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On the existence and multiplicity of positive solutions for a p-Laplacian
fractional boundary value problem with an integral boundary

condition

Asghar Ahmadkhanlua

aDepartment of Mathematics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract. Aim of this work is to investigate existence and multiplicity of positive solutions of a fractional
boundary value problem with an integral boundary condition with p-Laplacian operator. Necessary and
sufficient conditions are presented to obtain existence and multiplicity results. Main tools are Krasnoselskii,
Schaefer and Leggett-Williams fixed point theorems. Two examples are given to illustrate our results.

1. Introduction

Fractional Calculus as an extension of integer order calculus to arbitrary order calculus, has attracted
the attention of many scientists in recent years. With the development of fractional calculus, fractional
differential equations have wide applications in modeling of different Physical phenomena and engineering,
such as mechanics, chemistry, control system, etc. see [11, 21, 22, 25].
In the past decades, numerous articles have been published about the existence and uniqueness of solutions
to the fractional initial and boundary value problems, the existence, uniqueness and multiplicity of positive
solutions to the fractional initial and boundary value problems (see [1–7, 14, 23, 24, 30].
The study of boundary value problems, for fractional differential equations with p-Laplacian operators has
attracted the attentions of mathematicians quite recently [8, 10, 12, 16–19, 26–28]. but only few paper can
be found in the literature dealing with p-Laplacian fractional order boundary value problems with integral
boundary condition.
Zhang et al. [29] discussed the eigenvalue problem for a class of singular p-Laplacian fractional differential
equations involving the Riemann-Stieltjes integral boundary conditions

−Dβ
t

(
φp(Dα

t x)
)

(t) = λ f (t, x(t)), t ∈ (0, 1)

x(0) = 0, Dα
t x(0) = 0, x(1) =

∫ 1

0
x(s)dA(s)

where Dβ
t and Dα

t are the standard Riemann-Liouville fractional derivatives with 1 < α ≤ 2, 0 < β ≤ 1,

φp(s) = |s|p−2s, A is a function of bounded variation and
∫ 1

0 x(s)dA(s) denotes the Riemann-Stieltjes integral
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of x with respect to A, f (t; x) : (0; 1) × (0; 1)→ [0; 1) is continuous and may be singular at t = 0; 1 and x = 0.
their results are derived based on the method of upper and lower solutions and the Schauder fixed point
theorem.

Yunhong Li and Guogang Li [16] by using the five functionals fixed point theorem, obtained the
existence and multiple positive solutions for p-Laplacian fractional differential equations with integral
boundary value conditions

Dβ
0+

(
φp(Dα

0+u(t))
)
+ λ f (t,u(t)) = 0, t ∈ (0, 1)

φp(Dα
0+u(0))(i) = 0, i = 1, 2, . . . , l − 1

φp(Dα
0+u(1)) =

∫ 1

0
h(t)φp(Dα

0+ (u(t))dt,

u( j) = 0, j = 1, 2, . . . ,n − 1,

u(0) =
∫ 1

0
k(t)u(t)dt,

where Dβ
0+ and Dα

0+ are the Caputo fractional derivative, l−1 < β ≤ l,n−1 < α ≤ n, l ≥ 1,n ≥ 1, φp(s) = |s|p−2s
and l + n − 1 < α + β ≤ l + n.

Zhang, et al. by using Avery–Peterson fixed point theorem, obtained the existence of positive solutions
for boundary value problem

Dβ
0+φp(Dα

0+x(t)) + f (t, x(t),Dβ
0+x(t)) = 0, t ∈ (0, 1),

φp(Dα
0+x(0))(i) = φp(Dα

0+x(1)) = 0, i = 1, 2, . . . ,m − 1,

x(0) + x′(0) =
∫ 1

0
10(s)x(s)ds + a,

x(1) + x′(1) =
∫ 1

0
11(s)x(s)ds + b,

x( j)(0) = 0, j = 2, 3, . . . ,n − 1,

where 1 < n − 1 < α < n, 1 < m − 1 < β < m, α − β > 1,Dβ
0+ are the Caputo fractional derivative,

10, 11 ∈ C([0, 1], [0,+∞)), f ∈ C([0, 1] × [0,+∞), [0,+∞)) are given functions. a, b are disturbance parameters
and φp(s) = |s|p−2s.

Motivated by the aforementioned works, this paper discusses the existence of positive solutions for the
fractional boundary value problem(

φp(cDα
0+u(t))

)′
+ a(t) f (t,u(t)) = 0, t ∈ (0, 1),

cDα
0+u(0) = u′(0) = u′′(0) = 0,u(1) + u′(1) =

∫ η

0
u(t)dt. (1)

where 2 < α ≤ 3, 0 < η < 1,cDα
0+ is the Caputo fractional derivative, and φp(s) = |s|p−2s, p > 1. and f (t,u(t))

has some properties that will be presented in next sections. The organization of this paper is as follows. In
section 2, some necessary definitions from fractional calculus theory will be presented. In section 3, Green
function of the problem will be calculated and some properties of this function will be presented. In section
4, main results about the existence and uniqueness of positive solutions of the fractional boundary value
problem (1) will be obtained and in section 5, some examples will be given to illustrate our main results.

2. Preliminaries

In this section, notations, definitions and preliminary facts which are used throughout this paper are
introduced. At first, let us recall some basic definitions of fractional calculus which can be found in
[11, 20–22, 25].



A. Ahmadkhanlu / Filomat 37:1 (2023), 235–250 237

Definition 2.1. The Reimann-Liouville fractional integral of order α > 0 of a function f : (0,∞)→ R is given by

Iα0+ f (t) =
1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, (2)

provided that the right-hand side is point-wise defined on (0,+∞), where Γ is the Gamma function.

Definition 2.2. The Reimann-Liouville fractional derivative of order α > 0 of a continuous function f : (0,∞)→ R
is given by

Dα
0+ f (t) =

1
Γ(n − α)

dn

dtn

∫ t

0
(t − s)n−α−1 f (s)ds, (3)

where n = [α] + 1, provided that the right-hand side is point-wise defined on (0,∞).

Definition 2.3. The Caputo fractional derivative of order α > 0 of a continuous function f : (0,∞)→ R is given by

cDα
0+ f (t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1 dn

dsn f (s)ds, (4)

where n = [α] + 1, provided that the right-hand side is point-wise defined on (0,∞).

Lemma 2.4. (See [25]) Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0 that belongs to
C(0, 1) ∩ L(0, 1). Then

Iα0+
cDα

0+u(t) = u(t) + C1 + C2t2 + · · · + Cntn,

where n = [α] + 1.

Throughout this paper we letB equal to the Banach space C([0, 1],R) that equipped with the supremum
norm

∥u∥ = sup
t∈[0,1]

|u(t)|

Definition 2.5. Let E be a real Banach space, A nonempty, closed, convex set P ⊂ E is a cone if it satisfies the
following conditions

(i) If x ∈ P, λ ≥ 0 then λx ∈ P;

(ii) If x ∈ P and −x ∈ P then x = 0.

To prove our results, we need some fixed point theorems.

Theorem 2.6. (Krasnoselskii’s)[13] Let E be a Banach space and P ⊂ E, be a cone. Assume Ω1 and Ω2 are open
subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2 and let

T : P ∩ (Ω2 \Ω1)→ P

be a completely continuous operator such that

(i) ∥Tu∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω1, and ∥Tu∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω2; or

(ii) ∥Tu∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω1, and ∥Tu∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω2

Then T has a fixed point in P ∩ (Ω2 \Ω1)
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Theorem 2.7. (Schaefer)[9] Let E be a Banach space B a closed convex subset of E, U an open subset of B and 0 ∈ U.
Suppose that T : U→ B is a continuous, compact map. Then either

(i) T has a fixed point in U,or

(ii) There is a u ∈ ∂U and λ ∈ (0, 1) with u = λA(u).

Theorem 2.8. (Legget-Williams)[15]Let T : Pc → Pc be a completely continuous operator and ψ a nonnegative
continuous concave functional on P such that ψ(u) ≤ ∥u∥ for all u in Pc. Suppose that there exists constant
0 < a < b < d ≤ c such that

(i) {u ∈ P(ψ, b, d) : ψ(u) > b} , 0 and ψ(Tu) > b if u ∈ P(ψ, b, d),

(ii) ∥Tu∥ < a if u ∈ Pa,

(iii) ψ(Tu) > b for u ∈ P(ψ, b, c) with ∥Tu∥ > d.

Then, T has at least three fixed points u1,u2 and u3 such that ∥u1∥ < a, b < ψ(u2) and ∥u3∥ > a with ψ(u3) < b.

In order to apply the fixed point theorems, we need to calculate the Green function of the desired operator.
In this section in addition to calculate Green function, we also outline some properties of it which is used
throughout this paper.

Lemma 2.9. Suppose h : [0, 1]→ [0,∞) be a continuous function, then the unique solution of the fractional boundary
value problem(

φp(cDα
0+u(t))

)′
+ h(t), t ∈ (0, 1), 2 < α ≤ 3

cDα
0+u(0) = u′(0) = u′′(0) = 0,u(1) + u′(1) =

∫ η

0
u(t)dt, 0 < η < 1. (5)

expressed by

u(t) =
∫ 1

0
G(t, s)φ

(∫ s

0
h(τ)dτ

)
ds (6)

where

G(t, s) = G1(t, s) +
η

1 − η
G2(η, s), (7)

G1(t, s) =

 (1−s)α−1
−(t−s)α−1

Γ(α) +
(1−s)α−2

Γ(α−1) , 0 ≤ s ≤ t ≤ 1,
(1−s)α−1

Γ(α) +
(1−s)α−2

Γ(α−1) , 0 ≤ t ≤ s ≤ 1,
(8)

G2(t, s)

 (1−s)α−1
−

1
α (t−s)α

Γ(α) +
(1−s)α−2

Γ(α−1) , 0 ≤ s ≤ t ≤ 1,
(1−s)α−1

Γ(α) +
(1−s)α−2

Γ(α−1) , 0 ≤ t ≤ s ≤ 1.
(9)

Proof. Integrating the first equation of (5), follows

φp(cDα
0+u(t)) − φp(cDα

0+u(0)) = −
∫ t

0
h(s)ds,

and so,

cDα
0+u(t) = −φq

(∫ t

0
h(s)ds

)
.
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From Lemma 2.4, we get

u(t) = −
1
Γ(α)

∫ t

0
(t − s)α−1φq

(∫ s

0
h(τ)dτ

)
ds + C0 + C1t + C2t2.

Using the boundary conditions u′(0) = u′′(0) = 0, we have C1 = C2 = 0. So,

u(t) = −
1
Γ(α)

∫ t

0
(t − s)α−1φq

(∫ s

0
h(τ)dτ

)
ds + C0, (10)

u′(t) = −
1

Γ(α − 1)

∫ t

0
(t − s)α−2φq

(∫ s

0
h(τ)dτ

)
ds.

By the boundary condition u(1) + u′(1) =
∫ η

0 u(t)dt, we have

C0 =
1
Γ(α)

∫ 1

0
(1 − s)α−1φq

(∫ s

0
h(τ)dτ

)
ds +

∫ η

0
u(t)dt

+
1

Γ(α − 1)

∫ 1

0
(1 − s)α−2φq

(∫ s

0
h(τ)dτ

)
ds

Now by inserting C0 into (10), we have

u(t) = −
1
Γ(α)

∫ t

0
(t − s)α−1φq

(∫ s

0
h(τ)dτ

)
ds

+
1
Γ(α)

∫ 1

0
(1 − s)α−1φq

(∫ s

0
h(τ)dτ

)
ds +

∫ η

0
u(t)dt

+
1

Γ(α − 1)

∫ 1

0
(1 − s)α−2φq

(∫ s

0
h(τ)dτ

)
ds. (11)

By integrating the above relation from 0 to η, we have∫ η

0
u(t)dt = −

1
Γ(α)

∫ η

0

∫ t

0
(t − s)α−1φq

(∫ s

0
h(τ)dτ

)
dsdt

+
1
Γ(α)

∫ η

0

∫ 1

0
(1 − s)α−1φq

(∫ s

0
h(τ)dτ

)
dsdt +

∫ η

0

∫ η

0
u(s)dsdt

+
1

Γ(α − 1)

∫ η

0

∫ 1

0
(1 − s)α−2φq

(∫ s

0
h(τ)dτ

)
dsdt

= −
1

αΓ(α)

∫ η

0
(η − s)αh(s)ds +

η

Γ(α)

∫ 1

0
(1 − s)α−1φq

(∫ s

0
h(τ)dτ

)
ds

+
η

Γ(α − 1)

∫ 1

0
(1 − s)α−2φq

(∫ s

0
h(τ)dτ

)
ds + η

∫ η

0
u(t)dt

So ∫ t

0
u(t)dt = −

1
α

(1 − η)Γ(α)

∫ η

0
(η − s)αh(s)ds

+
η

(1 − η)Γ(α)

∫ 1

0
(1 − s)α−1φq

(∫ s

0
h(τ)dτ

)
ds

+η(1 − η)Γ(α − 1)
∫ 1

0
(1 − s)α−2φq

(∫ s

0
h(τ)dτ

)
ds
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By inserting
∫ η

0 u(t)dt into (11), we get

u(t) =

∫ t

0

[
(1 − s)α−1

− (t − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

]
φq

(∫ s

0
h(τ)dτ

)
ds

+

∫ 1

t

[
(1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

]
φq

(∫ s

0
h(τ)dτ

)
ds

+

∫ η

0

η

1 − η

 (1 − s)α−1
−

1
α (η − s)α

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

φq

(∫ s

0
h(τ)dτ

)
ds

+

∫ 1

η

η

1 − η

[
(1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

]
φq

(∫ s

0
h(τ)dτ

)
ds

=

∫ 1

0

(
G1(t, s) +

η

1 − η
G2(η, s)

)
φq

(∫ s

0
h(τ)dτ

)
ds

=

∫ 1

0
G(t, s)φq

(∫ s

0
h(τ)dτ

)
ds

Lemma 2.10. The functions G1(t, s) and G2(t, s) defined by (8) and (9) are continuous on [0, 1] × [0, 1] and satisfy
the following properties

1. G1(t, s) ≥ 0,G2(t, s) ≥ 0 for all t, s ∈ [0, 1];
2. (1 − tα−1)G1(s, s) ≤ G1(t, s) ≤ G1(s, s) for all (t, s) ∈ [0, 1] × [0, 1];
3. (1 − tα

α )G2(s, s) ≤ G2(t, s) ≤ G2(s, s) for all (t, s) ∈ [0, 1] × [0, 1];

Proof. It is clear that G1(t, s) and G2(t, s) are continuous. We prove statement (1). For 0 ≤ s ≤ t ≤ 1, we have

G1(t, s) =
(1 − s)α−1

− (t − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

≥
(1 − s)α−1

− (1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

=
(1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)
≥ 0.

For s ≥ t, clearly

G1(t, s) =
(1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)
≥ 0

So,

G1(t, s) ≥ 0, for all t, s ∈ [0, 1].

On the other hand for 0 ≤ s ≤ t ≤ 1, we have

G2(t, s) =
(1 − s)α−1

−
1
α (t − s)α

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

≥
(1 − s)α−1

−
1
α (1 − s)α

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

=
(1 − s)α−1(1 − 1−s

α )
Γ(α)

+
(1 − s)α−2

Γ(α − 1)
≥ 0.
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For s ≥ t, clearly

G2(t, s) =
(1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)
≥ 0

So for all t, s ∈ [0, 1], we have G2(t, s) ≥ 0.
Next we prove statement (2). It is enough to show statement hold for 0 ≤ s ≤ t. If 0 < s ≤ t, then

G1(t, s) =
(1 − s)α−1

− (t − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

=
(1 − s)α−1

− tα−1(1 − s
t )α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

≥
(1 − s)α−1

− tα−1(1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

≥ (1 − tα−1)
(1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

≥ (1 − tα−1)
[

(1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

]
= (1 − tα−1)G1(s, s)

On the other hand, G1(t, s) ≤
[

(1−s)α−1

Γ(α) +
(1−s)α−2

Γ(α−1)

]
= G1(s, s).

Now If s = 0, we have

G1(t, 0) =
1 − tα−1

Γ(α)
+

1
Γ(α − 1)

≤
1
Γ(α)

+
1

Γ(α − 1)
= G1(0, 0),

and

G1(t, 0) =
1 − tα−1

Γ(α)
+

1
Γ(α − 1)

≥ (1 − tα−1)
[

1
Γ(α)

+
1

Γ(α − 1)

]
= (1 − tα−1)G1(0, 0)

Thus for all t, s ∈ [0, 1] we have,

(1 − tα−1)G1(s, s) ≤ G1(t, s) ≤ G1(s, s).
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(3) If 0 < s ≤ t, then

G2(t, s) =
(1 − s)α−1

−
1
α (t − s)α

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

≥
(1 − s)α−1

−
tα
α (1 − s

t )α

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

≥
(1 − s)α−1

−
tα
α (1 − s)α

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

≥
(1 − s)α−1

−
tα
α (1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

=
(
1 −

tα

α

) (1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

≥

(
1 −

tα

α

) ( (1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)

)
=

(
1 −

tα

α

)
G2(s, s)

On the other hand, for 0 ≤ t ≤ s, we have

G2(t, s) ≤
(1 − s)α−1

Γ(α)
+

(1 − s)α−2

Γ(α − 1)
= G2(s, s).

Now, if s = 0, then

G2(t, 0) =
1 − tα

α

Γ(α)
+

1
Γ(α − 1)

≤
1
Γ(α)

+
1

Γ(α − 1)
= G2(0, 0).

and

G2(t, 0) =
1 − tα

α

Γ(α)
+

1
Γ(α − 1)

≥

(
1 −

tα

α

) [ 1
Γ(α)

+
1

Γ(α − 1)

]
=

(
1 −

tα

α

)
G2(0, 0)

Hence we can conclude that, for t, s ∈ [0, 1],

G2(s, s) ≥ G2(t, s) ≥ (1 −
tα

α
)G2(s, s),

Lemma 2.11. Let ξ ∈ (0, 1) be a fixed. Then for G(t, s) we have

1. G(t, s) ≥ 0, for all t, s ∈ [0, 1],
2.

(
1 − ηα

α

)
(1 − tα−1)Hη(s) ≤ G(t, s) ≤ Hη(s) for all 0 ≤ t, s ≤ 1,

3.
(
1 − ηα

α

)
(1 − ξα−1)Hη(s) ≤ G(t, s) ≤ Hη(s), for all (t, s) ∈ [0, ξ] × [0, 1],

where Hη(s) = G1(s, s) + η
1−ηG2(s, s) = (α−s)(1−s)α−2

(1−η)Γ(α)
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Proof. It is clear that (1) holds and (3) is the direct result of (2). So We prove only statement (2). From
Lemma 2.10 and relation (7), it is concluded that

G(t, s) = G1(t, s) +
η

1 − η
G2(η, s)

≤ G1(s, s) +
η

1 − η
G1(s, s) = Hη(s)

On the other hand from Lemma 2.10, we obtain

G(t, s) = G1(t, s) +
η

1 − η
G2(t, s)

≥ (1 − tα−1)G1(s, s) +
(
1 − ηα/α

) η

1 − η
G1(s, s)

≥ (1 − ηα/α)(1 − tα−1)G1(s, s) + (1 − ηα/α)(1 − tα−1)
η

1 − η
G2(s, s)

≥ (1 − ηα/α)(1 − tα−1)[G1(s, s) +
η

1 − η
G2(s, s)]

= (1 − ηα/α)(1 − tα−1)Hη(s)

Lemma 2.12. Let 0 < ξ < 1 be an arbitrary and fixed number. If h : [0, 1] → [0,∞) be a continuous function then
fractional boundary value problem (5) has a unique non-negative solution like u such that

min
t∈(0,ξ)

u(t) ≥ ρ∥u∥,

where ρ = (1 − ηα/α)(1 − ξα−1).

Proof. The positiveness of u(t) is concluded directly from Lemma 2.9 and Lemma 2.11. For all t ∈ [0, 1], we
have

u(t) =

∫ 1

0
G(t, s)φq

(∫ s

0
1(τ)dτ

)
ds

≤

∫ 1

0
Hη(s)φq

(∫ s

0
1(τ)dτ

)
ds

Then

∥u∥ ≤
∫ 1

0
Hη(s)φq

(∫ s

0
1(τ)dτ

)
ds (12)

On the other hand, from Lemma 2.9, Lemma 2.11 and relation (12), for any t ∈ [0, ξ], we have

u(t) =

∫ 1

0
G(t, s)φq

(∫ s

0
1(τ)dτ

)
ds

≥ γ(η)(1 − ξα−1)
∫ 1

0
Hη(s)φq

(∫ s

0
1(τ)dτ

)
ds

= ρ

∫ 1

0
Hη(s)φq

(∫ s

0
1(τ)dτ

)
ds

≥ ρ∥u∥.

Therefor

min
t∈[0,ξ]

u(t) ≥ ρ∥u∥
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3. Existence Results

In this section we present the existence results about the fractional boundary value problem (1). Let
ξ ∈ (0, 1) be fixed. Introduce the cone that we shall use in the sequel.

P = {u ∈ B : u(t) ≥ 0, t ∈ [0, 1], min
t∈[0,ξ]

u(t) ≥ ρ∥u∥}

and define the operator T : P→ P by

Tu(t) =
∫ 1

0
G(t, s)φq

(∫ s

0
a(τ) f (τ,u(τ))

)
ds (13)

where G(t, s) defined by (13). It is clear that , the fixed points of the operator T in P is the non-negative
solutions of the fractional boundary value problem (1). Let, we list some assumptions about the right hand
side of the differential equation in (1) that we will use them throughout this section.

(A1) f ∈ C([0, 1] × [0,∞), [0,∞)), and f (t, 0) . 0 on [0, 1];

(A2) a ∈ C([0, 1], [0,∞) and a(t) . 0 on any subinterval of [0, 1];

At first we show that the operator T is completely continuous

Theorem 3.1. Assume (A1) and (A2) hold, then the operator T, defined by (13) is completely continuous and satisfies
TP ⊂ P.

Proof. Since f is a continuous function(in view of (A1)), Lemma 2.12 implies that TP ⊂ P. From (A1) and
non-negativeness and continuity of G(t, s) and by applying Lebesgue’s dominated convergence theorem,
it is concluded that T : P → P. Let Ω be an arbitrary bounded set in P. Then, there exists M > 0 such that
Ω ⊂ {u ∈ P : ∥u∥ < M}. Set

γ = max{ f (t,u) : t ∈ [0, 1],u ∈ Ω}

From Lemma 2.9 and 2.10, we have

Tu(t) =

∫ 1

0
G(t, s)φq

(∫ s

0
a(τ) f (τ,u(τ))dτ

)
ds

≤

∫ 1

0
G(t, s)φq

(∫ 1

0
a(τ)γdτ

)
ds

≤ γq−1

(∫ 1

0
a(τ)dτ

) ∫ 1

0
Hη(s)ds,

Hence, T(Ω) is uniformly bounded. Now for each u ∈ Ω and for all t1, t2 ∈ [0, 1] that satisfy t1 < t2 , from
Lemma 2.9 and 2.11 we have

|Tu(t1) − Tu(t2)| =

∣∣∣∣∣∣
∫ 1

0
G(t1, s)φq

(∫ s

0
a(τ) f (τ,u(τ))dτ

)
ds

−

∫ 1

0
G(t2, s)φq

(∫ s

0
a(τ) f (τ,u(τ))dτ

)
ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0
[G(t1, s) − G1(t2, s)]φq

(∫ s

0
a(τ) f (τ,u(τ))dτ

)
ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0
[G1(t1, s) − G1(t2, s)]φq

(∫ s

0
a(τ) f (τ,u(τ))dτ

)
ds

∣∣∣∣∣∣
≤ γq−1

∫ 1

0
|G1(t1, s) − G1(t2, s)|φq

(∫ s

0
a(τ)dτ

)
ds.
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Since G1 is continuous for all 0 ≤ t, s ≤ 1, we conclude that the right hand side of the above inequality tends
to zero if t2 → t1. That is, T(Ω) is equicontinuous. Thus by using of the Arzela-Ascoli theorem, we conclude
that T : P→ P is completely continuous.

For the convenience we set

M =
(
φq

(∫ 1

0
a(τ)dτ

) ∫ 1

0
Hη(s)ds

)−1

,N =
(
ρ

∫ ξ

0
Hη(s)φq

(∫ s

0
a(τ)dτ

)
ds

)−1

Now we assert that 0 < M < N. In fact we have

N−1 = ρ

∫ ξ

0
Hη(s)φq

(∫ s

0
a(τ)dτ

)
ds

<

∫ ξ

0
Hη(s)φq

(∫ s

0
a(τ)dτ

)
ds

≤ φq

(∫ 1

0
a(τ)dτ

) ∫ 1

0
Hη(s)ds

= M−1

Theorem 3.2. Assume that (A1)-(A2) hold, and there exist constants r1 > 0, r2 > 0, λ1 ∈ (0,M], and λ2 ∈ [N,∞),
such that r1 < r2 and λ2r1 < λ1r2. Furthermore f satisfies in

1. f (t,u) ≤ φp(λ1r2) for all u ∈ [0, r2] and t ∈ [0, 1], and
2. f (t,u) ≥ φp(λ2r1) for all u ∈ [ρr1, r1] and t ∈ [0, ξ].

then the fractional boundary value problem (1) has at least one positive solution u ∈ P satisfying r1 < ∥u∥ < r2.

Proof. We define the open set

Ω2 = {u ∈ B; ∥u∥ < r2}

Let u ∈ P ∩ ∂Ω2. Then from (1) and Lemma 2.11, we have

Tu(t) =

∫ 1

0
G(t, s)

(∫ s

0
a(τ) f (τ,u(τ))dτ

)
ds

≤

∫ 1

0
G(t, s)φq

(∫ s

0
a(τ)φp(λ1r2)dτ

)
ds

≤ λ1r2

∫ 1

0
G(t, s)φq

(∫ s

0
a(τ)dτ

)
ds

≤ λ1r2φq

(∫ 1

0
a(τ)dτ

) ∫ 1

0
Hη(s)ds

≤ MM−1r2 = r2.

So for all u ∈ P ∩ ∂Ω2 we have ∥Tu∥ ≤ ∥u∥.
Now we define the open setΩ1 = {u ∈ B : ∥u∥ < r1}. For each u in P∩∂Ω1, by using (A1)-(A2), assumption(2)
and Lemma 2.11, for all t ∈ [0, ξ], it is concluded that
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Tu(t) =

∫ 1

0
G(t, s)φq

(∫ s

0
a(τ) f (τ,u(τ)dτ

)
ds

≥

∫ ξ

0
G(t, s)φq

(∫ s

0
a(τ) f (τ,u(τ)dτ

)
ds

≥ ρ

∫ ξ

0
Hη(s)dsφq

(∫ s

0
a(τ) f (τ,u(τ)dτ

)
ds

≥ r1Nρ
∫ ξ

0
Hη(s)φq

(∫ s

0
a(τ)dτ

)
ds,

= r1NN−1 = r1

so for all u ∈ P ∩ ∂ω1, we have ∥Tu∥ ≥ ∥u∥. Hence by applying (ii) in Theorem 2.6, we conclude that T has
at least one fixed point in P ∩ (Ω2 \Ω1), which it is the solution of fractional boundary value problem (1).
In the other words, fractional boundary value problem (1) has at least one positive solution like u such that
r1 < ∥u∥ < r2.

by the analogous way, one can obtain the following result.

Theorem 3.3. Assume (A1)-(A2) hold. If there exists constants r1 > 0, r2 > 0, λ1 ∈ (0,M], and λ2 ∈ [N,∞), where
ρr2 < r1, and λ1r1 > Nr2, such that f satisfies

1. f (t,u) ≥ φp(λ2r2) for all u ∈ [ρr2, r2], and
2. f (t,u) ≤ φp(λ1r1) for all u ∈ [0, r1] and t ∈ [0, 1],

then the problem (1) has at least one positive solution u ∈ P satisfying r1 < ∥u∥ < r2.

Theorem 3.4. Under assumptions (A1)-(A2) hold and existence constant µ > 0 such that

µ > γq−1φq

(∫ 1

0
a(τ)dτ

) ∫ 1

0
Hη(s)ds (14)

where γ = max{ f (t,u) : (t,u) ∈ [0, 1] × [0, µ]}, fractional boundary value problem (1) has at least one positive
solution.

Proof. Let

U = {u ∈ P : |u∥ < µ}.

In view of Theorem 3.1, the operator T : U → P is completely continuous. Assume that there exists u ∈ U
and λ ∈ (0, 1) such that u = λTu. We have

|u(t)| = |λTu(t)| =

∣∣∣∣∣∣λ
∫ 1

0
G(t, s)φq

(∫ s

0
a(τ) f (τ,u(τ))dτ

)
ds

∣∣∣∣∣∣
≤

∫ 1

0
G(t, s)φq

(∫ s

0
a(τ)γdτ

)
ds

≤ γq−1φq

(∫ 1

0
a(τ)dτ

) ∫ 1

0
Hη(s)ds

So

∥u∥ ≤ γq−1φq

(∫ 1

0
a(τ)dτ

) ∫ 1

0
Hη(s)ds.
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Now (3.4), implies that ∥u∥ < µ,that is u < ∂U. Hence it is concluded that there is no u ∈ ∂U such that
u = λTu for λ ∈ (0, 1). Therefor by Theorem 2.7, it is concluded that the fractional boundary value problem
(1) has at least one positive solution.

Our next result is based on the Leggett-Williams fixed point theorem. In fact we present such conditions
that fractional boundary value problem (1) has at least three positive solutions. To do this we define the
following subsets of a cone P.

Pc = {u ∈ K : ∥u∥ < c}, P(ψ, b, d) = {u ∈ P : b ≤ ψ(u), ∥u∥ ≤ d}.

Theorem 3.5. Assume (A1)-(A2) hold and there exist constants a, b, c with 0 < a < ρb < b ≤ c such that

(B1) f (t,u(t)) < φp(Ma) for all (t,u) ∈ [0, 1] × [0, a],

(B2) f (t,u(t)) ≥ φp(ρNb) for all (t,u) ∈ [0, ξ] × [ρb, b],

(B3) f (t,u(t)) ≤ φp(Mc) for all (t,u) ∈ [0, ξ] × [0, c].

Then fractional boundary value problem (1) has at least three positive solution u1,u2 and u3, such that

∥u1∥ < a, ρb < ψ(u2), ∥u3∥ > a with ψ(u3) < ρb.

Proof. By Theorem 3.1 T : P→ P is a completely continuous operator. Let

ψ(u) = min
0≤t≤ξ

u(t)

It is clear that ψ is a nonnegative continuous concave functional on P with ψ(u) ≤ ∥u∥, for u ∈ Pc. Now we
assert that the conditions of Theorem 2.8 are satisfied. For this, let u ∈ Kc, that is ∥u∥ ≤ c. For t ∈ [0, 1] from
definition of the operator (13) and (B3), we have

∥Tu(t)∥ = max
0≤t≤1

∫ 1

0
G(t, s)φq

(∫ s

0
a(τ) f (τ,u(τ))dτ

)
ds

≤

∫ 1

0
Hη(s)φq

(∫ s

0
a(τ)φp(Mc)dτ

)
ds

= Mc
∫ 1

0
Hη(s)φq

(∫ s

0
a(τ)dτ

)
ds

≤ Mc
∫ 1

0
Hη(s)φq

(∫ 1

0
a(τ)dτ

)
ds

= McM−1 = c.

This implies that T : Pc → Pc. By the same method, if u ∈ Pa, then, we can get ∥Tu∥ < a and therefor
condition (ii) of Theorem 2.8 is satisfied. Since the constant function ρb+b

2 ∈ {u ∈ P(ψ, ρb, b) : ψ(u) > ρb}, we
conclude that {u ∈ P(ψ, ρb, b) : ψ(u) > ρb} = ∅. On the other hand, for u ∈ P(ψ, ρb, b), we have

ρb ≤ ψ(u) = min
0≤t≤ξ

≤ u(t) ≤ ∥u∥ ≤ b, t ∈ [0, ξ].

That is ψ(Tu) > ρb for all u ∈ P(ψ, ρb, b). Thus in view of the assumption (2) of Lemma 2.11 and (B2), we
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have

ψ(Tu) = min
0≤t≤ξ

∫ 1

0
G(t, s)φq

(∫ s

0
a(τ) f (t,u(τ))dτ

)
ds

≥

∫ 1

0
ρHη(s)φq

(∫ s

0
a(τ)φp(Nb)dτ

)
ds

= Nb
∫ 1

0
ρHη(s)φq

(∫ s

0
a(τ)dτ

)
ds

= b > ρb.

Thus, condition (i) of Theorem 2.8 is satisfied. Finally, we show that if u ∈ P(ψ, ρb, c) with ∥Tu∥ > b then
ψ(Tu) > ρb. To see this, suppose that u ∈ P(ψ, ρb, c) with ∥Tu∥ > b, then by Lemma 2.12, we have

ψ(Tu) = min
0≤t≤1

(Tu)(t) ≥ ρ∥Tu∥ > ρb.

Thus, condition (iii) of Theorem 2.8 is satisfied too.
Hence, an application of Theorem 2.8completes the proof.

4. Examples

Example 4.1. Consider the following fractional boundary value problem
(
φ 9

2
(cD

5
2
0+u(t)

)′
+ a(t) f (t,u(t) = 0, t ∈ (0, 1),

cD
5
2
0+u(0) = u′(0) = u′′(0) = 0,u(1) + u′(1) =

∫ 1
4

0 u(t)dt
(15)

where f (t,u) = 1
200 (14 + 45

√
u + t), a(t) = 7

2 t2
√

t, α = 5
2 , p = 9

2 , η = 1
4 , q = 9

7 .
We let

I1 := (1 − η)Γ(α)
∫ 1

0
Hη(s)ds =

∫ 1

0
(α − s)(1 − s)

1
2 ds =

∫ 1

0
(
3
2
+ t2)t(2t)dt =

7
5
, (16)

I2 := (1 − η)Γ(α)
∫ 1

0
sHη(s)ds =

∫ ξ

0
s(α − s)(1 − s)

1
2 ds

=
1
35

(18 −
√

1 − ξ(ξ − 1)(10ξ2
− 27ξ − 18) (17)

So

M =

(
φq

(∫ 1

0
a(τ)dτ

) ∫ 1

0
Hη(s)ds

)−1

=

φ 9
7

(∫ 1

0

7
2
τ2√τdτ

)
4
3

I1
3
4

√
π

−1

=
45
√
π

112
= 0.7120

and

N−1 = ρ

∫ ξ

0
Hη(s)φq

(∫ s

0
a(τ)dτ

)
ds (18)

= ρ

∫ ξ

0
Hη(s)φ 9

7

(∫ s

0

7
2
τ2√τdτ

)
ds = ρ

∫ ξ

0
sHη(s)ds
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By a simple calculation we obtain

N =

[
16

9
√
π

(
1 −

1
80

)
(1 − ξ

3
2 )

1
35

(18 −
√

1 − ξ(ξ − 1)(10ξ2
− 27ξ − 18)

]−1

We choose λ1 = M, λ2 = N, r1 =
1
40 = 0.025 and r2 = 1. It is easy to check that 8.36 ≤ N ≤ 28.05 if 0.2 ≤ ξ ≤ 0.8.

Hence λ2r1 =
N
40 = 0.70125 < λ1r2 =

45
√
π

112 = 0.7120. Now by a simple calculation, we get λ
7
2
1 ≈ 0.3045, and(

λ2
40

) 7
2
≤ 0.2887. On the other hand f satisfies the following relations

(i) f (t,u) = 1
200 (14 + 45

√
u + t) ≤ 0.3 < φ 9

2
(λ1r2) ≈ 0.3045, (t,u) ∈ [0, 1] × [0, 1]

(ii) f (t,u) = 1
200 (14 + 45

√
u + t) > 0.7 > φ 9

2
(λ2r1), (t,u) ∈ [0, ξ] × [0.025ρ, 0.025]

Hence, all conditions of Theorem 3.2 are satisfied, consequently fractional boundary value problem (15) has at least
one positive solution u such that 0.1 ≤ |u∥ ≤ 1

Example 4.2. Consider the following fractional boundary value problem
(
φ 5

2
(cD

5
2
0+u(t)

)′
+ a(t) f (t,u(t)) = 0, t ∈ (0, 1),

cD
5
2
0+u(0) = u′(0) = u′′(0) = 0,u(1) + u′(1) =

∫ 1
2

0 u(t)dt
(19)

where α = p = 5
2 , q = 5

3 , η = 1
2 , a(t) = 3

2

√
t and

f (t,u) =
{

125u6 + sin2 πt
20 , (t,u) ∈ [0, 1] × [0, 1]

124 + u
1
4 + sin2 πt

20 , (t,u) ∈ [0, 1] × (1,∞)

From relation (16), we have M =
(

I1
1
2 Γ(

5
2 )

)−1
=

15
√
π

56 = 0.47476, and from (18) we obtain

N =

(
ρ

∫ ξ

0
(s)φq

(∫ s

0
a(τ)dτ

)
ds

)−1

=

(
ρ

∫ ξ

0
Hη(s)φ 5

3

(∫ s

0

3
2
√
τdτ

)
ds

)−1

=

(
ρ

∫ ξ

0
sHη(s)ds

)−1

=

(
4

3
√
π

(
1 −

1

10
√

2

)
(1 − ξ

3
2 )

1
35

(18 −
√

1 − ξ(ξ − 1)(10ξ2
− 27ξ − 18)

)−1

.

Let ξ = 0.5 then N ≈ 5.03. Chosing a = 1
5 , b = 5 and c = 64, we obtain

(i) f (t,u) ≤ 0.028 < φ 5
2
(Ma) = (0.2 × 0.47476)

3
2 ≈ 0.02926, (t,u) ∈ [0, 1] × [0, 1

5 ];

(ii) f (t,u) ≥ 125.36 > φ 5
2
(ρNb) = φ 5

2
(15.09) ≈ 58.6183, (t,u) ∈ [0, 0.5] × [3, 5]

(iii) f (t,u) ≤ 126 ≤ φ 5
2
(Mc) = (30.38464)

3
2 ≈ 167.487, (t,u) ∈ [0, 0.5] × [0, 64].

Thus all conditions of the Theorem 3.5 are satisfied. Therefore, the fractional boundary value problem (19) has at least
three positive solution u1, u2 and u3 such that

∥u∥ ≤
1
5
, 3 < ψ(u2), ∥u3∥ >

1
5

with ψ(u3) > 3.
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