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Abstract. In this paper, we present the concept of generalized locally convex spaces, by introducing the so-
called family of vector-valued seminorms. Some extensions of classical fixed point theorems in Hausdorff
complete generalized locally convex spaces are given. These results are formulated in terms of continuity
and L-contractions. As applications, we study the existence and uniqueness of solutions for systems of
first order differential equations with impulsive.

1. Introduction and preliminaries

The fixed point in metric spaces has been of interest for many authors and various fixed points theorems
have been stated [1-5, 8, 12, 25]. In 1964, Perov [16] gave the definition of a generalized metric space (or a
vector metric space) by introducing the notion of metric with values in R”. Then, he defined a new class of
mappings called Perov contractions which are £-contractive, where £ is a n X n-matrix with non negative
elements instead of a constant k. Also, he extended Banach fixed point theorem on spaces endowed with
vector-valued metrics [16, 17]. Recently, Many authors studied well-known fixed point theorems of single-
valued and multivalued mappings such as Schauder, Krasnoselskii, Schafer,....etc, in a generalized Banach
spaces (see for example [7, 15, 18-20, 22, 24]). More recently, Nieto et al. in [14] proved some versions of
Perov, Schauder, and Krasnoselskii type fixed point theorems in vector Banach algebras. As an application
they studied the existence of solutions for nonlinear integral equations in Banach algebras. For more details
about generalized metric or Banach spaces and fixed point theorems, the readers can refer to [9, 11].

In this work, we define generalized locally convex spaces (in short, GLCSs) by introducing the concept
of generalized seminorms (seminorms with values in R”). Furthermore, we give some new fixed point
theorems which generalize classical ones proved in locally convex spaces. Also, we apply our results to
study the existence and uniqueness of some systems of differential equations with impulsive.

Firstly, we recall from the literature some notations, definitions, and auxiliary results which will be used
throughout this paper. We denote by R, the set of non-negative real numbers, by R” be the set of n X 1 real
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X1 U4
matrices. By < we mean coordinate-wise ordering on R", thatis, forx =] : |,and y =] : |, x < yif, and
Xn Yn
only if, x; < y;foralli=1,.--,n. For x, y € R", we denote by
max(x1, Y1)
. max(x2, y2)
max(x, y) =
max (X, Yn)
C1
Letc=|: | € R", wedenotebyc > 0ifc; > Oforeachi=1,---,n, where 0is the zero n x 1 matrix. Moreover,
Cn

we denote by R’ the set of n X 1 matrices with non negative elements and by M,x,(IR+) the set of n x n
matrices with nonnegative elements. We denote by I and 0 the identity in M,y,(R+) and the zero n X n
matrix respectively.

In what follows, let X be a linear space on K = R or C. We introduce the definition of a vector-valued
seminorm as follows:

Definition 1.1. A mapping p of X into IR" is called a vector-valued seminorm or generalized seminorm
(GSN, in short ) if it satisfies the following axioms:

(@) plax) = |a| p(x),x € X, x € R.
(if) px + y) < p(x) + p(y)-
o
p:=| . | ¢
P”kx)
Note that p is a GSN on X if, and only if, p® are seminorms on X, fors = 1, - -+, n, and from (i) , (ii) we obtain
that p(x) = 0, for each x € X.
Example 1.2. (i) Every vector-valued norm is a GSN (see [9, Definition 7.20 ]).

(ii) Every seminorm defines a GSN. o

Definition 1.3. Let A = {p;, i € Ix} be a family of GSNs on X indexed by Ix, and let M be a subset of X.

(1) M is bounded, if for every i € Ix there exists ¢ € R", ¢ > 0 such that

pi(x) < ¢, forall xe M.

(if) M is called open if for each x € M, there exist a finite set Ix, C Ix and r € R", r > 0, such that

if yeX, and rﬁia\xpi(y —x)<r, then, yeM,
1€ X

where maxp;(y - x) := max{p;, (¥ = y), -+, pi(x = Y)}-

(iif) M is closed if X\M is open. o
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Definition 1.4. Let A = {p;, i € Ix} be a family of GSNs on X. Letx € X, r € R", r > 0 and Ix, be a finite
subset of Ix. We denote by B(x, r) the open ball centered at x with radius r and defined by

B(x,r) = ﬂ Bi(x, 1),

iEIXk
where Bi(x,n)={ye X pi(y—x)<r}. ¢

The collection of open balls centered in x generates the topology of the family A of GSNs. Clearly, X
equipped with this topology is a topological vector space. Moreover, we have B(x,r) = x + B(0,r) which
is a convex subset of X. Then, each point x of X possesses for this topology a fundamental system of
neighborhoods formed of convex sets. Then, the topology associated with the family of GSNs is locally
convex. Now, we can introduce the following definition:

Definition 1.5. Let A = {p;, i € Ix} be a family of GSNs on X. Then, the pair (X, p;)icr, is said to be
generalized locally convex space (GLCS, in short), if each point of X possesses a fundamental system of
neighborhoods formed of convex sets with respect to the topology associated with the family of A GSNs.

Example 1.6. Every locally convex space defines a GLCS. Consider C(R*, R) the space of continuous func-
tions x : R* — R endowed with the family of seminorms |x|r = sup{|x(t)|, t € [0, T]}. Then, C(R*, R) is
GLCS with the family of GSNs

pr: C(RY,R) = R, pr(x) = (:ﬁl;) 0

Remark 1.7. (i) The topology generated by the family of GSNs, A = {p;, i € Ix} is Hausdorff if, and only if,
the family A is separating i.e., given p;(x) = 0, for all i € Ix, then x = 0.

(i7) If A1 and A, are two families of GSNs with A; C Ay, then the associated topology A, is finer than that
associated with A;. o

Definition 1.8. Let (X, p;)ic; be a GLCS and M be a nonempty subset of X. M is compact if every cover of M
by open sets has a finite subcover. o

Definition 1.9. Let (X, p;)ic1, be a Hausdorff GLCS, and (x,), be a sequence of X.

(i) (x)n converges to a point x € X, denoted by x, — x, if for each i € Ix and ¢ € R”, € > 0, there exists
n—oo

m(i, €) € N such that for each n > m(i, €), pi(x, —x) < e.

(i1) (xn)n is called a Cauchy sequence if for each i € Iy and ¢ € IR” € > 0, there exists m(i, €) € IN such that for
each ny,ny > m(i, €), pi(xn, — Xn,) < €.

(iif) The space X is called complete if each Cauchy sequence in X converges to a limit in X. o

Definition 1.10. Let X and Y be two Hausdorff GLCSs, Ax = {p;, i € Ix}and Ay = {q]-, j € Iy} their families
of GSNs. Let M be a subset of X and A be a mapping from M into Y.

(i) A is continuous at a point x of M if, for all j € Iy and € € R", € > 0, there exist a finite set {i1,--- , i} C Ix
and 6 € R", 6 > 0 such that for y € M

max {p;, (x — y)} := max{p, (x —y),- -, pi,(x — y)} <9,

1<m<k

then
qj(Ax — Ay) < e.

We say that A is continuous if it is at any point of M.

(ii) A is sequentially continuous at a point x of X if, for every sequence (x,), C X converging to x in X, then
(Axy), converges to Ax in Y. We say that A is sequentially continuous if it is at any point of M. o
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Remark 1.11. In GLCS, the concepts of open, (resp., closed, compact, convex) sets convergence, Cauchy
sequences and completeness are similar to those in the usual locally convex spaces. o

In the following, (X, pi)icr, denotes a Hausdorff GLCS, and A = {p;, i € Ix} its family of GSNs which
generates the topology of X. We need the following definition.

Definition 1.12. Let F : R” — R be a function, we say that F is nondecreasing, if for all x, y € IR" such that
x <y, then F(x) < F(y). o

Definition 1.13. Let F : [0, +)" — R be a function, we say that F is semi-linear, if for all x, y € [0, +00)"
and a > 0, we have F(x + ) = F(x) + F(y) and F(a.x) = aF(x). o

Before presenting our main results let us state the following technical lemmas.

Lemma 1.14. Let (X, p;)ier, be a Hausdorff GLCS. Let F : [0, +00)" — [0, +0) be a semi-linear and nonde-
creasing function. Then, fori € I,

pi(x)
pix)=F| |,
pi(x)

defines a seminorm on X. Also X := (X, Pi)icy is a locally convex space, and A= {pi, i€ Ix} its family of
seminorms. o

Proof. We can easily check the proof with definition. [J

Example 1.15. Let (X, pi)icr, be a GLCS. Then, for i € Ix,

— 1y,
pi(x)—ﬁzlmx), xeX

defines a seminorms on X. S

Lemma 1.16. Let (X, pi)icr, be a GLCS. Let F : [0, +00)" — [0, +00) be a semi-linear nondecreasing function.
If
X

Fl:|=x for x€[0,+0c0),

then X is homeomorphic to (X, pi)ier- &

Proof. LetG: X — X, G(x) = x. Obviously G is bijective. Now let us prove that G is continuous. To do this,
let xp € X and W,, C X be an open subset of X containing x, so there exists a finite subset Ix, C Ix such that

xeX, pilx—x0) < & i€lx} C Wy, for &> 0.

&
LetY =]:[ &>0and put V) = {x € X, pi(x —x9) <Y, i€ lIx}. Clearly, G(Vy,) C Wy,. Indeed, let x € V,
3
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then pi(x —xp) <Y, for all i € Ix,. Thus,

Pi(G(x) = G(x0)) = pi(x — xo)

p;(x = x)
=F :
pi(x = xo)
&
<F|:
&
=¢.

Hence, G is continuous. _
Next, let us prove that G':X — X, G'(x) = x is continuous. For this purpose, let i € Ix and for € € R”,

min &g

e>0.Putl ={ijcIxand 6 = % Then, for x, y € X such that

pilx —y) <9, 1)

and taking into account the semi-linearity of F we obtain:

pi(x =)
pilx—y) =F
pix =)
pi(x=y) 0 0
0 - ) :
=F . +F p . y +---+F O 7 Szl/"'rn' (2)
0 0 pix—y)
From Egs. (1) and (2), we obtain
pix=y)
0
F . <o
0
: (©)
0
Fl o |<o
pi(x—y)
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Furthermore,
pi(x—y)
pilx—y) =F|
pitx—y)
pi(x—y) 0 0
0 pilx—y) :
0 0 pi(x—y)

Combining Egs. (3) and (4), we get
pls(x_]/) < f’l(s, S = 1, SN

and,
plc—y)) (ines
pitx—y) = : =
pix—y) 1mss1sr}l 5.
Then,
pi(GH(x) = G\ () = pilx — v)

<e¢

So, G™! is continuous. This completes the proof. [

Remark 1.17. (i) It is clear that if A continuous, then it is sequentially continuous but the converse is not
true. For example, consider /(IN) the space of real sequences (x,), such that ), [x,| < +co. Recall that IN(IN)
has the Schur property i.e, if (x,), is converging weakly to x (x, — x), implies that (x,), converges to x
with respect to the strong topology. Let (I'(IN), p;)ic; be a Hausdorff locally convex space with family of
seminorms {p;, i € I} which defines the weakest topology on I*(IN). Now, if we define the generalized
seminorm on /[!(N), for i € I by

pi: I'(N) - R?

Pi(x))
pi(x)]

x = pi(x) = (
Then, (I'(IN), w:)ier is GLCS, and if we consider the operator

A: (MIN), wi)ier » R
x = A(x) = |lxll = X, [xal,

then A is sequentially continuous. Indeed, let (x,), be a sequence in I'(IN) that converges to x in I'(N). Thus,
foralli€ I pi(x, —x) — 0, which imply that, for alli € I p;(x, —x) — 0. Since I'(IN) is a Schur space then
n—o0 n—oo

X, — Xx. As]|-||is continuous hence,
n—0oo
Ax, — Ax.

Now, we prove that A is continuous with respect to the topology of the family of GSN {u;, i € I}. We prove

that the set
S:=AY1) = x e I'(N), |lx|| =1},
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is not closed with respect to the topology generated by the family of GSNs {u;, i € I}. Suppose that

—luwi, i€l

S g S, then by Lemma 1.16, we get

pi, i€l}

—lpi, i€l} —lpi, i€l} =
)=S . (5)

S=35 =G(S

}

. <lpi, iell =l i€} . =lpi, iel} L
Knowing that S cS and by Eq. (5), we obtain S = § which is absurd.

(ii) If A is defined on a subset of metrizable space, then continuity coincides with sequential continuity(see

[21, Theorem 9.1]). 1
Definition 1.18. Let n € IN\{0}. A square matrix £ € M,x,(IR) of real numbers is said to be convergent to
zero if L* P 0. o

Lemma 1.19. [9] Let £ be a square matrix with nonnegative elements. The following assertions are equiv-
alent:

(i) L is convergent to zero.

(1) The matrix (I — £) is non singular and
I-O)'=1+L+ L2+ + L+
(iii) |A| < 1 for every A € C with det(L — AI) = 0.
(iv) (I — £) is non-singular and (I — £)™! has nonnegative elements. o

Example 1.20. In the literature we can find some examples of matrices that converge to zero. Let a,b and
ceR,.

@A:@E»mmmm@byd.

@A=@ ?)mmWW<Lc<L

GmA:@ j)mmm—m<Lmqm>o

(@A:@ g(nAzc ﬁwﬁaﬂml

Definition 1.21. Let (X, pi)ier, be a GLCS. The operator A : X — X is said to be L-contraction if for every
i € Ix there exists a square matrix £; of nonnegative numbers convergent to zero such that

pi(Ax — Ay) <= L; pi(x—y), foreach x, y e X. o

Example 1.22. Let X = C(I, R) the GLCS with the family of GSNs pr (see Example 1.6). Let 0 < k < 1, we
define the operator A : X — X, A(x) = kx, where A is L-contraction. Indeed,

pr(A) ~ AW) s(2 ’5)m<x—y> o
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2. Fixed point results

We state our first fixed point theorem which is a generalization of Schauder-Tychonoff fixed point theorem
[23, Theorem 4.5.1].

Theorem 2.1. Let X be a Hausdorff GLCS, M C X be a nonempty convex subset of X, and let K be a compact
subset of X with K ¢ M. If A : M — X is a continuous operator with A(M) € K C M, then A has at least one
fixed point in M. &

Proof. Let G : X — )~(, G(x) = x. We define the operator g(x) =GoAoG(x), forx € M = G(M) = M.

It is clear that M is a convex subset of X, and AM) c G(K) c M. Since K is a compact subset of X and
from Lemma 1.16, G is continuous, then G(K) is a compact subset of X. By Schauder-Tychonoff fixed point
theorem, there exists x € M such that

T=A®).

Consequently, there exits x € M such that x = Ax. This completes the proof. [

It is known that the closed convex hull of a compact set is compact (Krein-Smulian theorem) in Banach
spaces, so we can draw the following result in generalized Banach spaces. However, it is not true in GLCS.

Corollary 2.2. Let X be a generalized Banach space and M be a closed convex subset of X. Suppose that
A : M — M s a continuous, compact map. Then, A has at least one fixed point in M. o

Proof. Since A(M) is compact, then K = conv(A(M)) is also a compact and convex subset in X. It is clear that
A(M) c Kc M. Hence, by Theorem 2.1, the operator A has at least one fixed pointin M. [

Theorem 2.3. Let (X, pi)ic;, be a Hausdorff complete GLCS. Suppose that the mapping A : X — X is
L-contraction . Then, A has a unique fixed point x*, and A*x — x* for every x € X. o

Proof. Let x € X and i € Ix, then there exists £; a square matrix of nonnegative numbers converging to 0
such that
pi(Ax — Ay) = L; pilx—y), forall x,ye X

We define the sequence x; = A¥x, then
Pt = 1) < Lipi(Ax - x). (6)
As a consequence of Eq.(6) and Lemma 1.19 (ii), we get
Pl = Xie) < L{I = L) pilAx = ).

Since L; converge to 0, then (xi)x is a Cauchy sequence in X, and so (xx), converge to a point x* € X. Using
the continuity of A, we get

X" = I}im Akx = A(lym AFly) = Ax.
Since X is a Hausdorff space, we obtain the uniqueness of the fixed point. [

Corollary 2.4. Let (X, pi)ic1, be a Hausdorff complete GLCS, and A : X — X is L-contraction. Then, (I — A)
is a homeomorphism. o

Proof. Clearly (I — A) is continuous. Now, we prove that (I — A) is bijective. Let y € X such that
y=(I-A)(x), xeX

We define the operator A:X > X, g(x) = A(x) + y. Since A is L-contraction, then A is L-contraction
too. By Theorem 2.3, the operator A has a unique fixed point in X. Hence, (I — A) is bijective. Now, we
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show that (I - A)™! : (I - A)(X) — X is continuous. Let x,y € (I — A)(X). So, there exists a,b € X such that
a=(-A)'x, and b= (I-A)'y.So, fori € Ix, we get

pia—b) = p((I - A)"x = (I = A)'y),

and

pi(x = y) = pi(I = A)a — (I = A)b)
> pi(a = b) — pi(A(a) — A(b))
> (I - Lpi(a-Db).

Using hypothesis and Lemma 1.19, we obtain

pi(I=A)x = (1= A)Ty) < (I = L) 'pilx = y).
Then, (I — A)™! is continuous. [
Now, we shall give a version of Krasnoselskii fixed point theorem in GLCSs.

Theorem 2.5. Let (X, p;)ic1, be a Hausdorff complete GLCS. Let M be a closed convex subset of X and A, B
be two operators from M into X such that:

(1) A is continuous,
(i1) B is L-contraction,
(iif) A(M) is contained in a compact set, and

(iv) Bx + Ay € M, for each x, y € M.
Then, the operator A + B has a fixed point in M.

Proof. Lety € M and leti € Ix. The mapping which assign for each x € M the values Bx+ Ay is L-contraction
. By Theorem 2.3 there exists a unique point Ty € M such that Ty = BTy + Ay, using assumption (iv), we
get Ty € M. Let y1, y» € M so

pi(Tyr = Tya) < (I— L) ' pi(Ayr — Ayp). 7)

From the above estimation and assumption (i) we derive that the operator T is continuous. Now, let us
prove that T(M) is contained in a compact set. Let (x,), be a net in T(M). From assumption (iii), the net
(Ax,), has a convergent subnet (Ax,),, 50 (Ax,), is a Cauchy net and by Eq. (7), T(x,). has a convergent
subnet (Tx,), is Cauchy net. Hence, T(M) is contained in a compact set, then by Theorem 2.1 there exists
y € M such that y = Ty = By + Ay. This completes the proof. [

3. Application 1

Differential equations with impulses are often used when modelling a variety of phenomena in engi-
neering, physics and life sciences. This type of equations were considered for the first time by Milman and
Myshkis [13] and then, followed by a period of active research which culminated with the monograph by
Halanay and Wexler [10]. Impulsive problems arise also in various applications in communications, me-
chanics electrical engineering, medicine and biology. An introduction to the theory of impulsive differential
equations can be found in the books [6, 9]. In this section, we shall use some fixed point theorem proved
in the last section to study the existence and uniqueness results for the following system of impulsive
differential equation.

y(t) = f(t,y(1), te].:=[0+00)\{to,tr, -t}
y(t;) - y(t]:) = Ik(y(t;)) forallk € N, 8)
y(0) = vo.
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Where f : [0,+0) X R = R, [ € C(R,R) with 0 < fp < t; < -+ < < ---,]}imtk = oo. We denote
by y(t) = hhrg y(tx + h) and y(t) = hlirgl+ y(tx — h) the right and the left limits of the function y at t = f,
respectively.

We define the space of piece wise continuous functions PC([0, +o0), R) (in short PC) by
PC = {y :[0,+00) = R,y € C(J.,R) : for all k, y(t]) and y(t,) existand satisfy y(t;) = y(tk)}.

We assume the following conditions
(Hi) f:10,+00) X R = R, t —> f(t, u) is measurable for each u € R.

(H>) For each ¢ > 0 there exists a function I, € L}OC([O, ¢], R) such that:

f(t,u) — £t )| < L(lu — 7)), t € [0,c] forall u,7 € R.

(H5) For all k € IN, there exists a; > 0 such that

[Ie(u) — I(w)| < aglu —u|, forall u,uelR,

with
1 (o8]
ot Zak <1, for o large enough.
k=1
Theorem 3.1. Assume that (H;)-(H3) are satisfied. Then, the problem (8) has a unique solution. o

Proof. We define the family of seminorms in PC, for all # € IN and o is large enough.
[yl = sup {exp(=ag(HIy®], 0<t<t),

where g,(t) = fotln (s)ds. From Example 1.6, we can define the generalized seminorm in PC by p, : PC — R?,

pu(y) = (:z::) . Observe that PC = (N PC,,, where

m>1
PCy ={y € CL,R): y(ty) and y(t)) exist, y(t;) = y(t), k=0,1,--- ,m}.

We conclude that PC is a complete generalized locally convex space (we can call it generalized Frechet
space). Now, we define the operator N : PC — PC by

t
v Ny =0+ [ FGys + Y )

0<t <t
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We will prove that N is L-contraction. For this purpose, let u,u € R. Then,

t
[Nu(t) - Nu(h)| < fo £, (5)) = £, NIds + Y, eu(t) = LC@(t,))

0ty <t

t
< fo L) -~ T + Y adu(ty) = ()

0<t<t
< fo 14(s) exp(0gu(t)) exp(—agn(t))lu(s) — u(s)lds

+ Z ax exp(ogn(t)) exp(=ogn(t)u(ty) — u(t)l

0ty <t
1 t
< - f olu(s) exp(0g,(s))ds lu — ul, + Z ax exp(0 g, (t))|u — T,
7o 0<th<t
1 (! / _ ~
< - f (exp(agn(t))) dslu —ul, + Z ay exp(og,(t)u — ul,
0 0<t<t

1 _ - _
< — exp(oga ()l =TTl + exp(0ga(t) ), axlu =l
k=1
then,

exp(ogu (ONu(t) - NTO| < [~ + Y adlu -7,

0<t <t

INu(®) - N < =+ Y, alhe =Ty

0t <t
so,
pn(Nu — Nu) < Lp,(u —u),
where
1 oo
po k=1 %
L=
1 oo
E Zk=1 g

From assumption (H3) and Example 1.20 (iv), L is convergent to 0 and so N is L-contraction. By Theorem
2.3, N has a unique fixed point. Hence, the problem (8) has a unique solution. [J

4. Application 2

Here, we deal with the following system of first order differential equation:

X (1) = filt,x(1), y(t), t€[0,+),

y (6) = falt, x(b), y(1)), £ € [0,+00),

x(8) = x(t) = Iu(x(t), y(E), ©)
y(t) — y(t) = Lu(x (), y(t)),

x(0) = xo,

¥(0) = vo.
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where f; : R"XR" — R, Iy € C(RXR, R)i=1,2. Thenotations x(t]) = hlirgl+ x(ty+h)and x(t,) = hhrél_ x(te—h)
stand for the right and the left limits of the function x at t = t;, respectively.

We assume the following:

(Hy) Fori = 1,2 f; : [0,+00) X R? — R is such that f;(-, x, y) is measurable for each x,y € R and fi(t,-,) is
continuous for almost all t € [0, +00).

(Hs) For each r > 0 there exist functions I € L} ([0, ], R) such that

|ﬁ(t, u, 0) - ﬁ(t, ﬁ/ 5)| < lly(t)lu - H| + l;(t)w - 5'

(Hs) For k € N the function I : R> - R is continuous, and there exist nonnegative constants a; and by
i =1,2 such that

(1, 0) = I, 0)| < alu — ul + bilv -7,

and fori=1,2

Theorem 4.1. Assume that (Hy)- (Hs) are satisfied and the matrix

1 . 1 .
ot Y1 A1k ot Yoker b1k
M = , (10)

1 . 1 .
ot Y1 A2k ot Yopeq bok

is convergent to zero. Then, the problem (9) has a unique solution. o

Proof. We define the family of seminorms in PC x PC for alln € N. P : PC x PC = R?, P(x,y) = (m”) .

Let y € PC, then y is a solution of the impulsive system (9) if, and only if, y is a solution of the following
impulsive integral equation

{ x(t) = o + f(ft fils,x(5), y()ds + L2y I (ty), y(E) a
y() = yo+ [y f2(5,x(5), y(5))ds + L2y Lux(ty), y(t;))

Consider the operator N : PC x PC — PC x PC defined by

_(x0+ J fuls,x(9), y)ds + Ty Liu(e(t)), ()

Nl(xr }/)) — [ \ .
Yo+ fy fals, X(s), y(©)ds + Ly x(x(8), y(E)

Nexy) = (N2<x, v

We now show the existence of solutions for the impulsive problem (9) from Theorem 2.3. We have to prove
that N is M-contractive. Let (x, y), (X, y) € R?
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t
INi(x, ) — NiR, 7)1 < fo (5, %(6), y(6)) — £i(5, 7(6), T
) M), y() — e (), T(ED)
k=1
< f I () 561+ Llys) - 6)
+ Z ailx(s) — X(s)] + 2 buly(s) - 76|
t .
< fo I1(5) exp(77a(1)) exp(~agu(O)|x(s) = TS| + y(s) — T6)lds
+ ) exp(ogu(t) exp(-ogu(®)|ax(ty) — T + baly(t) - Tt
k=1
1t _ _
< - fo‘ all(s) exp(agn(t))[lx =Xl + 1y - yln]ds

+ Z exp(agn(f))[ﬂik|x —Xlp + 1y - y|n]

k=1

1 _ - _ _
< =3+ ly =] + ) exploga()]aly = 3 + bily = 7],
k=1

hence,

8

_ Iy - _ S _
NG, ) = N )l < [l =3l + 1y = 7] + ) aue =X + Y bicly = T,
k=1 k=1

thus,

PG - NG = (N ) T NE D < () < P - G

where M is given by (10) and converges to zero. The result follows now from Theorem 2.3. [

Example 4.2. Consider the following problem

, 1
xX'(f) = W( () + yA(t ) filt,x, ),
VYO = ey O+ V0N = Ay,

Li(x, y) = aex(k), ar > 0, (12)
Ii(x, y) = bry(k), bx > 0,

x(0) =

y(0)=0

Letr >0and (x,y), (x,7) € R?such that|x| < .

— 2 _ _
It x, ) — A, Y < m[lx—xl +ly - yl],
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and,
1t x ) - AEED < —— [l =3+ Iy 7]
N (S ) () oI
Let [,(t) = 2 e L! ([0, +o0),R). Also
= D+ 2) © oy TN SO
1k (x, y) = Lik(X, y) < aglxe — X].
ok (x, y) = Lk(%, y) < bely = Y.
If - .
Zak <1 and Zbksl,
k=1 k=1
then by Theorem 4.1 the impulsive problem (12) has a unique solution. o
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