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Abstract. The objective of this paper is to introduce a new class of submanifolds which are called pointwise
quasi hemi-slant submanifolds in almost Hermitian manifolds which extends quasi hemi-slant, hemi-slant,
semi-slant and slant submanifolds in a very natural way. Several basic results in this respect are proved in
this paper. Moreover, we obtain some conditions of the distributions which are involved in the definition of
the new submanifolds. We also get some results for totally geodesic and mixed totally geodesic conditions
for pointwise quasi hemi-slant submanifolds. Finally, we illustrate some examples in order to guaranty the
new kind of submanifolds.

1. Introduction

Almost contact geometry and its related topics have been a rich reseach field for geometers due to
their applications in wide range of areas of physics as well as in mathematics. One of the interesting
and active reseach topic is the theory of submanifolds in differential geometry. The theory has many
interesting applications such as economic modeling, mechanics, image processing and computer design.
Chen [8] introduced the notion of slant submanifold of an almost Hermitian manifold. It was a naturel
generalization of both holomorphic and totally real submanifolds. The theory of submanifolds has been
studied by several geometers such as ([3], [4], [12], [13], [15], [33] and [36]).

Later, this interesting notion has been studied broadly by several geometers ([9], [16], [17], [28], [31],
[32]). As a generalization of slant submanifolds, there are several kinds of submanifolds: semi-slant
submanifolds ([5], [19], [29]), hemi-slant submanifolds ([18], [34]), bi-slant submanifolds ([6], [7], [35]),
quasi hemi-slant submanifolds ([23], [24], [25], [26], [27]), pointwise quasi bi-slant submanifolds [2] and
quasi bi-slant submanifolds ([1], [22]). In 2012, B. Y. Chen and O. J. Garay [10] studied pointwise slant
submanifolds in almost Hermitian manifolds which was first proposed by F. Etayo [14] under the notion of
quasi slant submanifold.

In 2013, B. Şahin [30] defined the notion of pointwise semi-slant submanifolds. In 2014, K. S. Park
([20], [21]) defined the notion of pointwise almost h-slant submanifolds and pointwise almost h-semi-slant
submanifolds in an almost quaternionic Hermitian manifold. The author obtained some geometrically
important properties of these manifolds.
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On the other hand, Akyol and Beyendi [1] initiated the study of quasi bi-slant submanifolds of an almost
contact metric manifold by generalizing slant, semi-slant, hemi-slant and bi-slant submanifolds. (See also:
[22]).

Taking into account the above studies, we introduce the notion of pointwise quasi-hemi-slant sub-
manifolds, in which includes the classes of anti-invariant, the tangent bundle consists of one invariant
and slant distribution which has slant function instead of slant angle, of almost Hermitian manifolds as a
generalization of quasi hemi-slant, bi-slant, hemi-slant, semi-slant and slant submanifolds in the present
paper.

The paper is organized as follows: In the second section, the basic notions, important definitions and
some properties both almost Hermitian manifolds and the geometry of submanifolds are given. In the
third section, we define the notion of pointwise quasi-hemi-slant submanifolds and obtain some basic
results for the next sections. In the fourth section, we deals with main theorems related to the geometry of
distributions. In the last section, we construct some examples of such submanifolds.

2. Preliminaries

In this section, we give the definition of a Kaehler manifold and some background on submanifolds
theory.

Let M̃ be a smooth manifold of dimension 2m. Then, M̃ is said to be an almost Hermitian manifold if it
admits a tensor field J of type (1, 1) and a Riemannian metric 1 on M̃ satisfying

J2 = −I, < JX1, JX2 >=< X1,X2 > (1)

for any vector fields X1,X2 on TM̃, where I denotes the identity transformation. The fundamental 2 -form
Ω on M̃ is defined by Ω(X1,X2) =< X1, JX2 >, ∀X1,X2 ∈ Γ(TM̃), with Γ(TM̃) being the section of tangent
bundle TM̃ of M̃. An almost Hermitian manifold M̃ is called a Kaehler manifold [37] if

(∇̃X1 J)X2 = 0 (2)

where ∇̃ is the Levi-Civita connection on M̃ with respect to <,>. Let M be a Riemannian manifold
isometrically immersed in M̃ and induced Riemannian metric on M is denoted by the same symbol <,>
throughout this paper. LetA and h denote the shape operator and second fundamental form, respectively,
of immersion of M into M̃. The Gauss and Weingarten formulas of M into M̃ are given by [9]

∇̃X1 X2 = ∇X1 X2 + h(X1,X2) (3)

and

∇̃X1 Y2 = −AY2 X1 + ∇
⊥

X1
Y2, (4)

for any vector fields X1,X2 ∈ Γ(TM) and Y2 ∈ Γ(T⊥M), where ∇ is the induced connection on M and ∇⊥

represents the connection on the normal bundle T⊥M of M and AY2 is the shape operator of M with respect
to normal vector Y2 ∈ Γ(T⊥M). Moreover,AY2 and h are related by

< h(X1,X2),Y2 >=< AY2 X1,X2 > (5)

for any vector fields X1,X2 ∈ Γ(TM) and Y2 ∈ Γ(T⊥M).
Now, we have the following definition from [10]:

Definition 2.1. A submanifold M of an almost Hermitian manifold M̃ is called pointwise slant if, at each point
p ∈M, the Wirtinger angle θ(X1) is independent of the choice of nonzero vector X1 ∈ T∗pM, where T∗pM is the tangent
space of nonzero vectors. In this case, θ is called slant function of M.

Definition 2.2. A submanifold M is called (i) (D1,D2)-mixed totally geodesic if h(Y3,Y4) = 0, for any Y3 ∈ Γ (D1)
and Y4 ∈ Γ (D2) (ii) D-totally geodesic if it is (D,D)-mixed totally geodesic.
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3. Pointwise quasi hemi-slant submanifolds

In this section, we define a new class of submanifolds which can be considered as a generalization of
quasi hemi-slant, hemi-slant, semi-slant, slant etc. submanifolds.

First, we have the following definition.

Definition 3.1. Let M be an isometrically immersed submanifold in a Kaehler manifold M̃. Then we say that M is a
pointwise quasi hemi-slant submanifold if it is furnished with three orthogonal distributions (D,Dθ,D⊥) satisfying
the conditions:

(i) TM = D ⊕Dθ ⊕D⊥,

(ii) The distribution D is invariant, i.e. JD = D,

(iii) For any non-zero vector field X1 ∈ (Dθ)p , p ∈ M, the angle θ between JX1 and (Dθ)p is slant function and is
independent of the choice of the point p and X1 in (Dθ)p,

(iv) The distribution D⊥ is anti- invariant, i.e., JD⊥ ⊆ T ⊥M.

We call the angle θ a pointwise quasi hemi-slant angle of M. A pointwise quasi hemi-slant submanifold M
is called proper if its pointwise-slant function satisfies θ , 0, π2 , and θ is not constant on M.

If we represent by d1, d2 and d3 the dimension ofD, Dθ andD⊥, respectively, then from our generalized
definition of pointwise quasi hemi-slant submanifold M, we can easily see the following particular cases:

(i) If d1 = 0, then M is a pointwise hemi-slant submanifold,

(ii) If d2 = 0, then M is a semi-invariant submanifold,

(iii) If d3 = 0, then M is a pointwise semi-slant submanifold.

Let M be a pointwise quasi hemi-slant submanifold of a Kaehler manifold M̃. Then, for any X1 ∈ Γ(TM),
we have

X1 = PX1 +QX1 + RX1 (6)

where P,Q and R denotes the projections on the distributions D, Dθ and D⊥, respectively.

JX1 = TX1 + FX1, (7)

where TX1 and FX1 are tangential and normal components on M. By using (6) and (7), we get immediately

JX1 = TPX1 + FPX1 + TQX1 + FQX1 + TRX1 + FRX1, (8)

here since JD = D, we have FPX1 = 0. Thus we get

J(TM) = D ⊕ TDθ ⊕ FDθ ⊕ JD⊥ (9)

and

T⊥M = FDθ ⊕ JD⊥ ⊕ µ, (10)

where µ is the orthogonal complement of FDθ ⊕ JD⊥ in T⊥M and Jµ = µ. Also, for any Y3 ∈ T⊥M, we have

JY3 = BY3 + CY3, (11)

where BY3 ∈ Γ(TM) and CY3 ∈ Γ(T⊥M).
Taking into account of the condition (iii) in Definition (3.1), (7) and (11), we obtain the followings:
TD = D, TDθ = Dθ, TD⊥ = {0}, BFDθ = Dθ, BFD⊥ = D⊥.
With the help of (7) and (11), we obtain the following Lemma.
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Lemma 3.2. Let M be a pointwise quasi hemi-slant submanifold of a Kaehler manifold M̃. Then, we have

(a) T2Y1 = −(cos2 θ)Y1, (b) BFY1 = −(sin2 θ)Y1,

(c) T2Y1 + BFY1 = −Y1, (d) FTY1 + CFY1 = 0,

for any Y1 ∈ Γ(Dθ).

By using (2), Definition (3.1), (7) and (11), we obtain the following Lemma.

Lemma 3.3. Let M be a pointwise quasi hemi-slant submanifold of a Kaehler manifold M̃. Then, we have

(i) < TY1,TY2 >= (cos2 θ) < Y1,Y2 >,

(ii) < FY1,FY2 >= (sin2 θ) < Y1,Y2 >

for any Y1,Y2 ∈ Γ(Dθ).

Proof. The proof follows using similar steps as in Proposition 2.8 of [10].

Using the equations (2), (3), (4), (7) and (11) and comparing the tangential and normal components, we
have the following:

Lemma 3.4. Let M be a pointwise quasi hemi-slant submanifold of a Kaehler manifold M̃. Then, we have

∇X1 TX2 − AFX2 X1 − T∇X1 X2 − Bh(X1,X2) = 0

and

h(X1,TX2) + ∇⊥X1
FX2 − F(∇X1 X2) − Ch(X1,X2) = 0

for any X1,X2 ∈ Γ(TM).

Lemma 3.5. Let M be a pointwise quasi hemi-slant submanifold of a Kaehler manifold M̃. Then, we have

(∇̃X1 T)X2 = AFX2 X1 + Bh(X1,X2),

(∇̃X1 F)X2 = Ch(X1,X2) − h(X1,TX2)

for any X1,X2 ∈ Γ(TM).

4. Main Results

Theorem 4.1. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. Then, the invariant
distribution D defines a totally geodesic foliation on M if and only if

< T∇Y1 TY2 + Bh(Y1,TY2),RY3 >=< ∇Y1 TY2 + h(Y1,TY2), JQY3 >

and

< ∇Y1 TY2,BY4 >= − < h(Y1,TY2),CY4 >

for any Y1,Y2 ∈ D, Y3 = QY3 + RY3 ∈ Γ(Dθ ⊕D⊥) and Y4 ∈ Γ(TM)⊥.
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Proof. For any Y1,Y2 ∈ Γ(D),Y3 = QY3 +RY3 ∈ Γ(Dθ ⊕D⊥),FY2 = 0 and from equations (3) and (7), we have

< ∇̃Y1 Y2,Y3 > =< ∇̃Y1 TY2, JQY3 + JRY3 >

=< ∇Y1 TY2 + h(Y1,TY2),TQY3 + FQY3 >

− < J(∇Y1 TY2 + h(Y1,TY2)),RY3 > .

Taking into acount of (11), the above equation becomes

< ∇̃Y1 Y2,Y3 > =< ∇Y1 TY2,TQY3 > + < h(Y1,TY2),FQY3 >

− < T∇Y1 TY2 + Bh(Y1,TY2),RY3 > . (12)

Now for any Y4 ∈ Γ(TM)⊥ and Y1,Y2 ∈ Γ(D), we obtain

< ∇̃Y1 Y2,Y4 > =< ∇̃Y1 JY2, JY4 >

=< ∇Y1 TY2,BY3 > + < h(Y1,TY2),CY4 > . (13)

The proof comes from (12) and (13).

Theorem 4.2. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. Then, the slant
distribution Dθ defines a totally geodesic foliation on M if and only if

sin2 θ < [Y1,Y3],Y2 > − sin 2θY3(θ) < Y1,Y2 >=< B∇⊥Y3
FY1 − TAFY1 Y3 − AFTY1 Y3,Y2 >

and

∇
⊥

Y1
FTY2 + ∇

⊥

Y1
CFY2 + h(Y1,BFY2) = 0

where Y1,Y2 ∈ Γ(Dθ),Y3 = PY3 + RY3 ∈ Γ(D ⊕D⊥).

Proof. For any Y1,Y2 ∈ Dθ,Y3 = PY3 + RY3 ∈ Γ(D ⊕D⊥), by using (1) and (7), we have

< ∇̃Y1 Y2,Y3 > = Y1 < Y2,Y3 > − < Y2, ∇̃Y1 Y3 >

= − < [Y1,Y3],Y2 > + < ∇̃Y3 T2Y1,Y2 > + < ∇̃Y3 FTY1,Y2 >

− < ∇̃Y3 FY1, JY2 > .

Then from Lemma 3.3 and using the property of slant function, we deduce

< ∇̃Y1 Y2,Y3 > = − < [Y1,Y3],Y2 > + sin 2θY3(θ) < Y1,Y2 > − cos2 θ < ∇̃Y3 Y1,Y2 >

+ < −AFTY1 Y3,Y2 > + < J(−AFY1 Y3 + ∇
⊥

Y3
FY1),Y2 >

= − < [Y1,Y3],Y2 > + sin 2θY3(θ) < Y1,Y2 > + cos2 θ < ∇̃Y1 Y2,Y3 >

+ cos2 θ < [Y1,Y3],Y2 > − < AFTY1 Y3,Y2 > − < TAFY1 Y3,Y2 >

+ < B∇⊥Y3
FY1,Y2 > .

This implies

sin2 θ < ∇̃Y1 Y2,Y3 > = − sin2 θ < [Y1,Y3],Y2 > + sin 2θY3(θ) < Y1,Y2 >

− < AFTY1 Y3,Y2 > − < TAFY1 Y3,Y2 > + < B∇⊥Y3
FY1,Y2 > . (14)

Now, for any Y4 ∈ (TM)⊥, we get

< ∇̃Y1 Y2,Y4 >=−(sin 2θ)Y1(θ) < Y2,Y4 > + cos2 θ < ∇̃Y1 Y2,Y4 >

− < ∇⊥Y1
FTY2,Y4 > − < h(Y1,BFY2),Y4 > − < ∇

⊥

Y1
CFY2,Y4 >
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which gives

sin2 θ < ∇̃Y1 Y2,Y4 >=− < ∇
⊥

Y1
FTY2+∇

⊥

Y1
CFY2+h(Y1,BFY2),Y4 > . (15)

Thus from (14) and (15), which achieves the proof .

Theorem 4.3. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. Then, the anti-invariant
distribution D⊥ defines a totally geodesic foliation on M if and only if

< AFY2 Y1,TPY3 >=< ∇Y1 BFY2 + ACFY2 Y1,QY3 >

and

< AFY2 Y1,BY4 >=< ∇
⊥

Y1
FY2,CY4 >,

where Y1,Y2 ∈ Γ(D⊥),Y4 ∈ (TM)⊥,Y3 = PY3 +QY3 ∈ Γ(D ⊕Dθ).

Proof. For Y1,Y2 ∈ Γ(D⊥),Y3 = PY3 +QY3 ∈ Γ(D ⊕Dθ), by using (1) and (7), we get

< ∇̃Y1 Y2,Y3 > =< ∇̃Y1 JY2, JPY3 + JQY3 >

=< ∇̃Y1 JY2,TPY3 > − < ∇̃Y1 FY2,QY3 > .

Taking into account of (4) and (11) in the above equation, we have

< ∇̃Y1 Y2,Y3 > =< −AFY2 Y1,TPY3 > − < ∇Y1 BFY2,QY3 >

+ < ACFY2 Y1,QY3 > . (16)

Now for any Y1,Y2 ∈ Γ(D⊥),Y4 ∈ Γ(TM)⊥, by using (4), (7) and (11), we obtain

< ∇̃Y1 Y2,Y4 > =< ∇̃Y1 JY2, JY4 >

=< −AFY2 Y1,BY4 > + < ∇
⊥

Y1
FY2,CY4 > . (17)

The proof comes from (16) and (17).

Theorem 4.4. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. The invariant distribu-
tion D is integrable if and only if

< ∇Y1 TY2 − ∇Y2 JY1,TQY3 > =< h(Y2, JY1),FRY3 > − < h(Y1,TY2),FY3 >

− < Bh(Y2, JY1),QY3 >

where Y1,Y2 ∈ Γ(D),Y3 = QY3 + RY3 ∈ Γ(Dθ ⊕D⊥).

Proof. For any Y1,Y2 ∈ Γ(D), Y3 = QY3 + RY3 ∈ Γ(Dθ ⊕D⊥), by using (3) and (7), we obtain

< [Y1,Y2],Y3 > =< ∇̃Y1 JY2, JY3 > − < ∇̃Y2 JY1, JY3 >

=< ∇̃Y1 TY2,TQY3 + FQY3 > + < ∇̃Y1 TY2,TRY3 + FRY3 >

+ < J(∇Y2 JY1 + h(Y2, JY1)),QY3 > − < ∇̃Y2 JY1, JRY3 >

by using (11) in the above equation, we have

< [Y1,Y2],Y3 > = (∇Y1 TY2,TQY3)+ < h(Y1,TY2),FQY3 + FRY3 >

+ < T∇Y2 JY1,QY3 > + < Bh(Y2, JY1),QY3 >

− < h(Y2, JY1),FRY3 > (18)

which proves the assertion.
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Theorem 4.5. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. The slant distribution
Dθ is integrable if and only if

sin2 θ < [Y1,Y3],Y2 > − cos2 θ < ∇Y1 Y2,Y3 > − sin 2θY3(θ) < Y1,Y2 >

=< ACFY1 Y3 − AFTY1 Y3 + ∇Y3 BFY1,Y2 > + < AFY1 Y2 − ∇Y2 TY1,TPY3 >

where Y1,Y2 ∈ Γ(Dθ),Y3 = PY3 + RY3 ∈ Γ(D ⊕D⊥).

Proof. For any Y1,Y2 ∈ Γ(Dθ),Y3 = PY3 + RY3 ∈ Γ(D ⊕D⊥). by using (1) and (7), we have

< [Y1,Y2],Y3 > =< ∇̃Y1 Y2,Y3 > − < ∇̃Y2 Y1,Y3 >

= − < ∇̃Y3 JY1, JY2 > − < [Y1,Y3],Y2 > − < ∇̃Y2 JY1, JY3 >

=< ∇̃Y3 T2Y1,Y2 > + < ∇̃Y3 FTY1,Y2 > + < ∇̃Y3 JFY1,Y2 >

− < [Y1,Y3],Y2 > − < ∇̃Y2 TY1, JY3 > − < ∇̃Y2 FY1, JY3 > . (19)

On the other hand, taking into account of Lemma 3.3, using the property of slant function, (4), (11), equation
(19)

< [Y1,Y2],Y3 > = − sin2 θ < [Y1,Y3],Y2 > + cos2 θ < ∇̃Y1 Y2,Y3 >

+ sin 2(θ)Y3(θ) < Y1,Y2 > + < ACFY1 Y3 − AFTY1 Y3 + ∇Y3 BFY1,Y2 >

+ < AFY1−∇Y2 TY1,TPY3 >

which achieves proof.

Theorem 4.6. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. The anti-invariant
distribution D⊥ is integrable if and only if

< AJY1 Y2 − AJY2 Y1,TPY3 >=< T(AJY2 Y1 − AJY1 Y2) + B(∇⊥Y2
JY1 − ∇

⊥

Y1
JY2),QY3 >

where Y1,Y2 ∈ Γ(D⊥),Y3 = PY3 +QY3 ∈ Γ(D ⊕Dθ).

Proof. For any Y1,Y2 ∈ Γ(D⊥),Y3 = PY3 +QY3 ∈ Γ(D ⊕Dθ), by making use of (4) and (7), we have

< [Y1,Y2],Y3 > =< ∇̃Y1 JY2, JY3 > − < ∇̃Y2 JY1, JY3 >

=< −AJY2 Y1 + ∇
⊥

Y2
JY1, JPY3 > + < JAJY2 Y1,QY3 >

− < J∇⊥Y1
JY2,QY3 > + < AJY1 Y2 − ∇

⊥

Y2
JY1,TPY3 >

− < JAJY1 Y2,QY3 > + < J∇⊥Y2
JY1,QY3 > .

Then from (11) in the above equation, we have

< [Y1,Y2],Y3 > =< TAJY2 Y1 − TAJY1 Y2 + B∇⊥Y2
JY1 − B∇⊥Y1

JY2,QY3 >

+ < AJY1 Y2 − AJY2 Y1,TPY3 > . (20)

The proof comes from (20).

Theorem 4.7. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. Then, D is totally
geodesic if and only if

< T∇Y1 Y2 + Bh(Y1,Y2),BY4 >=< ACY4 Y1,TY2 > − < ∇
⊥

Y1
CY4,FY2 >

where Y1,Y2 ∈ Γ(D) and Y4 ∈ Γ(TM)⊥.
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Proof. For any Y1,Y2 ∈ Γ(D) and Y4 ∈ Γ(TM)⊥, by making use of (1) and (11), we have

< h(Y1,Y2),Y4 > =< ∇̃Y1 JY2, JY4 >

=< J∇̃Y1 Y2,BY4 > + < J∇̃Y1 Y2,CY4 > .

Taking into account of (3) and (4) in the above equation, we get

< h(Y1,Y2),Y4 > =< T∇Y1 Y2,BY4 > + < Bh(Y1,Y2),BY4 > − < −ACY4 Y1 + ∇
⊥

Y1
CY4, JY2 >

=< T∇Y1 Y2 + Bh(Y1,Y2),BY4 > + < ACY4 Y1,TY2 > − < ∇
⊥

Y1
CY4,FY2 > . (21)

Hence the proof follows from (21).

Theorem 4.8. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. Then, Dθ is totally
geodesic if and only if

cos2 θ < AY1 Y4,Y2 > + < ∇
⊥

Y1
Y4,FTY2 >=< h(Y1,BY4) + ∇⊥Y1

CY4,FY2 >

where Y1,Y2 ∈ Γ(Dθ) and Y4 ∈ Γ(TM)⊥.

Proof. For any Y1,Y2 ∈ Γ(Dθ) and Y4 ∈ Γ(TM)⊥, using (1) and (7), we obtain

< h(Y1,Y2),Y4 > = − < ∇̃Y1 JY4, JY2 >

=< ∇̃Y1 Y4, JTY2 + JFY2 >

=< ∇̃Y1 Y4,T2Y2 + FTY2 > + < ∇̃Y1 Y4, JFY2 > .

Then from (3), (4), (11) and Lemma 3.3, we have

< h(Y1,Y2),Y4 > =< −AY1 Y4 + ∇
⊥

Y1
Y4,− cos2 θY2 + FTY2 > − < ∇̃Y1 BY4 + CY4,FY4 >

= cos2 θ < AY1 Y4,Y2 > + < ∇
⊥

Y1
Y4,FTY2 > − < h(Y1,BY4),FY2 > − < ∇

⊥

Y1
CY4,FY2 > .

(22)

The proof comes from (22).

Theorem 4.9. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. Then, D⊥ is totally
geodesic if and only if

< AY4 Y1,BFY2 >=< ∇
⊥

Y1
Y4,CFY2 >

where Y1,Y2 ∈ Γ(D⊥) and Y4 ∈ Γ(TM)⊥.

Proof. For any Y1,Y2 ∈ Γ(D⊥) and Y4 ∈ Γ(TM)⊥, by using (1), (7) and the fact that TY2 = 0, we have

< h(Y1,Y2),Y4 >=< ∇̃Y1 Y2 >= − < ∇̃Y1 JY4, JY2 >= − < ∇̃Y1 JY4,FY2) > .

On the other hand, using (4) and (11), we get

< h(Y1,Y2),Y4 >= − < AY4 Y1,BFY2 > + < ∇
⊥

Y1
Y4,CFY2 > (23)

which gives the proof.

Theorem 4.10. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. Then, D −Dθ mixed
totally geodesic if and only if

< h(Y1,TY2) + ∇⊥Y1
FY2,CY4 >=< ∇Y1 Y2,TBY2 > + < h(Y1,Y2),FBY4 >

where Y1 ∈ Γ(D), Y2 ∈ Γ(Dθ) and Y4 ∈ Γ(TM)⊥.
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Proof. For any Y1 ∈ Γ(D), Y2 ∈ Γ(Dθ) and Y4 ∈ Γ(TM)⊥, from (1) and (11), we obtain

< h(Y1,Y2),Y4 >=< ∇̃Y1 JY2, JY4 >= − < ∇̃Y1 Y2, JBY4 + JCY4 > .

Taking into account of (3), (4) and (7), we have

< h(Y1,Y2),Y4 > =< h(Y1,TY2),CY4 > + < ∇
⊥

Y1
FY2,CY4 >

− < ∇Y1 Y2,TBY4 > − < h(Y1,Y2),FBY4 > . (24)

The proof comes from (24).

Theorem 4.11. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. Then, D −D⊥ mixed
totally geodesic if and only if

< F∇Y1 Y2 + Ch(Y1,Y2),CY4 >= − < ∇Y1 TY2,BY4 >

where Y1 ∈ Γ(D), Y2 ∈ Γ(D⊥) and Y4 ∈ Γ(TM)⊥.

Proof. For any Y1 ∈ Γ(D), Y2 ∈ Γ(D⊥) and Y4 ∈ Γ(TM)⊥, by using (1) and (11), we have

< h(Y1,Y2),Y4 >=< ∇̃Y1 Y2,Y4 >=< ∇̃Y1 JY2,BY4 > + < J(∇̃Y1 Y2,CY4) > .

By virtue of (3) and (7), we get

< h(Y1,Y2),Y4 >=< ∇Y1 TY2,BY4 > + < F∇Y1 Y2 + Ch(Y1,Y2),CY4 > . (25)

The proof comes from (25).

Theorem 4.12. Let M be a pointwise quasi hemi-slant submanifolds of a Kaehler manifold M̃. Then,Dθ −D⊥ mixed
totally geodesic if and only if

FAFY2 Y1 = C∇⊥Y1
FY2

where Y1 ∈ Γ(Dθ), Y2 ∈ Γ(D⊥) and Y4 ∈ Γ(TM)⊥.

Proof. For any Y1 ∈ Γ(Dθ), Y2 ∈ Γ(D⊥) and Y4 ∈ Γ(TM)⊥, by making use of (1) and (7), we have

< h(Y1,Y2),Y4 >=< ∇̃Y1 JY2, JY4 >=< ∇̃Y1 FY2, JY4 > .

Taking into account of (4) and (11), we get

< h(Y1,Y2),Y4 > = − < J∇̃Y1 FY2,Y4 >

=< JAFY2 Y1,Y4 > − < ∇
⊥

Y1
FY2,Y4 >

=< FAFY2 Y1 − C∇⊥Y1
FY2,Y4 > . (26)

The proof comes from (26).

Finally, we mention the following examples.
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5. Examples

Example 5.1. For θ ∈ (0, π2 ), consider a submanifold M of a Kaehler manifold M̃ defined by immersion ψ as follows:

ψ(r, s, t, θ,u, v) = (
t
√

3
,

r
√

2
+

1
√

5
,

u
√

2
+

1
√

5
, sinθ,

v
√

3
, 0, cosθ, 0,

s
√

3
, 0).

We can easily to see that the tangent bundle of M is spanned by the tangent vectors

E1 =
1
√

2

∂
∂y1

, E2 =
1
√

3

∂
∂x5

, E3 =
1
√

3

∂
∂x1

,

E4 = cosθ
∂
∂y2
− sinθ

∂
∂x4

, E5 =
1
√

2

∂
∂x2

, E6 =
1
√

3

∂
∂x3

.

We define Kaehler structure J of R10 by,

J(
∂
∂xi

) = −
∂
∂yi

, J(
∂
∂y j

) =
∂
∂x j

, 1 ≤ i, j ≤ 5.

We get

JE1 =
1
√

2

∂
∂x1

, JE2 = −
1
√

3

∂
∂y5

, JE3 = −
1
√

3

∂
∂y1

,

JE4 = cosθ
∂
∂x2
+ sinθ

∂
∂y4

, JE5 = −
1
√

2

∂
∂y2

, JE6 = −
1
√

3

∂
∂y3

.

Then D = span{E1,E3} is holomorphic distribution, Dθ = span{E4,E5} is pointwise slant with slant function
cos−1( cosθ

√
2

) and D⊥ = span{E2,E6} is anti-invariant distribution. Thus ψ defines a proper 6-dimensional pointwise

quasi hemi-slant submanifold M in M̃.

Example 5.2. For v , 0, 1 and θ ∈ (0, π2 ), consider a submanifold M of a Kaehler manifold M̃ defined by immersion
ψ as follows:

ψ(v,u, α, r, s, t,w, θ) = (u, α, v cos(u + α), π, v sin(u + α),
√

3, r, e,
s
√

2
,

t
√

2
,

w
√

3
,
θ
√

3
).

We can easily see that the tangent bundle of M is spanned by the tangent vectors

E1 = cos(u + α)
∂
∂x3
+ sin(u + α)

∂
∂x5

,

E2 =
∂
∂x1
− v sin(u + α)

∂
∂x3
+ v cos(u + α)

∂
∂x5

,

E3 =
∂
∂x2
− v sin(u + α)

∂
∂x3
+ v cos(u + α)

∂
∂x5

,

E4 =
∂
∂x7

, E5 =
1
√

2

∂
∂x9

, E6 =
1
√

2

∂
∂x10

,

E7 =
1
√

3

∂
∂x11

, E8 =
1
√

3

∂
∂x12

.

We define Kaehler structure J of R12 by

J(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) = (−x2, x1,−x4, x3,−x6, x5,−x8, x7,−x10, x9,−x12, x11).
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We obtain

JE1 = − cos(u + α)
∂
∂x4
− sin(u + α)

∂
∂x6

,

JE2 = −
∂
∂x2
+ v sin(u + α)

∂
∂x4
− v cos(u + α)

∂
∂x6

,

JE3 =
∂
∂x1
+ v sin(u + α)

∂
∂x4
− v cos(u + α)

∂
∂x6

,

JE4 = −
∂
∂x8

, JE5 = −
1
√

2

∂
∂x10

, JE6 =
1
√

2

∂
∂x9

,

JE7 = −
1
√

3

∂
∂x12

, JE8 =
1
√

3

∂
∂x11

.

Then D = span{E5,E6,E7,E8} is holomorphic distribution, Dθ = span{E2,E3} is pointwise slant with slant function
cos−1( 1

1+v2 ) and D⊥ = span{E1,E4} is anti-invariant distribution. Thus ψ defines a proper 8-dimensional pointwise
quasi hemi-slant submanifold M in M̃.
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