2]

+2M2e−λ(1−max{1,C})(t−t0)(T − t0)2
∫ t

t0

p(s, s)H(E
[
∥x∥2s
]
)ds

≤ 2M2e−λ(1−C)(t−t0)E
[∥∥∥φ∥∥∥2]

+2M2e−λ(1−max{1,C})(t−t0)(T − t0)2
∫ t

t0

p(s, s)H( sup
t0≤v≤s

E
[
∥x∥2v
]
)ds.

Consider the function ℓ(t) defined by

ℓ(t) = sup
t0≤v≤t

E
[
∥x∥2v
]
, t ∈ [t0,T].

Then, for any t ∈ [t0,T] it follows that

ℓ(t) ≤ 2M2e−λ(1−C)(t−t0)E
[∥∥∥φ∥∥∥2] + 2M2e−λ(1−max{1,C})(t−t0)(T − t0)2

∫ t

t0

p(s, s)H(ℓ(s))ds. (4)

Denoting the right hand side of the above inequality (4) by u(t) we obtain that

ℓ(t) ≤ u(t), t ∈ [t0,T],

u(t0) = 2M2e−λ(1−C)(t0−t0)E
∥∥∥φ∥∥∥2 = c1,

and

u′(t) = 2M2e−λ(1−max{1,C})(t−t0)(T − t0)2p(t, t)H(ℓ(t))
≤ 2M2e−λ(1−max{1,C})(t−t0)(T − t0)2p(t, t)H(u(t)), t ∈ [t0,T].

Then
u′(t)

H(u(t))
≤ 2M2e−λ(1−max{1,C})(t−t0)(T − t0)2p(t, t), t ∈ [t0,T]. (5)

Integrating (5) from t0 to t and by applying the change of variable method, we obtain∫ u(t)

u(t0)

ds
H(s)

≤ 2M2(T − t0)2
∫ t

t0

e−λ(1−max{1,C})(s−t0)p(s, s)ds

≤ 2M2(T − t0)2
∫ T

t0

e−λ(1−max{1,C})(s−t0)p(s, s)ds

<

∫
∞

u(t0)

ds
H(s)

, t ∈ [t0,T], (6)

where the last inequality is obtained by (3). From (6) and by mean value theorem, there is a constant η1 such
that u(t) ≤ η1 and hence ℓ(t) ≤ η1. Since sup

t0≤v≤t
E∥x∥2v = ℓ(t) holds for every t ∈ [t0,T], we have sup

t0≤v≤T
E∥x∥2v ≤ η1,

where η1 only depends on T, the functions p and H, and consequently

E∥x∥2
B
= sup

t0≤v≤T
E∥x∥2v ≤ η1.

In the next steps, we will prove that Φ is continuous and completely continuous.
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Step 1. We prove that Φ is continuous.
Let {xn} be a convergent sequence of elements x in B. Then for each t ∈ [t0,T], we have

Φxn(t) =

+∞∑
k=0

 k∏
i=1

bi(τi)S(t − t0)φ(0) +
k∑

i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t − s)
∫ s

0
F(s, µ, xn(σ(µ)))dµds

+

∫ t

ξk

S(t − s)
∫ s

0
F(s, µ, xn(σ(µ)))dµds

]
|I[ξk,ξk+1)(t).

Thus,

Φxn(t) −Φx(t)

=

+∞∑
k=0

 k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t − s){
∫ s

0
F(s, µ, xn(σ(µ)))dµ −

∫ s

0
F(s, µ, x(σ(µ)))dµ}ds

+

∫ t

ξk

S(t − s){
∫ s

0
F(s, µ, xn(σ(µ)))dµ −

∫ s

0
F(s, µ, x(σ(µ)))dµ}ds

]
|I[ξk ,ξk+1)(t),

and

E∥Φxn −Φx∥2t
≤M2e−λ(1−max{1,C})(t−t0)(T − t0)

×

∫ t

t0

E∥{
∫ s

0
F(s, µ, xn(σ(µ)))dµ −

∫ s

0
F(s, µ, x(σ(µ)))dµ}∥2ds

−→ 0 as n→∞.

Thus Φ is clearly continuous.
Step 2. We prove that Φ is completely continuous operator.

Denote

Bm =
{
x ∈ B

∣∣∣∣ ∥x∥2B ≤ m
}
,

for some m ≥ 0.
Step 2.1 We show that Φmaps Bm into an equicontinuous family.

Let y ∈ Bm and t1, t2 ∈ [t0,T]. If t0 < t1 < t2 < T, then by using hypotheses (H2) − (H4) and condition (3),
we have

Φx(t1) −Φx(t2)

=

+∞∑
k=0

[ k∏
i=1

bi(τi)S(t1 − t0)φ(0) +
k∑

i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t1 − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t1

ξk

S(t1 − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

]
|I[ξk ,ξk+1)(t1)

−

+∞∑
k=0

[ k∏
i=1

bi(τi)S(t2 − t0)φ(0) +
k∑

i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t2 − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t2

ξk

S(t2 − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

]
|I[ξk ,ξk+1)(t2).
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Thus,

Φx(t1) −Φx(t2)

=

+∞∑
k=0

[ k∏
i=1

bi(τi)S(t1 − t0)φ(0) +
k∑

i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t1 − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t1

ξk

S(t1 − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

]
|

(
I[ξk,ξk+1)(t1) − I[ξk ,ξk+1)(t2)

)
+

+∞∑
k=0

[ k∏
i=1

bi(τi)
(
S(t1 − t0) − S(t2 − t0)

)
φ(0)

+

k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

(
S(t1 − s) − S(t2 − s)

) ∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t1

ξk

(
S(t1 − s) − S(t2 − s)

) ∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t2

t1

S(t2 − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

]
|I[ξk,ξk+1)(t2).

Then,

E∥Φx(t1) −Φx(t2)∥2 ≤ 2E∥I1∥
2 + 2E∥I2∥

2, (7)

where

I1 =

+∞∑
k=0

[ k∏
i=1

bi(τi)S(t1 − t0)φ(0) +
k∑

i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t1 − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t1

ξk

S(t1 − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

]
|

(
I[ξk ,ξk+1)(t1) − I[ξk,ξk+1)(t2)

)
,

and

I2 =

+∞∑
k=0

[ k∏
i=1

bi(τi)
(
S(t1 − t0) − S(t2 − t0)

)
φ(0)

+

k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

(
S(t1 − s) − S(t2 − s)

) ∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t1

ξk

(
S(t1 − s) − S(t2 − s)

) ∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t2

t1

S(t2 − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

]
|I[ξk ,ξk+1)(t2).

Furthermore,

E∥I1∥
2
≤ 2M2E∥φ(0)∥2

[
e−λ(1−C)(t1−t0)

− e−λ(1−C)(t2−t0)
]

+2
[
e−λ(1−max{1,C})(t1−t0)

− e−λ(1−max{1,C})(t2−t0)
]

(8)

×(t1 − t0)2E
∫ t1

t0

∥S(t1 − s)∥2M∗H(m)ds

→ 0 as t2 → t1, (9)
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where M∗ = sup{p(t, t) : t ∈ [t0,T]}, and

E∥I2∥
2
≤ 3

[
e−λ(1−C)(t2−t0)

]
∥S(t1 − t0) − S(t2 − t0)∥2E∥φ(0)∥2

+3
[
e−λ(1−max{1,C})(t1−t0)

]
×(t1 − t0)E

∫ t1

t0

∥S(t1 − s) − S(t2 − s)∥2∥
∫ s

0
F(s, µ, x(σ(µ)))dµ∥2ds

+3
[
e−λ(1−max{1,C})(t2−t0)

]
(t2 − t1)E

∫ t2

t1

∥S(t2 − s)∥2∥
∫ s

0
F(s, µ, x(σ(µ)))dµ∥2ds.

Since there is δ > 0 such that

∥S (t1 − t0) − S (t2 − t0)∥ ≤
δ

√
t1 − t0

√
t1 − t2,

(see [18, Proposition 1]) and the compactness of S(t) for t > 0 implies the continuity in the uniform operator
topology, we have

∥S (t1 − t0) − S (t2 − t0)∥2 → 0, ∥S(t1 − s) − S(t2 − s)∥2 → 0 as t2 → t1.

Thus, Φmaps Bm into an equicontinuous family of functions.
Step 2.2 We show that ΦBm is uniformly bounded.

From (3), ∥x∥2
B
≤ m and by (H2) − (H4), we get,

E∥(Φx)∥2t ≤ 2M2e−λ(1−C)(t−t0)E∥φ(0)∥2

+2M2e−λ(1−max{1,C})(t−t0)(T − t0)
∫ t

t0

E∥
∫ s

0
F(s, µ, x(σ(µ)))dµ∥2ds

E∥(Φx)∥2t ≤ 2M2e−λ(1−C)(t−t0)E∥φ(0)∥2 + 2M2e−λ(1−max{1,C})(t−t0)(T − t0)2
∥αm∥L1 .

This yields that the set {(Φx)(t), ∥x∥2
B
≤ m} is uniformly bounded, so {ΦBm} is uniformly bounded. We have

already shown that ΦBm is equicontinuous collection. Now it is sufficient, by the Arzela - Ascoli theorem,
to show that Φmaps Bm into a precompact set in X.
Step 2.3 We show that ΦBm is compact.

Let t0 < t ≤ T be fixed and ϵ a real number satisfying ϵ ∈ (0, t − t0), for x ∈ Bm. We define

(Φϵx)(t) =

+∞∑
k=0

[ k∏
i=1

bi(τi)S(t − t0)φ(0) +
k∑

i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t−ϵ

ξk

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

]
|I[ξk,ξk+1)(t), t ∈ (t0, t − ϵ). (10)

Since S(t) is a compact operator, the set

Hϵ(t) = {(Φϵx)(t) : x ∈ Bm},

is precompact in X for every ϵ ∈ (0, t − t0). By using (H2) − (H4), (3) and E∥x∥2
Γ
≤ m, we obtain

E∥(Φx) − (Φϵx)∥2t ≤ M2e−λ(1−max{1,C})(t−t0)(T − t0)2
∫ t

t−ϵ
M∗H(m)ds.

Therefore, there are precompact sets arbitrarily close to the set {(Φx)(t) : x ∈ Bm}. Hence the set {(Φx)(t) : x ∈
Bm} is precompact in X. Therefore, Φ is a completely continuous operator.

Moreover, the set U(Φ) = {x ∈ B : x = λΦx, for some 0 < λ < 1} is bounded. Consequently, by Lemma
2.7, the operator Φ has a fixed point in B. Therefore, the system (1) has a mild solution. Thus, the proof is
completed.



A. Anguraj, A.Vinodkumar / Filomat 37:1 (2023), 317–334 326

Now, we give another existence result for the system (1) by means of Banach contraction principle.

Theorem 3.2. If the hypothesis (H1), (H3) and (H4) holds then the initial value problem (1) has a unique mild solution
on [t0,T].

Proof. Consider the nonlinear operator Φ : B → B defined as in Theorem 3.1,

E
∥∥∥Φx −Φy

∥∥∥2
t ≤ 2M2e−λ(1−max{1,C})(t−t0)(T − t0)

×

∫ t

0

{ ∫ s

0
E∥F(s, µ, x(σ(µ)))dµ −

∫ s

0
F(s, µ, y(σ(µ)))dµ∥2

}
ds

≤ 2M2e−λ(1−max{1,C})(t−t0)(T − t0)

×

∫ t

t0

{

∫ s

0
L
(
s, µ,E∥x(σ(µ))∥2,E∥y(σ(µ))∥2

)
E∥x(σ(µ)) − y(σ(µ))∥2s dµ}ds

≤ 2M2e−λ(1−max{1,C})(t−t0)(T − t0)

×

∫ t

t0

{

∫ s

0
L
(
s, µ,E∥x∥2,E∥y∥2

)
E∥x(µ) − y(µ)∥2s dµ}ds

≤ 2M2e−λ(1−max{1,C})(t−t0)(T − t0)2
∫ t

t0

L
(
s, s,E∥x∥2,E∥y∥2

)
E∥x − y∥2s ds

.
Taking supremum over t, we get,∥∥∥Φx −Φy

∥∥∥2
B
≤ Λ(T)∥x − y∥2

B
,

with Λ(T) = 2M2e−λ(1−max{1,C})(t−t0)(T − t0)2
∫ t

t0
L
(
s, s,E∥x∥2,E∥y∥2

)
ds.

Then we can take a suitable T1, 0 < T1 < T sufficiently small such that Λ(T1) < 1, then we get that Φ
is a contraction on BT1 ( BT1 denotes B with T substituted by T1). Thus, by the well-known Banach fixed
point theorem we obtain a unique fixed point x ∈ BT1 for operator Φ, and hence Φx = x is a mild solution
of (1). This procedure can be repeated to extend the solution to the entire interval [−r,T] in finitely many
similar steps, thereby completing the proof for the existence and uniqueness of mild solutions on the whole
interval [−r,T].

4. Existence of global solutions

In this section we study the global existence of solutions for
x′(t) = Ax(t) +

∫ t

0
F
(
t, s, x(σ(s))

)
ds, t , ξk, t ∈ [t0,∞)

x(ξk) = bk(τk)x(ξ−k ), k = 1, 2, · · · ,
xt0 = φ.

(11)

Definition 4.1. A function x : [t0,∞) → X is called a mild solution of (11) if x/[t0,T] ∈ B([t0,T],X) for every
T ∈ (t0,∞),

x(t) =

+∞∑
k=0

( k∏
i=1

bi(τi)S(t − t0)φ(0) +
k∑

i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t

ξk

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

)
I[ξk ,ξk+1)(t), t ∈ [t0,∞). (12)
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In order to obtain our results, we need to introduce some additional notations, definitions and technical
remarks. It follows that 1 : [t0,∞) → R is a positive continuous and nondecreasing function such that
1(t0) = 1 and lim

t→∞
1(t) = ∞. In this section B([t0,∞),X),C0(X),C0

1(X) and B0
1(X) are the spaces.

B([t0,∞),L2) = {x : [t0,∞)→ X : x/[t0,T] ∈ B([t0,T],X),∀ T ∈ (t0,∞), E∥x∥2
B
= sup

t≥t0

E∥x(t)∥2 < ∞};

C0(X) =
{
x ∈ C([t0,∞),X) : lim

t→∞
E∥x(t)∥2 = 0

}
; C0
1(X) = {x ∈ C([t0,∞),X) : lim

t→∞

E∥x(t)∥2

1(t) = 0};

B
0
1(X) = {x ∈ B([t0,∞),X) : lim

t→∞

E∥x(t)∥2

1(t) = 0}, endowed with the norms E∥x∥2∞ = sup
t≥t0

E∥x(t)∥2; E∥x∥20 =

sup
t≥t0

E∥x(t)∥2 ; E∥x∥21 = sup
t≥t0

E∥x(t)∥2

1(t) and E∥x∥2
B1
= sup

t≥t0

E∥x(t)∥2

1(t) respectively.

We recall here the following results of compactness in these spaces [13]. We omit the proof.

Lemma 4.2. A set B ⊂ C0
1(X) is relatively compact in C0

1 if and only if,
(a) B is equicontinuous;
(b) lim

t→∞

E∥x(t)∥2

1(t) = 0, uniformly for x ∈ B;
(c) The set B(t) = {x(t) : x ∈ B} is relatively compact in X, for every t ≥ t0.

Lemma 4.3. A set B ⊂ B0
1(X) is relatively compact in B0

1(X) if and only if,
(a) The set BT = {x/[t0,T] : x ∈ B} is relatively compact in Γ([t0,T]; X), for every T ∈ (0,∞),
(b) lim

t→∞

E∥x(t)∥2

1(t) = 0, uniformly for x ∈ B.

Theorem 4.4. Let the conditions (H2),(H3),(H4) holds for every T > 0. Suppose, in addition that the following
conditions are verified
(a) For every t > t0, the set {S(t)

∫ s

0 F(s, µ, x(σ(µ)))dµ : s ∈ [t0, t], x ∈ Bm(0,X)},
[where Bm(0,X) is a closed ball of radius m > 0 with center at the origin, in a Banach space X]
is relatively compact in X;

(b) For every ℏ > 0, lim
t→∞

1
1(t)

∫ t

t0

p(s, s)H[ℏ1(s)]ds = 0,

(c)
∫
∞

t0

M1e−λ(1−max{1,C})(s−t0)p(s, s)ds <
∫
∞

c1

ds
H(s)

,

where M1 = 2M2(T − t0)2 and c1 = 2M2E∥φ∥2. Then, there exists a mild solution for the system (11).

Proof. On the space B0
1(X) we define the operator

Φx(t) =

+∞∑
k=0

( k∏
i=1

bi(τi)S(t − t0)φ(0)

+

k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

+

∫ t

ξk

S(t − s)
∫ s

0
F(s, µ, x(σ(µ)))dµds

)
I[ξk ,ξk+1)(t), t ∈ [0,∞).

We can observe that E∥x(t)∥2 ≤ E∥x∥2
B1
1(t)

E∥Φx(t)∥2

1(t)
≤

2M2e−λ(1−C)(t−t0)E
[
∥φ∥2
]

1(t)

+
2M2e−λ(1−max{1,C})(t−t0)(T − t0)2

1(t)

∫ t

t0

p(s, s)H(E∥x∥2
B1
1(s))ds.

Next we show that Φ satisfies all the conditions in Lemma 2.7.
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Let (xn)n∈N be a sequence in B0
1(X) and x ∈ B0

1(X) such that xn → x in B0
1(X). Let ϵ > 0 be given and

ℏ = sup
n∈N

E∥xn∥
2
B1

. From condition (b) there exists L1 > 0 such that,

2M2e−λ(1−C)(t−t0)E
[
∥φ∥2
]

1(t)
+

2M2e−λ(1−max{1,C})(t−t0)(T − t0)2

1(t)

∫ t

t0

p(s, s)H(ℏ1(s))ds

<
ϵ
2
, t ≥ L1.

From the Lebesgue-dominated convergence theorem, we infer that, Nϵ ∈ N such that

E
{ ∫ L1

0
∥

∫ s

0
F(s, µ, xn(σ(µ)))dµ −

∫ s

0
F(s, µ, x(σ(µ)))dµ∥2

}
ds

<
ϵ

2M2e−λ(1−max{1,C})(t−t0)(T − t0)2
, n ≥ Nϵ,

E∥Φxn −Φx∥2t
1(t)

≤

∫ L1

0

{
E∥
∫ s

0
F(s, µ, xn(σ(µ)))dµ −

∫ s

0
F(s, µ, x(σ(µ)))dµ∥2

}
ds < ϵ.

Therefore,

sup
{

E∥Φxn(t) −Φx(t)∥2

1(t)
: t ∈ [0,L1],n ≥ Nϵ

}
≤ ϵ. (13)

On the other hand t ≥ L1 and n ≥ Nϵ, we find that

E∥Φxn −Φx∥2t
1(t)

≤
ϵ
2
+

2M2e−λ(1−max{1,C})(t−t0)(T − t0)2

1(t)

∫ t

L1

p(s, s)H(E∥xn − x∥2
B1
1(s))ds

≤
ϵ
2
+

2M2e−λ(1−max{1,C})(t−t0)(T − t0)2

1(t)

∫ t

L1

p(s, s)H(2ℏ1(s))ds.

So that,

sup
{E∥Φxn −Φx∥2t

1(t)
: t ≥ L1,n ≥ Nϵ

}
≤ ϵ. (14)

From (13) and (14), we see that Φ is continuous. Next, we prove that Φ is completely continuous. Let
Bm = {x ∈ B/∥x∥2B ≤ m}. From the proof of Theorem 3.1, we establish that the set Φ(Bm)|[t0,T] = {x|[t0,T] ∈ Bm :
x ∈ Bm} is relatively compact in B([t0,T]; X) for every T ∈ (t0,∞). Moreover, for x ∈ Bm, we have that

E∥Φx(t)∥2

1(t)
≤

2M2e−λ(1−C)(t−t0)E
[
∥φ∥2
]

1(t)

+
2M2e−λ(1−max{1,C})(t−t0)(T − t0)2

1(t)

∫ t

t0

p(s, s)H(E∥x∥2
B1
1(s))ds,

where, from (b) we get that E∥Φx∥2t
1(t) → 0 as t → ∞ uniformly for x ∈ Bm. Now, Lemma 4.2 allows us to

conclude that Φ(Bm) is relatively compact in B0
1(X). Thus Φ is completely continuous.

We establish the priori estimates for the equation (12). For t ≥ t0, we get,

E∥Φx∥2t ≤ 2M2e−λ(1−C)(t−t0)E
[
∥φ∥2
]

+2M2e−λ(1−max{1,C})(t−t0)(T − t0)2
∫ t

t0

p(s, s)H(E∥x∥2s )ds.
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Denoting the right hand side of the above equation by û(t), we obtain

û′(t) ≤ 2M2p(t, t)e−λ(1−max{1,C})(t−t0)(T − t0)2H(û(t))

and hence,∫ û(t)

c1

ds
H(s)

≤

∫
∞

t0

M1 e−λ(1−max{1,C})(s−t0)p(s, s)ds <
∫
∞

c1

ds
H(s)

.

This inequality jointly with condition (c) allows us to affirm that Φ is bounded in B0
1(X). By using Lemma

2.7, there exist a fixed point for Φ, and as a consequence a mild solution exists for (11). The proof is
complete.

Theorem 4.5. Let the condition (H1), (H3) and (H4) be satisfied for every T > t0. Then there exists a unique mild
solution, provided that

℘̂ = 2M2e−λ(1−max{1,C})(t−t0)(T − t0)2 sup
t≥t0

1
1(t)

∫ t

t0

L
(
s, s,E∥x∥2,E∥y∥2

)
1(s)ds < 1. (15)

Proof.

E∥Φx(t) −Φy(t)∥2

1(t)
≤

2M2e−λ(1−max{1,C})(t−t0)(T − t0)2

1(t)

×

∫ t

t0

L
(
s, s,E∥x∥2,E∥y∥2

)
E∥x − y∥2

B1
1(s)ds

∥Φx(t) −Φy(t)∥2
B1
≤ 2M2e−λ(1−max{1,C})(t−t0)(T − t0)2

× sup
t≥t0

1
1(t)

∫ t

t0

L
(
s, s,E∥x∥2,E∥y∥2

)
E∥x − y∥2

B1
1(s)ds

≤ ℘̂∥x − y∥2
B1
.

From (15), Φ is a contraction on B0
1. Hence, there exist a unique global fixed point for Φ in space B0

1 and
this fixed point is the mild solution of the initial problem (11).

5. Continuous dependence

Theorem 5.1. Let x(t) and x̄(t) be mild solution of system (11) with initial values φ(0) and φ̄(0) ∈ B1 respectively.
If the assumption (H1), (H3) and (H4) are satisfied then the mild solution of the system (11) is stable in the mean
square.

Proof. By the assumptions x and x̄ are the two mild solutions of the system (11) for t ∈ [t0,∞) then

sup
t≥t0

E∥x − x̄∥2t
1(t)

≤ sup
t≥t0

2M2e−λ(1−C)(t−t0)E∥φ(0) − φ̄(0)∥2

1(t)

+ 2M2e−λ(1−max{1,C})(t−t0)(T − t0)2

× sup
t≥t0

1
1(t)

∫ t

t0

L
(
s, s,E∥x∥2,E∥y∥2

)
E∥x − x̄∥2

B1
1(s)ds,

∥x − x̄∥2
B1
≤ 2M2e−λ(1−C)(t−t0)E∥φ(0) − φ̄(0)∥2

B1

+ 2M2e−λ(1−max{1,C})(t−t0)(T − t0)2

× sup
t≥t0

1
1(t)

∫ t

t0

L
(
s, s,E∥x∥2,E∥y∥2

)
E∥x − x̄∥2

B1
1(s)ds.
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By applying Grownwalls inequality, we have

∥x − x̄∥2
B1
≤ 2M2e−λ(1−C)(t−t0)E∥φ(0) − φ̄(0)∥2

B1

× exp(2M2e−λ(1−max{1,C})(t−t0)(T − t0)2 sup
t≥t0

1
1(t)

∫ t

t0

L
(
s, s,E∥x∥2,E∥y∥2

)
1(s)ds),

∥x − x̄∥2
B1
≤ ℑE∥φ(0) − φ̄(0)∥2

B1
,

where,

ℑ =2M2e−λ(1−C)(t−t0)exp(2M2e−λ(1−max{1,C})(t−t0)(T − t0)2

× sup
t≥t0

1
1(t)

∫ t

t0

L
(
s, s,E∥x∥2,E∥y∥2

)
1(s)ds).

Now given ϵ > 0, choose δ = ϵ
ℑ

such that ∥φ(0) − φ̄(0)∥2
B1
< δ. Then ∥x − x̄∥2

B1
≤ ϵ. Thus the difference

between the mild solutions x(t) and x̄(t) in the interval [t0,∞) is small, provided that the change in the
initial point (t0, φ(0)) as well as in the function F do not exceed the prescribed amounts. This completes the
proof.

6. Exponential Stability

In this section, we will study the exponential stability of mild solution of the system (11). For any
Ft adapted process ϕ(t) : [−r,∞) → ℜ is almost surely continuous in t. For the purpose of stability we
may assume that F(t, s, 0) = 0 for any t ≥ t0 so that the system (11) gives a trivial solution. Moreover
φ(t) = φ(t − t0) for t ∈ [t0 − r, t0] and E∥φ∥2t → 0 as t→∞.

Definition 6.1. [11] Eq. (11) is said to be exponentially stable in the quadratic mean if there exist positive constant
C1 and λ̂ > 0 such that
E∥x(t)∥2 ≤ C1E∥φ∥2e−λ̂(t−t0), t ≥ t0.

We now consider the following assumptions

(H5) : µH(χ) ≤ H(µχ) for all χ ∈ ℜ+ where µ > 1.

(H6) : ∥S(t)∥ ≤Me−γ(t−t0), t ≥ t0 where M ≥ 1 , γ > 0.

Theorem 6.2. Let the hypotheses of Theorem 4.3 and (H5 −H6) hold. Then system (11) is exponentially stable in the
quadratic mean if it satisfies the following inequality,
(a) For every t > t0, the set {S(t)

∫ s

0 F(s, µ, x(σ(µ)))dµ : s ∈ [t0, t], x ∈ Bm(0,X)} is relatively compact in X;

(b) For every ℏ̂ > 0, lim
t→∞

1
1(t)

∫ t

t0

eγ(s−t0)p(s, s)H[ℏ̂1(s)]ds = 0,

(c)
∫
∞

t0

M2e−λ(1−max{1,C})(s−t0)p(s, s)ds <
∫
∞

c2

ds
H(s)

,

where, M2 =
2M2

γ and c2 = 2M2E∥φ∥2.

Proof. The proof is similar to the proof of Theorem 4.4, we define the operator Φ on the space B0
1(X) and

using (H2) − (H6) we get,

E∥x∥2t ≤ 2M2e−λ(1−C)(t−t0)e−γ(t−t0)E∥φ∥2

+
2M2e−λ(1−max{1,C})(t−t0)e−γ(t−t0)

γ

∫ t

t0

eγ(s−t0)p(s, s)H(E∥x∥2s )ds,
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eγ(t−t0)E∥x∥2t ≤ 2M2e−λ(1−C)(t−t0)E∥φ∥2

+
2M2e−λ(1−max{1,C})(t−t0)

γ

∫ t

t0

p(s, s)H(eγ(s−t0)E∥x∥2s )ds.

Consider l1(t) = eγ(t−t0)E∥x∥2t . For any t ∈ [t0,∞),

l1(t) ≤ 2M2e−λ(1−C)(t−t0)E∥φ∥2 +
2M2e−λ(1−max{1,C})(t−t0)

γ

∫ t

t0

p(s, s)H(l1(s))ds.

Denote the right hand side of above inequality by u1(t), then l1(t) ≤ u1(t); u1(t0) = 2M2E∥φ∥2 = c2, u′1(t) =
2M2e−λ(1−max{1,C})(t−t0)

γ p(t, t)H(u1(t)).

Hence
u′1(t)

H(u1(t)) ≤
2M2e−λ(1−max{1,C})(t−t0)

γ p(t, t), integrating and making use of a change of variable we obtain

∫ u1(t)

u1(t0)

ds
H(s)

≤

∫
∞

t0

2M2

γ
e−λ(1−max{1,C})(s−t0)p(s, s)ds <

∫
∞

c2

ds
H(s)

.

This inequality along with the condition (c) of Theorem 6.2 allows us to affirm that Φ is bounded in
B

0
1(X).

We will show that Φ is a completely continuous operator. First we prove that Φ is continuous.
Let (xn)n∈N be a sequence in B0

1(X) and x ∈ B0
1(X) such that xn → x in B0

1(X). Let ϵ > 0 be given
ℏ̂ = sup

n∈N
E∥xn∥

2
B1

. From condition Theorem 6.2(b) there exists L1 > 0 such that,

2M2e−γ(t−t0)e−λ(1−max{1,C})(t−t0)

γ 1(t)

∫ t

t0

eγ(s−t0)p(s, s)H(2ℏ̂1(s))ds <
ϵ
2
, t ≥ L1.

From the Lebesgue-dominated convergence theorem, we infer that Nϵ ∈ N such that,

E
{ ∫ L1

0
∥

∫ s

0
F(s, µ, xn(σ(µ)))dµ −

∫ s

0
F(s, µ, x(σ(µ)))dµ∥2ds

}
<

ϵ γ

2M2e−γ(t−t0)e−λ(1−max{1,C})(t−t0)
,n ≥ Nϵ.

Consequently, for t ∈ [0,L1] and n ≥ Nϵ, we obtain that

E∥Φxn −Φx∥2t
1(t)

≤
2M2e−γ(t−t0)e−λ(1−max{1,C})(t−t0)

γ 1(t)

×

∫ L1

0
eγ(s−t0)

{
E∥
∫ s

0
F(s, µ, xn(σ(µ)))dµ −

∫ s

0
F(s, µ, x(σ(µ)))dµ∥2

}
ds

< ϵ,

hence we get,

sup
{

E∥Φxn −Φx∥2t
1(t)

: t ∈ [0,L1],n ≥ Nϵ

}
≤ ϵ. (16)
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On the other hand t ≥ L1 and n ≥ Nϵ, we find that

E∥Φxn −Φx∥2t
1(t)

≤
2M2e−γ(t−t0)e−λ(1−max{1,C})(t−t0)

γ 1(t)

×

∫ L1

t0

eγ(s−t0)E∥
∫ s

0
F(s, µ, xn(σ(µ)))dµ −

∫ s

0
F(s, µ, x(σ(µ)))dµ∥2ds

+
2M2e−γ(t−t0)e−λ(1−max{1,C})(t−t0)

γ 1(t)

×

∫ t

L1

eγ(s−t0)E∥
∫ s

0
F(s, µ, xn(σ(µ)))dµ −

∫ s

0
F(s, µ, x(σ(µ)))dµ∥2ds

≤
ϵ
2
+

2M2e−γ(t−t0)e−λ(1−max{1,C})(t−t0)

γ 1(t)

×

∫ t

L1

eγ(s−t0)p(s, s)H(E∥xn − x∥2
B1
1(s))ds

≤
ϵ
2
+

2M2e−γ(t−t0)e−λ(1−max{1,C})(t−t0)

γ 1(t)

∫ t

L1

eγ(s−t0)p(s, s)H(2ℏ̂1(s))ds.

Thus

sup
{E∥Φxn −Φx∥2t

1(t)
: t ≥ L1,n ≥ Nϵ

}
≤ ϵ. (17)

From (16) and (17), we see that Φ is continuous.
Next, we prove thatΦ is completely continuous. Let Bm = {x ∈ B/∥x∥2B ≤ m}. From the proof of Theorem

3.1 we establish that the set Φ(Bm)|[t0,T] = {x|[t0,T] ∈ Bm : x ∈ Bm} is relatively compact in B([t0,T]; X) for every
T ∈ (t0,∞). Moreover, for x ∈ Bm, we have that,

E∥Φx(t)∥2

1(t)
≤

2M2e−γ(t−t0)e−λ(1−C)(t−t0)E
[
∥φ∥2
]

1(t)

+
2M2e−λ(1−max{1,C})(t−t0)e−γ(t−t0)

γ1(t)

∫ t

t0

eγ(s−t0)p(s, s)H(E∥x∥2
B1
1(s))ds,

where, from Theorem 6.2(b) we get that E∥Φx∥2t
1(t) → 0 as t→∞ uniformly for x ∈ Bm. Now, Lemma 4.2 allows

us to conclude that Φ(Bm) is relatively compact in B0
1(X). Thus Φ is completely continuous.

By Lemma 2.7 the operator Φ has a fixed point in B1. Therefore the system (11) has a mild solution
which is exponentially mean square stable with φ(t) = φ(t− t0) when t ∈ [t0 − r, t0] and E∥φ∥2t → 0 as t→∞.
This completes the proof.
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