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Abstract. This paper is primarily devoted to studying (σ, τ)-derivations of finite-dimensional Lie super-
algebras over an algebraically closed field F. We research some properties of (σ, τ)-derivations and the
relationship between the (σ, τ)-derivations and other generalized derivations. Under certain conditions, a
left-multiplication structure concerned with (σ, τ)-derivations can induces a left-symmetric superalgebra
structure. Let L be a Lie superalgebra, we give a subgroup G of Aut(L), exploiting fundamental properties,
we introduce and analyze their interiors, especially focusing on the rationality of the corresponding Hilbert
series when G is a cyclic group.

1. Introduction

As everyone knows, derivations and generalized derivations are very important subjects both in the
study of Lie superalgebras. Many geometric and algebraic properties of Lie superalgebras can be studied
based on knowledge of the corresponding super-spaces of derivations. Derivations are also applied to
physical problems, such as the study of the interaction of particles (see [26]). A lot of work on derivations
of Lie superalgebras was done by Kac in [22] and Scheunert in [27].

Many papers have summarized the concept of derivations of a ring in different ways to suit different
purposes (see [24], [6], [17], [19], etc). The concept of generalized derivations of rings was introduced by
Brešar [5]. Arzhach, Albash [1] and Argaç, Inceboz [2] introduced the notion of (σ, τ)-derivation based
on Brešar. In [31], derivation superalgebras, quasiderivation superalgebras, centroids, quasi-centroids and
generalized derivation superalgebras of finite-dimensional Lie superalgebras in two different characteristic
domains are studied. In the earlier period, Kharchenko and Popov [21], Bergen and Grzeszczuk [9], Chuang
and Lee [10] studied the skew derivations. Jung and Park. [20] study the generalized (α, β)-derivations
and commutativity in prime rings. Hartwig, Larsson and Silvestrov [18] introduced the (σ, τ)-derivations
of associative C-algebras and developed an approach to deformations of the Witt and Virasoro algebras
based on σ-derivations. Recent years, Filippis and Wei [14] study b-generalized (α, β)-derivations and b-
generalized (α, β)-biderivations of prime rings. H. Chang [11] studies a kind of new generalized derivation
of Lie algebras. In order to study the theory and application of generalized derivations. In the following,
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we study the (σ, τ)-derivations of finite-dimensional Lie superalgebras over an algebraically closed field F
of characteristic zero.

This paper is organized as follows. In section 2, we introduce the (σ, τ)-derivations and show their
pertinent notions. In section 3, we research some properties of (σ, τ)-derivations and the relationship with
derivations of Lie superalgebras. In particular, if a (σ, σ)-derivation is invertible, we use the properties of left-
symmetric superalgebras, obtain a left-symmetric superalgebra structure induced by a left-multiplication
structure concerned with (σ, τ)-derivations. In section 4, we refer to the relationship with quasiderivations,
(α, β, γ)-derivations of Lie superalgebras, and give some examples. In the last section, we study the interior
of G-derivations, giving related concepts and properties. In Particular, when G is a cyclic group, we calculate
the corresponding Hilbert series.

2. Preliminary

Suppose that L = L0̄ ⊕ L1̄ and Aut(L) denotes the automorphism groups of L. If |x| occurs in some
expression in this paper, we regard x as a Z2-homogeneous element and |x| as the Z2-degree of x. We denote
by h(L) as the set of all Z2-homogeneous elements of L, i.e., h(L) = h(Li), i = 0̄, 1̄ and the notations θ, λ, µ
denote the elements of Z2-degree unless stated otherwise. We denote

plθ(L) = {D ∈ Hom(L,L)|D(Lµ) ⊆ Lµ+θ, ∀µ, θ ∈ Z2}.

We know that pl(L) = pl0̄(L) ⊕ pl1̄(L) is a Lie superalgebra over Fwith the bracket product

[Dθ,Dµ] := DθDµ − (−1)θµDµDθ, ∀Dθ,Dµ ∈ plθ(L).

A linear transformation D ∈ plθ(L) is called a derivation of Z2-degree θ if

D[x, y] = [D(x), y] + (−1)θ|x|[x,D(y)] (1)

for any x, y ∈ h(L).
Denote by Der(L) = Der0(L) ⊕Der1(L) as the set of all derivation superalgebras of L.

Definition 2.1. [31] A linear transformation D ∈ plθ(L) is called a quasiderivation of Z2-degree θ if there exists an
element D′ ∈ plθ(L) such that

D′[x, y] = [D(x), y] + (−1)θ|x|[x,D(y)] (2)

for any x, y ∈ h(L). Let us denote the set of all quasiderivations by QDer(L).

Definition 2.2. [29] A linear transformation D ∈ plθ(L) is said to be an (α, β, γ)-derivation of Z2-degree θ if there
exist α, β, γ ∈ F such that

αD([x, y]) = β[D(x), y] + (−1)θ|x|γ[x,D(y)], (3)

for any x, y ∈ h(L). For α, β, γ ∈ F, the set of all (α, β, γ)-derivations of Z2-degree θ is denoted by D(α, β, γ)θ, i.e.,

D(α, β, γ)θ =
{
D ∈ plθ(L)

∣∣∣αD([x, y]) = β[D(x), y] + (−1)θ|x|γ[x,D(y)], ∀x, y ∈ h(L)
}
.

Let D(α, β, γ) = D(α, β, γ)0̄ ⊕D(α, β, γ)1̄ be the (α, β, γ)-derivations of L.

Definition 2.3. Let G be a subgroup of Aut(L). A linear transformation D ∈ plθ(L) is said to be a G-derivation of
Z2-degree θ if there exist two automorphisms σ, τ ∈ G such that

D[x, y] = [D(x), σ(y)] + (−1)θ|x|[τ(x),D(y)], (4)

for any x, y ∈ h(L).
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In the following, we write DerG(L) be the set of all G-derivations of L. When G = 1 is the trivial subgroup,
then DerG(L) = Der(L). Therefore, G-derivations can be used as a kind of generalized derivations. If S and
G are two subgroups of Aut(L), and S ⩽ G, we obtain DerS(L) ⊆ DerG(L). In particular, when G ⩽ Aut(L),
we have Der(L) is contained in DerG(L). In this paper, we suppose that G is a subgroup of Aut(L) .

Definition 2.4. Let G be a subgroup of Aut(L). Fix two automorphismsσ, τ ∈ G, if there exists a linear transformation
Dσ,τ ∈ plθ(L) of Z2-degree θ such that

Dσ,τ[x, y] = [Dσ,τ(x), σ(y)] + (−1)θ|x|[τ(x),Dσ,τ(y)], ∀x, y ∈ h(L), (5)

then Dσ,τ is called a (σ,τ)-derivation.

For σ, τ ∈ G, the set of all (σ, τ)-derivations of Z2-degree θ is denoted by Derσ,τ(L), i.e.,

Derσ,τ(L) = {D : L→ L|D[x, y] = [D(x), σ(y)] + (−1)θ|x|[τ(x),D(y)], ∀x, y ∈ h(L)}.

It is easy to see that Derσ,τ(L) ⊆ DerG(L) is a vector space. However DerG(L) is usually not a vector space,
because many different (σ, τ)-derivations are contained in G-derivations. In particular, if σ = τ = 1, then
Der1,1(L) = Der(L). Hence, we can see that Derσ(L) = Derσ,1(L).

Definition 2.5. Let G be a subgroup of Aut(L). Fix two automorphisms σ, τ ∈ G, if there exists a linear transforma-
tion Dσn,τm ∈ plθ(L) of Z2-degree θ and m,n ∈N+ such that

Dσn,τm [x, y] = [Dσn,τm (x), σn(y)] + (−1)θ|x|[τm(x),Dσn,τm (y)], ∀x, y ∈ h(L), (6)

then Dσn,τm is called a (σn,τm)-derivations.

For σ, τ ∈ G, the set of all (σn, τm)-derivations of Z2-degree θ is denoted by Derσn,τm (L), i.e.,

Derσn,τm (L) = {D : L→ L|D[x, y] = [D(x), σn(y)] + (−1)θ|x|[τm(x),D(y)], ∀x, y ∈ h(L)}.

When σ, τ are involutive automorphisms of G, then Derσn,τm (L) = Der(L).

3. The relationship with derivations

Theorem 3.1. Let L be a Lie superalgebra. For every σ, τ ∈ G, then Derσ,τ(L) � Derτ−1σ(L).

Proof. We can define a map

ϕτ : Derσ,τ(L)→ Derτ−1σ(L) (i.e.,Derτ−1σ,1(L))

by D 7→ τ−1
◦D, D ∈ Derσ,τ(L).

First, we check that this map is well defined. For any D ∈ Derσ,τ(L), we have

τ−1
◦ (D[x, y]) = τ−1([D(x), σ(y)] + (−1)θ|x|[τ(x),D(y)])

= [τ−1
◦D(x), τ−1σ(y)] + (−1)θ|x|[x, τ−1

◦D(y)].

Hence τ−1
◦D ∈ Derτ−1σ(L). It is easy to see

ϕτ(D1 +D2) = τ−1
◦ (D1 +D2) = (τ−1

◦D1 + τ
−1
◦D2),

where D,D1,D2 ∈ Derσ,τ(L). Similarly, we have

ϕτ(a ·D) = τ−1
◦ (a ·D) = a · τ−1

◦D,

where D ∈ Derσ,τ(L), a ∈ F. Which means that ϕτ is a linear map. In an analogous way, one can define a
map

ψτ : Derτ−1σ(L)→ Derσ,τ(L)

by D 7→ τ ◦D, D ∈ plθ(L). It is easy to see ψτ a linear map. Then ϕ−1
τ = ψτ. This implies that ϕτ is a linear

isomorphism, thus Derσ,τ(L) is isomorphic to Derτ−1σ(L).
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Remark 3.2. The above result shows that the study of Derσ,τ(L) with two parameters σ and τ can actually be
simplified to that of Derσ(L) with one parameter σ ∈ G. In particular, when σ = τ, we see that Derσ,τ(L) and Der(L)
are isomorphic into vector space. The following result shows that it can be extended to such an isomorphism of Lie
superalgebras.

Lemma 3.3. Let any σ ∈ G, then Derσ,σ(L) is a Lie superalgebra with the bracket product [·, ·]σ and Derσ,σ(L) is
isomorphic to Der(L).

Proof. For any σ ∈ G, define the bilinear map

ϕσ : Derσ,σ(L)→ Der(L)

by D 7→ σ−1
◦ D, D ∈ plθ(L). The proof is similar to the proof in Theorem 3.1, so we can easy to see

Derσ,σ(L) � Der(L).

Recall the definition of the left-symmetric superalgebra in [23]. A superalgebra L is called a left-
symmetric superalgebra, if the associator

(x, y, z) := (x · y) · z − x · (y · z)

of L satisfies
(x, y, z) = (−1)θλ(y, x, z)

where x ∈ Lθ, y ∈ Lλ, z ∈ L, θ, λ ∈ Z2.
By definition, the product x · y in L satisfies the following conditions

x · (y · z) − (x · y) · z = (−1)θλy · (x · z) − (−1)θλ(y · x) · z

[x, y] = x · y − (−1)θλy · x

where x ∈ Lθ, y ∈ Lλ, z ∈ L, θ, λ ∈ Z2. The left-multiplication L in L by L(x)(y) = x · y.
The two conditions are equivalent to
(1) L : L→ plθ(L) is a Lie superalgebra homomorphism;
(2) Id : L→ LL is a 1-cocycle in Z1(L,LL),

where LL denotes the L-module by L. Z1(L,LL) is the space of 1-cocycles in regard to LL.
Recall a L-module V, the space of 1-cocycles is given by

Z1(L,V) = {α ∈ Hom(L,V)|α([x, y]) = x · α(y) − (−1)θλy · α(x)}.

Proposition 3.4. A finite-dimensional Lie superalgebra L admits a left-symmetric structure if and only if there is an
L-module V such that the vector space Z1(L,V) contains a nonsingular 1-cocycle.

Proof. Suppose that φ ∈ Z1(L,V) is a nonsingular 1-cocycle with inverse transformation φ−1. The module
V corresponds to a linear representation χ : L→ plθ(L). Then L(x) := φ−1

◦ χ(x) ◦φ defines an L-module W
such that φ−1

◦ φ = Id ∈ Z1(L,W). It follows that

L : L→ plθ(L)

is a representation of L, and
Id([x, y]) = Id(x)y − (−1)|x||y|Id(y)x

is a bijective 1-cocycle in Z1(L,LL). Hence L(x)y = x · y defines a left-symmetric structure on L. Conversely,
L admits a left-symmetric structure, then Id is a nonsingular 1-cocycle.

Corollary 3.5. Suppose that D ∈ Derσ,σ(L) is invertible. Then L∗(x)(y) := D−1([σ(x),D(y)]) induces a left-
symmetric superalgebra structure on L.
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Proof. Define a bilinear map
ϕσ : Derσ,σ(L)→ Der(L)

by D 7→ σ−1
◦D, D ∈ Derσ,σ(L). Let D1 ∈ Der(L) is invertible, according to Proposition 3.4, we have the left-

multiplication L∗ in L by L∗(x)(y) := [D1
−1(x), y] = D1

−1([x,D1(y)]) induces a left-symmetric superalgebra on
L. Let LL∗ denotes the L-module by L∗. Putting D1 = ϕσ(D), we have

L∗(x)(y) = (ϕσ(D))−1([x, ϕσ(D)(y)]) = D−1
◦ σ([x, σ−1

◦D(y)]) = D−1([σ(x),D(y)]),

thus, Z1(L,LL∗ ) contains a nonsingular 1-cocycle. By Proposition 3.4, we obtain

L∗(x)(y) = D−1([σ(x),D(y)])

can gives a left-symmetric superalgebra on L.

In fact, the derivation superalgebra Der(L) is also a Lie superalgebra, and vector space Derσ(L) is usually
not a subalgebra of plθ(L). From the following results, it can be concluded that under certain conditions,
Derσ(L) and Der(L) may be equal, and Derσ(L) is a Lie superalgebra.

Let y ∈ L, then Zx(L) called a center, if it satisfies

Zx(L) = {x ∈ L|[x, y] = 0}.

Lemma 3.6. Suppose that σ, τ ∈ G. If (σ−τ)(L) ∈ Z(L), then Derσ(L) = Derτ(L). In particular, if (σ−Id)(L) ∈ Z(L),
then Derσ(L) = Der(L).

Proof. Since σ(y) − τ(y) is contained in Z(L) with y ∈ L, therefore

[D(x), σ(y)] = [D(x), τ(y)]

with x ∈ L and D ∈ plθ(L). In particular, let any D ∈ Derσ(L) of Z2-degree θ, we have

D([x, y]) = [D(x), σ(y)] + (−1)θ|x|[x,D(y)] = [D(x), τ(y)] + (−1)θ|x|[x,D(y)] ⊆ Derτ(L).

It follows that D ∈ Derτ(L) and Derσ(L) ⊆ Derτ(L). Similarly, the reverse is also true. Hence, we can obtain
Derσ(L) is equal to Derτ(L).

Lemma 3.7. Suppose that σ is a involutive element of G with σ , id. If σ commutes with every element of Der(L)
and Derσ(L), then Der(L) +Derσ(L) is a Lie superalgebra.

Proof. It is sufficient to verify that Der(L) +Derσ(L) is close under the usual bracket

[D1,D2] = D1 ◦D2 − (−1)θλD2 ◦D1 ∈ Der(L) +Derσ(L).

For any D1 ∈ Derσk (L) and D2 ∈ Derσl (L) with k, l ∈ {0, 1} and x, y ∈ L, we have

D1 ◦D2([x, y]) = D1([D2(x), σl(y)] + (−1)λ|x|[x,D2(y)])

= [D1 ◦D2(x), σk+l(y)] + (−1)θλ+θ|x|[D2(x),D1 ◦ σ
l(y)]

+(−1)λ|x|[D1(x), σk
◦D2(y)] + (−1)(θ+λ)|x|[x,D1 ◦D2(y)]

and

D2 ◦D1([x, y]) = D2([D1(x), σk(y)] + (−1)θ|x|[x,D1(y)])

= [D2 ◦D1(x), σl+k
◦ (y)] + (−1)λθ+λ|x|[D1(x),D2 ◦ σ

k(y)]

+(−1)θ|x|[D2(x), σl
◦D1(y)] + (−1)(θ+λ)|x|[x,D2 ◦D1(y)].

notice that σ commutes with every element of Der(L) and Derσ(L), so we have
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[D1,D2]([x, y]) = (D1 ◦D2 − (−1)θλD2 ◦D1)([x, y])

= [D1 ◦D2(x), σk+l(y)] + (−1)θλ+θ|x|[D2(x),D1 ◦ σ
l(y)]

+(−1)λ|x|[D1(x), σk
◦D2(y)] + (−1)(θ+λ)|x|[x,D1 ◦D2(y)]

−[D2 ◦D1(x), σl+k
◦ (y)] − (−1)λθ+λ|x|[D1(x),D2 ◦ σ

k(y)]

−(−1)θ|x|[D2(x), σl
◦D1(y)] − (−1)(θ+λ)|x|[x,D2 ◦D1(y)]

= [D1 ◦D2(x), σk+l(y)] + (−1)(θ+λ)|x|[x,D1 ◦D2(y)]

−[D2 ◦D1(x), σl+k
◦ (y)] − (−1)(θ+λ)|x|[x,D2 ◦D1(y)]

= [[D1,D2](x), σk+l(y)] + (−1)(θ+λ)|x|[x, [D1,D2](y)].

which implies that [D1,D2] ∈ Derk+l
σ (L). Note that k, l ∈ {0, 1} and σ is an involution, we have σk+l = σ or

σk+l = id. Hence [D1,D2] ∈ Derσ(L) or [D1,D2] ∈ Der(L). Therefore, Der(L)+Derσ(L) is a Lie superalgebra.

Lemma 3.8. Let σ, τ ∈ G be two automorphisms of L such that (σ−1τ)(x) does not belong to Zx(L) with x ∈ L and
x , 0, then Derσ(L) ∩Derτ(L) = 0.

Proof. Suppose there is a non-zero D ∈ Derσ(L) ∩ Derτ(L) to prove the contradiction. Since D ∈ Derσ(L) ∩
Derτ(L), which means that

[D(x), σ(y)] = [D(x), τ(y)],

where any x, y ∈ L. Thus,

[σ−1
◦D(x), y − (σ−1τ)(y)] = 0. (7)

There exists a D ∈ L, such that y = σ−1
◦D(x), substitute equation (7), we can obtain

[y, y − (σ−1τ)(y)] = 0.

Then [y, (σ−1τ)(y)] = 0, it follows that (σ−1τ)(y) ∈ Zy(L). But by hypothesis, (σ−1τ)(x) does not belong to
Zx(L) with x ∈ L and x , 0, it means that y = 0. By the arbitrariness of x and σ−1 is bijective, hence D = 0.
This contradiction shows that the conclusion is established.

Let D ∈ Derσ(L) be a derivation of a Lie superalgebra L. Then L is called periodic if there exists a positive
integer k ∈N+ such that Dk = Id. The minimum k such that Dk = Id is called the order of D.

Proposition 3.9. Suppose that L is a Lie superalgebra and D ∈ Derσ(L) is a periodic derivation of order k and
Z2-degree θ. Let α, β are two eigenvectors of D such that [α, β] , 0 and (σ − Id) ∈ Z(L), then k is divisible by 6.

Proof. On account of D is of finite order, which means that D is diagonalizable. Suppose the eigenvectors
α, β correspond to eigenvalues r, r′ respectively, such that

D(α) = rα, D(β) = r′β.

Hence

D([α, β]) = [D(α), σ(β)] + (−1)θ|α|[α,D(β)]

= [r′α, σ(β)] + (−1)θ|α|[α, rβ]

= [r′α, β] + (−1)θ|α|[α, rβ]

= (r′ + (−1)θ|α|r)[α, β].

It follows that r′ + (−1)θ|α|r is an eigenvalue of D. Since Dk = Id, we have

rk = r′k = (r + (−1)θ|α|r′)k = 1. (8)
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According to Lemma 2.2 of [3], we can see that r′ = s · r, where s denotes a primitive third root of unity.
Which means that r′k = sk

· rk, thus sk = 1. It follows that k = 3k′ for some k′ ∈ N+. In addition, substitute
equation (8), we can get

1 = (r + (−1)θ|α|r′)k = (r + (−1)θ|α|s · r)k,

then (1 + (−1)θ|α|s)k = 1. Since k is a primitive root, it follows that 0 = s3
± 1 = (s ± 1)(s2

∓ s + 1), thus
s2
∓ s + 1 = 0. This implies that 1 ∓ s = −s2. It means that

1 = (1 ∓ s)k = (−1)ks2k = (−1)k(sk)2 = (−1)k.

We observe that k is an even. Consequently, 2 divides k and k = 6k′′ for some k′′ ∈N+.

The following result proves the commutativity of D ∈ Derσ(L) and σ of perfect Lie superalgebras. Recall
a Lie superalgebra L is called perfect if [L,L] = L.

Proposition 3.10. Suppose that L is a nonabelian Lie superalgebra. Let D ∈ Derσ(L) of Z2-degree θ such that
[D, σ](L) ⊆ Z(L), then [L,L] ⊆ ker([D, σ]). In particular, if L is perfect, then D commutes with σ.

Proof. Let any x, y ∈ L, in fact that

D ◦ σ([x, y]) = [D ◦ σ(x), σ2(y)] + (−1)θ|x|[σ2(x),D ◦ σ(y)]

and
σ ◦D([x, y]) = [σ ◦D(x), σ2(y)] + (−1)θ|x|[σ2(x), σ ◦D(y)].

Since the assumption [D, σ](L) ⊆ Z(L), which means that

[D, σ]([x, y]) = (D ◦ σ − (−1)θ|σ|σ ◦D)[x, y]
= [[D, σ](x), σ2(y)] + (−1)θ|x|[σ2(x), [D, σ](y)]
= 0.

Hence, [L,L] ⊆ ker([D, σ]). In addition, when L is perfect, we have

L = [L,L] ⊆ ker([D, σ]) ⊆ L.

It is easy to see that ker([D, σ]) = L and [D, σ] = 0, as desired.

Recall the definition of centroid. Let L be a Lie superalgebra, and the centroid of L of Z2-degree θ is a
space of linear transformations on L given by

D([x, y]) = [D(x), y] = (−1)θ|x|[x,D(y)],

where x, y ∈ L. The centroid C(L) is a subalgebra of plθ(L). Recall the mapping ad : L→ plθ(L) denotes the
adjoint map by x 7→ adx.

Definition 3.11. Let G be a subgroup of Aut(L), σ ∈ G be an automorphism, we call D be a σ-centroid of Lie
superalgebra if

D([x, y]) = [D(x), σ(y)] = (−1)θ|x|[x,D(y)], (9)

for all x, y ∈ L, D ∈ Derσ(L) of Z2-degree θ.

Lemma 3.12. Suppose that any element σ ∈ G. If D ∈ C(L) ∩Derσ(L), then ad ◦D = 0. In particular, if Z(L) = 0,
then C(L) ∩Derσ(L) = 0.
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Proof. By the assumption that D ∈ C(L) ∩Derσ(L), we have

[D(x), σ(y)] = 0

where any x, y ∈ L. In fact that D(x) ∈ Z(L) = ker(ad), since σ is bijective. Thus ad ◦ D = 0. In particular,
if Z(L) = 0, the map ad is injective. We know that ad is an adjoint map, thus it has a right inverse. Thus
D = 0, as desired.

Lemma 3.13. Suppose that arbitrary element σ ∈ G, D ∈ Derσ(L) of Z2-degree θ. Then

[D, adx] = σ ◦ adσ−1◦D(x),

for any x ∈ L.

Proof. In fact,

[D, adx](y) = (D ◦ adx − (−1)θ|x|adx ◦D)(y)
= D([x, y]) − (−1)θ|x|[x,D(y)]
= [D(x), σ(y)] + (−1)θ|x|[x,D(y)] − (−1)θ|x|[x,D(y)]
= [D(x), σ(y)]
= σ([σ−1

◦D(x), y])
= σ ◦ adσ−1◦D(x)(y),

for all x, y ∈ L. Consequently,[D, adx] = σ ◦ adσ−1◦D(x).

Lemma 3.14. Let any element x ∈ L and σ ∈ G, we define a map ϕσx : Derσ(L) → ad(L), by D 7→ adσ−1◦D(x). Then
ϕσx is linear.

Proof. Set any D1,D2 ∈ Derσ(L) and y ∈ L, then

ϕσx(D1 +D2)(y) = adσ−1◦(D1+D2)(x)(y) = [σ−1
◦ (D1 +D2)(x), y]

= σ−1([D1(x), σ(y)] + [D2(x), σ(y)])
= [σ−1

◦D1(x), y] + [σ−1
◦D2(x), y]

= (ϕσx(D1) + ϕσx(D2))(y),

thus,
ϕσx(D1 +D2)(y) = (ϕσx(D1) + ϕσx(D2))(y).

And

ϕσx(a ·D)(y) = adσ−1◦(a·D)(x)(y)

= [σ−1
◦ (a ·D)(x), y]

= [a · (σ−1
◦D)(x), y]

= a · ϕσx(D)(y),

where a ∈ F. It follows that ϕσx(a ·D) = a · ϕσx(D). Which means that ϕσx is linear.

Proposition 3.15. Suppose that arbitrary element x ∈ L and σ ∈ G. Then we have ker(ϕσx) = {D ∈ Derσ(L)|D(x) ∈
Z(L)}. In addition, ker(ϕσx) is a subalgebra of plθ(L).
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Proof. According to the Lemma 3.13 and Lemma 3.14, we have

ker(ϕσx) = {D ∈ Derσ(L)|adσ−1◦D(x)(y) = 0, ∀y ∈ L}
= {D ∈ Derσ(L)|σ ◦ adσ−1◦D(x)(y) = 0, ∀y ∈ L}
= {D ∈ Derσ(L)|[D, adx](y) = 0, ∀y ∈ L}
= {D ∈ Derσ(L)|[D(x), σ(y)] = 0, ∀y ∈ L}.

Then we can get {D ∈ Derσ(L)|[D(x), y] = 0, ∀ y ∈ L}, hence {D ∈ Derσ(L)|D(x) ∈ Z(L)}. Which means that
ker(ϕσx) is a vector space. In the following, we will show that ker(ϕσx) is a Lie superalgebra. Let any y ∈ L
and D1,D2 ∈ ker(ϕσx) of Z2-degree θ, λ respectively. It follows that

[[D1,D2](x), σ(y)] = [D1 ◦D2(x), σ(y)] − (−1)θ+λ[D2 ◦D1(x), σ(y)]
= D1([D2(x), y]) − (−1)θ|x|[D2(x),D1(y)] −D2([D1(x), y])
+(−1)λ|x|+θ+λ[D1(x),D2(y)]

= 0,

since D2(x),D1(x) ∈ Z(L). We know that σ is a bijective, thus [D1,D2](x) ∈ Z(L). Which means that
[D1,D2] ∈ ker(ϕσx), hence ker(ϕσx) is a Lie superalgebra. Consequently, ker(ϕσx) is a subalgebra of plθ(L).

Corollary 3.16. Suppose that L is a centerless Lie superalgebra. If there exists an element x ∈ L such that

D(x) , 0, ∀D ∈ Derσ(L),

then dim(Derσ(L)) ≤ dim(L).

Proof. In fact that ad : L→ ad(L) is an isomorphism, since Z(L) = 0. According to Proposition 3.15, we can
obtain ϕσx is injective. Thus, we have ϕσx(D) is a subspace of L, it follows that ϕσx(D) can be embedded into
L.

The results of the Proposition 3.15 and Corollary 3.16 describe the kernel of ϕx
σ.

4. Relationship with (Generalized) Derivations

In this section, we research the relationship between (σ, τ)-derivations and certain (generalized) deriva-
tions of Lie superalgebras. Including the relationships with (α, β, γ)-derivations and quasiderivations of Lie
superalgebras.

4.1. The relation with (α, β, γ)-derivations
Theorem 4.1. Let any element σ ∈ G, there exists an element a ∈ F(a , 1) such that

(σ − a · Id)(L) ⊆ Z(L),

then Derσ(L) = D(1/(a+1),1,0)(L).

Proof. Let any element D ∈ Derσ(L) of Z2-degree θ. Since (σ − a · Id)(L) ⊆ Z(L), which means that

[D(x), σ(y)] = [D(x), ay]

where any x, y ∈ L. Therefore

D([x, y]) = [D(x), σ(y)] + (−1)θ|x|[x,D(y)]

where any x, y ∈ L. It follows that

D([x, y]) = a · [D(x), y] + (−1)θ|x|[x,D(y)]

where any x, y ∈ L. Thus D ∈ D(1,a,1)(L), i.e., Derσ(L) = D(1,a,1)(L). We know a − 1 , 0, according to the proof
of the Theorem 2, part 2(a) in [29], we can obtain D(1,a,1)(L) = D(1/(a+1),1,0)(L). The proof is complete.
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Example 4.2. Let L2 be a nonabelian two dimensional Lie superalgebra with a basis {e1, e2} that only nonzero
commutation relation is [e1, e2] = e2, where |e1| = 0̄.

(1)When (σ − Id)(L2) ∈ Z(L2), by the Example 5 in [29], we can get

Derσ(L2) = spanC

{(
0 0
1 0

)
,

(
0 0
0 1

)}
� L2.

(2)When (σ − a · Id)(L2) ∈ Z(L2) where a ∈ F(a , 0, 1), we have Derσ(L2) = {0} by the Example 5 in [29].

Example 4.3. Let sl(1, 1) be a non-simple three dimensional Lie superalgebra with a basis {e1, e2, e3}, where e1 =(
0 0
1 0

)
, e2 =

(
0 1
0 0

)
, e3 =

(
1 0
0 1

)
that the only nonzero commutation relation of the basis is [e1, e2] = e3. And

|e1| = |e2| = 1̄, |e3| = 0̄. When (σ − a · I)(sl(1, 1)) ∈ Z(sl(1, 1)), where a ∈ F(a , 1), by the Example 6 in [29], we can
get

Derσ(sl(1, 1)) = spanC


1/(a + 1) 0 0

0 1/(a + 1) 0
0 0 1

 ,
0 0 0
0 0 0
1 0 0

 ,
0 0 0
0 0 0
0 1 0


 .

4.2. The relation with quasiderivations

We denote Derσ,H(L) as follow

Derσ,H(L) = {D ∈ Derσ(L)|D(H) ⊆ H}.

the set of all σ-derivations of L that stabilizes H. Clearly, Derσ,H(L) is a subspace of Derσ(L).

Lemma 4.4. Let H be a subalgebra of Lie superalgebra L. If H is a perfect ideal of L, σ is a cyclic automorphism of G
such that σ commutes with every element of Derσ(L), then

Derσ,H(L) = Derσ(L).

Proof. Let arbitrary D ∈ Derσ(L) of Z2-degree θ and x ∈ H. Since [H,H] = H, we have x = [y, z] with certain
y, z ∈ H. Further, as H is stabilized by σ and Lemma 3.7, thus

D(x) = D([y, z]) = [D(y), σ(z)] + (−1)θ|y|[y,D(z)] ∈ H.

It implies that D(H) ⊆ H. Thus

Derσ,H(L) = Derσ(L),

as desired.

Since H is stabilized by σ, it follows that σ|H of H as an automorphism by σ restricts to H, i.e., σ(H) ⊆ H.
The restriction map induces a natural linear map as follows

δ : Derσ,H(L)→ Derσ|H (L)

by D→ D|H. Set D ∈ Derσ,H(L), defining a map

D : [L,L]→ L

by
[x, y] 7→ 2D([x, y]) + (−1)|x||y|[D(y), σ(x)] − [D(x), σ(y)]

where x, y ∈ L.
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Proposition 4.5. Assume that there exists an element z ∈ L such that adz ∈ Aut(H), If D restricts to H there is a
linear map D|H : H→ H. Then D is linear.

Proof. On account of
adz(H) = [z,H] ⊆ [L,L],

for any x ∈ H, there exists a y ∈ H such that
x = [z, y],

as well as,

D(x) = D([z, y]) = 2D([x, y]) + (−1)|x||y|[D(y), σ(x)] − [D(x), σ(y)]
∈ D(H) + [D(H),H] − [D(H),H]
⊆ H.

Thus D(H) ⊆ H. By the restriction map D|H is linear, we also assume any x0 ∈ H. Then there is a y0 ∈ H
such that x0 = [z, y0], we have

D(ax + a0x) = D([z, ay]) +D([z, a0y0])
= 2D([z, ay]) + (−1)|z||y|[D(ay), σ(z)] − [D(z), σ(ay)]
+2D([z, a0y0]) + (−1)|z||y0 |[D(a0y0), σ(z)] − [D(z), σ(a0y0)]

= aD(x) + a0D(x0)

where a, a0 ∈ F. It is similar that

D(bx) = 2D([z, by]) + (−1)|x||y|[D(by), σ(z)] − [D(z), σ(by)]
= bD[z, y]
= bD(x)

where b ∈ F. Consequently, D is linear.

Theorem 4.6. If there exists an x ∈ L such that adx ∈ Aut(H) and D(x) ∈ Z(H) where D ∈ Derσ,H(L) of Z2-degree
θ. Then

δ(Derσ,H(L)) ⊆ QDer(H).

Proof. Since D(x) ∈ Z(H), which means that

D ◦ adx(y) = D([x, y]) = (−1)θ|x|[x,D(y)] = (−1)θ|x|adx ◦D(y),

where ∀x, y ∈ H and D ∈ Derσ,H(L). Thus

D ◦ adx = (−1)θ|x|adx ◦D.

Furthermore, we have

D|H ◦ adx([y, z]) = D|H([adx(y), adx(z)])
= 2D([adx(y), adx(z)]) + (−1)|y||z|[D ◦ adx(z), σ ◦ adx(y)] − [D ◦ adx(y), σ ◦ adx(z)]
= D([adx(y), adx(z)]) − [D ◦ adx(y), σ ◦ adx(z)]
−(−1)|y||z|D([adx(z), adx(y)]) + (−1)|y||z|[D ◦ adx(z), σ ◦ adx(y)]

= [D ◦ adx(y), adx(z)] + (−1)θ|y|[adx(y),D ◦ adx(z)]
= adx([D(y), z] + (−1)θ|y|[y,D(z)]),

where x, y, z ∈ H. It follows that

[D(y), z] + (−1)θ|y|[y,D(z)] = ad−1
x ◦D|H ◦ adx([y, z]).
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It is easy to see D|H ∈ QDer(H). Hence

δ(Derσ,H(L)) ⊆ QDer(H).

We complete the proof of this theorem.

5. The interior of the G-derivations

We have observed from the proof of Proposition 3.7 that the commutability with σ is important to make
Derσ(L) a nice algebraic structure. In order to understand the structure of Derσ(L) and DerG(L), we study
several special subspaces of Derσ(L) and we also observe that the Hilbert series is a subspace when G is a
cycle group.

For the set Derσ(L), when it is composed of elements that are commute with σ, it is recorded as Der+σ (L),
and when the element is commuting with every σ ∈ G, it is recorded as Der−σ (L). It is easy to see that

Der−σ (L) ⊆ Der+σ (L) ⊆ Derσ(L).

We find that DerG(L) is usually not a vector space. In addition, for any σ ∈ G, Der+σ (L), Der−σ (L) and Derσ(L)
are subsets of DerG(L), and they are vector spaces. Therefore, we consider all Der±σ (L) or some ”sum”s of
Derσ(L), then we can see how close they are from these ”sum”s to DerG(L). In the following, we define

Der+G(L) :=
⊕
σ∈G

Der+σ (L)

is called the big interior, and
Der−G(L) :=

⊕
σ∈G

Der−σ (L),

is called the small interior of DerG(L). Then, we may define

Der⋆G(L) :=
⊕
σ∈G

Derσ(L)

is called the interior of DerG(L). Then we have

Der−G(L) ⊆ Der+G(L) ⊆ Der⋆G(L).

The following two examples are both valid in Lie superalgebra and Lie algebra.

Example 5.1. Let L be a Lie superalgebra. Considering G = 1 is a trivial group. Then Der−G(L) = DerG(L) = Der(L),
we have

Der−G(L) = Der+G(L) = Der⋆G(L) = DerG(L) = Der(L).

Example 5.2. Let L be a Lie superalgebra. Considering G is a cyclic group generated by σ. Therefore Der+σ (L) =
Der−σ (L). After that, let ∗ ∈ {+,−, ⋆}, then Der∗G(L) = Der∗

⟨σ⟩(L) :=
⊕

k∈ZDer∗σk (L) with σ0 = 1, σ1 = σ,
σk = σk−1

◦ σ. Following, we formulate Der∗σk (L) := Derσk (L). Under this circumstance, Der∗
⟨σ⟩(L) is a Z-graded

vector space. Recall the Hilbert series of Der∗
⟨σ⟩(L) is defined by

H(Der∗
⟨σ⟩(L), t) :=

∑
k∈Z

dimC(Der∗σk (L)) · tk.

When the order of σ is finite, H(Der∗
⟨σ⟩(L), t) is a polynomial function in Z[t].

Proposition 5.3. If G is an abelian group, then Der−G(L) is a Lie superalgebra with the usual bracket product.
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Proof. Since Der−G(L) is a vector space, which means that

[D1,D2] = D1 ◦D2 − (−1)θλD2 ◦D1 ∈ Der−G(L)

where any D1,D2 ∈ Der−G(L) and D1,D2 of Z2-degree θ, λ respectively. Set D1 ∈ Der−σ1
(L) and D2 ∈ Der−σ2

(L),
where σ1, σ2 ∈ G are automorphisms. Then we have

D1 ◦D2([x, y]) = [D1 ◦D2(x), σ1σ2(y)] + (−1)θ(λ+|x|)[D2(x),D1 ◦ σ2(y)]
+(−1)λ|x|[D1(x), σ1 ◦D2(y)] + (−1)(θ+λ)|x|[x,D1 ◦D2(y)]

and

D2 ◦D1([x, y]) = [D2 ◦D1(x), σ2σ1(y)] + (−1)λ(θ+|x|)[D1(x),D2 ◦ σ1(y)]
+(−1)θ|x|[D2(x), σ2 ◦D1(y)] + (−1)(θ+λ)|x|[x,D2 ◦D1(y)],

where x, y ∈ L. We know that G is abelian, it is suffices to show that

[D1,D2]([x, y]) = (D1 ◦D2 − (−1)θλD2 ◦D1)([x, y])
= [[D1,D2](x), σ1σ2(y)] + (−1)θλ[x, [D1,D2](y)],

which means that [D1,D2] ∈ Der−σ1σ2
(L) ⊆ Der−G(L).

Corollary 5.4. Suppose that G is a cyclic group. Then Der+G(L) = Der−G(L) are both Lie superalgebras with the usual
bracket product.

Through the above results, we can see that the set DerG(L) can be very large and complex. Therefore,
we now focus on the interior of DerG(L) and the case where G is an infinite cyclic group. Particularly, we
already know that the Hilbert series of Z-graded vector space is an important invariant, which encodes the
dimension of the subspace as infinite series.

Proposition 5.5. Assume that G is an infinite cyclic group generated by σ. Let k0 ∈ N+ and D ∈ Derσk0 (L) such
that adD restricts to an invertible map on D ∈ Derσi (L) for arbitrary i ∈ Z \ {k0}. Then H(Der+G(L), t) is a rational
function.

Proof. Let any k ∈ Z \ {k0}, we have

adD : Derσk (L)→ Derσk+k0 (L)

is a linear isomorphism, since G is an infinite cyclic group generated by σ. It follows that

dim(Derσk (L)) = dim(Derσk+k0 (L)) = dim(Derσk−k0 (L))

where k ∈N \ {k0}. In addition,

dim(Der(L)) = dim(Derσk0 (L)) = dim(Derσ−k0 (L)) = · · ·

and
dim(Derσk (L)) = dim(Derσ2k (L)) = dim(Derσ3k (L)) = · · · .

Which means that

H(Der+G(L), t) =
∞∑

k=k0+1

dim(Derσk (L)) · tk +

−∞∑
k=k0

dim(Derσk (L)) · tk
∈ Z((t)),

whereZ((T)) denotes the ring of formal Laurent series overZ, i.e., the quotient ring of formal power series
ring Z[[T]] with respect to the powers of the indeterminate T. Consequently, H(Der+G(L), t) is a rational
function, we complete the proof of this result.
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