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Abstract. The center manifold is an invariant manifold that plays a crucial role in the bifurcation analysis
of dynamical systems. The center manifold existence theorem assures the local existence of an invariant
submanifold of the state space of a dynamical system around a non-hyperbolic equilibrium point. Center
manifold theory is essential in the reduction of different bifurcation scenarios to their normal forms. Our
study focuses on a predator-prey interactive system with density-dependent growth in predators subject to
a contagious disease. The disease is assumed to be horizontally transmitted, and the rate of recovery of the
infected predator is assumed to be density-dependent. At the trivial (zero) equilibrium, the center manifold
is calculated whose dynamical behaviour is similar to that of the original system. Further, using the center
manifolds, the normal form of a Hopf bifurcation point is determined from which the criticality of the system
can be deduced. Finally, numerical simulations are performed with biologically plausible parameters to
substantiate the analytical findings. Using numerical continuation methods we detect Generalized Hopf
and Zero-Hopf bifurcation points. We discuss their normal form coefficients, compute their two-parameter
unfoldings and relate these results to the mathematical theory of codimension two bifurcations.

1. Introduction

Equivalence relations play a significant role in the study of general (qualitative) properties of dynamical
systems, especially in classifying possible types of behaviour and for comparing the behaviour of different
dynamical systems. Two dynamical systems are said to be topologically equivalent if there exists a home-
omorphism from one state space onto the other that maps orbits to orbits, preserving the direction ([17,
Definition 2.1]). The concept of topological equivalence of dynamical systems was first introduced in the
article by Andronov & Pontryagin 1937 [2] on structurally stable systems on the plane. Local topological
equivalence of a nonlinear dynamical system to its linearization at a hyperbolic equilibrium was proved by
Grobman 1959 [10] and Hartman in 1963 [13]. Interested readers can see [17] for more about the historical
background.

Center manifold theory and the method of normal forms are two rigorous mathematical techniques for
reducing the dimensionality of a dynamical system and handling nonlinearity. At a non-hyperbolic equi-
librium point of a dynamical system the center subspace is the linear space Tc spanned by the eigenvectors
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and generalized eigenvectors of the eigenvalues with real part zero. According to the center manifold
existence theorem there is locally an invariant center manifold Wc

loc(0) tangential to Tc. The importance of
center manifolds in dynamical systems is due to their ability to describe the dynamics of the corresponding
system. The stability theorem of center manifold [6] says that for initial conditions of the full system suffi-
ciently close to the bifurcation point, trajectories through them asymptotically approach a trajectory on the
center manifold either in forward or backward time. In the local theory of dynamical systems, generally in
bifurcation analysis, these techniques are the most important and applicable methods [24]. Because intrigu-
ing behaviour occurs on the center manifold, center manifolds play an essential role in bifurcation theory.
Among the pioneers, Plissof Pliss in 1964 [20], Vanderbauwhede 1989 [22], and Kelley in 1967 [15] were
the first to prove the center manifold theorem for finite dimensions. The study by Shoshitaishvili in 1975
[21] provides the foundation of the theory of topological normal forms in the context of multidimensional
bifurcations of equilibria and isolated periodic orbits.

In this article, we introduce a new mathematical model on predator-prey epidemics. Pioneering work
on modeling of epidemics was proposed by Kermack and Mc Kendrick in 1927 [16], after which various
researchers implemented the framework of epidemiology in predator-prey modeling [1, 7, 11, 23]. Density-
dependent recovery plays a significant role in the study of epidemics. Citing the examples of different
diseases and their slow recovery due to different factors arising in aquaculture, Bhattacharjee et. al. [4]
proposed a tri-trophic epidemiological model with density-dependent disease recovery, which exhibits
chaotic dynamics. Using this density-dependent disease recovery framework, we propose a model where
the predator species is classified into susceptible and infected. Our main aim in this article is to analyze
the possible bifurcations using the center manifold theory and method of normal forms. Using the center
manifold reduction technique, the center manifold of the dynamical system representing the epidemic
model is obtained, which describes the dynamics of the system. Then using the center manifold, the
normal form of a Hopf bifurcation point is obtained. The normal form, being topologically equivalent to
the local center manifold of the original system, confirms the existence of a Hopf bifurcation point in the
original system. The following is a breakdown of the article’s framework:

In Section 2, the model is presented along with the basic assumptions. Section 3 contains a discussion
on the boundedness of the solutions and existence of equilibrium points of the system. Section 4 deals
with the stability analysis of different equilibrium states. Center manifold reduction and normal form
reduction are described therein. In section 5 and 6 we recall the mathematical background of the parameter
unfoldings of Generalized Hopf and zero-Hopf bifurcation points as far as they are useful to understand
the numerical results in section 7. In section 7 numerical simulations and continuations are carried out to
verify the analytical results, using a biologically plausible parameter set. Section 8 gives a brief summary
of the results obtained in the paper.

2. Mathematical model

The basic assumptions of our proposed model are outlined in this section.
1. A prey-predator ecosystem is considered where the total prey and predator population densities are

represented by S and N, respectively. We assume that predators are susceptible to some form of contagious
disease (such as a virus) and that in the presence of the disease, predator populations are classified into two
groups: (i) susceptible and (ii) infected. Let P(t) and Y(t) be, respectively, the concentrations of the biomass
of susceptible predator and infected predator at time t. Suppose that the prey reproduces logistically with
intrinsic growth rate r1 > 0 and also the susceptible predator follows logistic growth with intrinsic growth
rate r2 > 0. The infected individuals do not reproduce; infection reduces the remaining capacity due to
the inability to compete for resources [12]. Thus, we may assume that only susceptible species follow the
logistic growth law, and the infected predators (Y) die before having the capability of reproducing [3, 8].

2. We assume that the predator species predates their prey following a Holling I (1959) [14] function
response with catching rate α; β is the rate of energy transfer.

3. The disease transmission rate is assumed to be λwith a recovery rate b. The term bY(1−δY) represents
density-dependent disease recovery [4].
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4. Let d1, d2 and d3 represent the natural mortality rate of prey, susceptible predator and infected
predator, respectively.
With the above assumptions the model is,

dS
dt
= r1S(1 − c1S) − αSP − d1S,

dP
dt
= r2P(1 − c2P) + βSP − λPY + bY(1 − δY) − d2P,

dY
dt
= λPY − bY(1 − δY) − d3Y,


(1)

with initial conditions, S(0) > 0; Y(0) > 0; P(0) > 0.

3. Qualitative analysis of the system

This section deals with the the uniform boundedness of the solutions (Theorem 3.1) of the system (1) and
the steady states of the system i.e. the equilibrium points together with their existence conditions.

Theorem 3.1. The orbits of system (1) are uniformly bounded, i.e. there exists a bounded set B such that for every
orbit (S(t),P(t),Y(t)) of (1) there is a time t0 such that (S(t),P(t),Y(t)) ∈ B for all t ≥ t0.

Proof. Let us define a function U(t) = S(t) + αβP(t) + αβY(t). Then

dU
dt
=

dS
dt
+
α
β

dP
dt
+
α
β

dY
dt
.

Now choose any µwith 0 < µ < d3. Then,

dU
dt
+ µU ≤ S

(
r1 + µ

)
− r1c1S2 +

α
β

(
r2 + µ

)
P −
αr2c2

β
P2 +

α
β

(
µ − d3

)
Y

≤ −r1c1

(
S2
− 2S

(r1 + µ)
2r1c1

+
(r1 + µ)2

4(r1c1)2 −
(r1 + µ)2

4(r1c1)2

)
−
αr2c2

β

(
P2
− 2P

(r2 + µ)
2r2c2

+
(r2 + µ)2

4(r2c2)2 −
(r2 + µ)2

4(r2c2)2

)
+
α
β

(
µ − d3

)
≤ −r1c1


(
S −

(r1 + µ)
2r1c1

)2

−
(r1 + µ)2

4(r1c1)2

+
−
αr2c2

β


(
P −

(r2 + µ)
2r2c2

)2

−
(r2 + µ)2

4(r2c2)2

 + αβ (
µ − d3

)
≤

(r1 + µ)2

4r1c1
+
α
β

(r2 + µ)2

4r2c2

Define K = (r1+µ)2

4r1c1
+ αβ

(r2+µ)2

4r2c2
. Then the above differential inequality can be written in the form,

d
dt

(
U −

K
µ

)
≤ −µ

(
U −

K
µ

)
.

Now by applying Lemma 2 on page 27 in Birkhoff and Rota (1989) [5], we obtain

0 ≤ U(t) ≤
K
µ

(
1 − e−µt

)
+U(0)e−µt.
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For any ϵ > 0 define

B =

{
(S,P,Y) : S ≥ 0,P ≥ 0,Y ≥ 0,S +

α
β

P +
α
β

Y ≤
K
µ
+ ϵ

}
.

Then for every orbit of (1) there is a time t0 such that (S(t),P(t),Y(t)) ∈ B for all t ≥ t0.

3.1. Equilibrium points

System (1) can have the following equilibrium points:

(a) The trivial equilibrium E0(0, 0, 0) which always exists.

(b) The axial or predator-free equilibrium E1(Ŝ > 0, 0, 0) where Ŝ = r1−d1
c1r1

, which exists for r1 > d1.

(c) The disease-free equilibrium E2(S̄ > 0, P̄ > 0, 0) where,

S̄ = αd2−r2(α+c2(d1−r1))
αβ+c1c2r1r2

and P̄ =
r1(β+c1(r2−d2))−βd1

αβ+c1c2r1r2
. A disease-free equilibrium exists if and only if,

α(d2 − r2) + r2c2(d1 − r1) > 0,

and
r1c1(d2 − r2) + β(d1 − r1) < 0.

As a consequence, no disease-free equilibrium exists if d1 − r1 and d2 − r2 are both positive or both
negative.

(d) The prey and infection-free equilibrium E3(0,P3 > 0, 0) where P3 =
r2−d2
c2r2

, which exists for r2 > d2.
(e) The prey-free equilibrium E4(0,P4 > 0,Y4 > 0) where,

P4 =
−bδd2 + bδr2 + d3λ −K

2bc2δr2
,

Y4 =
2b2c2δr2 + 2bc2δd3r2 + bδd2λ − bδλr2 − d3λ2 + λK

2b2c2δ2r2,

where, K =
√

(−bδd2 + bδr2 + d3λ) 2 − 4bc2δd3r2 (b + d3) > 0.

K exists and is positive if and only if (−bδd2 + bδr2 + d3λ) 2 > 4bc2δd3r2 (b + d3).
P4 > 0 and Y4 > 0 under any of the conditions (i) or (ii),

(i) r2 > d2; 0 < δ ≤ d3λ
br2−bd2

; 0 < c2 <
λr2−d2λ
br2+d3r2

,

(ii) r2 > d2; δ > d3λ
br2−bd2

; 0 < c2 <
b2d2

2δ
2
−2b2d2δ2r2+b2δ2r2

2−2bd2d3δλ+2bd3δλr2+d2
3λ

2

4b2δd3r2+4bδd2
3r2

.

For the parameters in Table 1 with δ = 0.02/day and d2 = 0.4/day, the prey-free equilibrium E4 exists
because conditions (i) are satisfied.

(f) Coexistence equilibrium E∗(S∗ > 0,P∗ > 0,Y∗ > 0):
From the equation of the prey nullcline we obtain P∗ = r1−c1r1S∗−d1

α . Substituting this in the equations
of the predator nullclines we get,

α2bY∗(1 − cY∗) − (r1 (c1S∗ − 1) + d1) (r2 (α + c2 (r1 (c1S∗ − 1) + d1))
+α

(
−d2 + βS∗ − λY∗

)
) = 0,

Y∗ (α(−b) + αbδY∗ − c1λr1S∗ − αd3 − d1λ + λr1) = 0.
(2)



A.J. Kashyap et al. / Filomat 36:20 (2022), 6897–6922 6901

Since Y∗ , 0, (otherwise we are in the case (c)) we can solve the second equation in (2) for Y∗ and
substitute this in the first equation of (2). So S∗ is the solution of a quadratic equation

AS2 +BS + C = 0, (3)

where,

A = bc1δr1
(
αβ + c1c2r1r2

)
,

B = r1
(
c1 (bδr2 (α − 2c2r1) + α(−b)δd2 + αd3λ) − αbβδ

)
+ bδd1

(
αβ + 2c1c2r1r2

)
,

C = bδr2 (d1 − r1) (α + c2 (d1 − r1)) + α (αd3 (b + d3) + d1 (d3λ − bδd2) + r1 (bδd2 − d3λ)) .

If S∗ is a solution of (3), then the corresponding P∗ and Y∗ are defined uniquely. Hence (1) can have at
most two coexistence equilibria. If S∗ , 0 is a real positive solution of the quadratic equation (3), then
P∗ and Y∗ are also real and positive if

λr1 − α (b + d3) − d1λ
c1λr1

< S∗ <
r1 − d1

c1r1
.

The coexistence equilibrium (S∗,P∗,Y∗) exists under the sufficient condition,

r1 > d1, r2 ≥ d2, c2 >
α (d2 − r2)
r2 (d1 − r1)

and λ >
(b + d3)

(
αβ + c1c2r1r2

)
r1

(
β + c1 (r2 − d2)

)
− βd1

.

For the parameter set in Table 1 with δ = 0.02/day we verified that AS2 + BS + C = 0 has a unique
non-zero and non-negative real root S∗ = 6.12077. The corresponding P∗,Y∗ are also real and positive
with P∗ = 0.763768 and Y∗ = 4.52902.

4. Stability of equilibrium points

The six types of equilibria in §3.1 (a)-(f) all have a clear biological meaning. In the biological practice we
cannot expect to find them if they are not mathematically stable. We therefore now study their stability in
§4.1-6. The Jacobian matrix of the system (1) is given by,

J =

 r1 (1 − 2c1S) − d1 + α(−P) α(−S) 0
βP r2 (1 − 2c2P) − d2 + βS − λY −2bδY + b − λP
0 λY b(2δY − 1) − d3 + λP

 (4)

4.1. Stability of the trivial equilibrium E0(0, 0, 0)

The Jacobian of the system (1) at the trivial equilibrium E0 is given by,

JE0 =

 r1 − d1 0 0
0 r2 − d2 b
0 0 −b − d3

 .
The eigenvalues of JE0 are r1−d1, r2−d2,−b−d3. Therefore the trivial equilibrium E0 is locally asymptotically
stable if r1 < d1 and r2 < d2. The equilibrium E0 becomes non-hyperbolic if r1 = d1 or r2 = d2 or both r1 = d1
and r2 = d2. In the following cases, we discuss the stability of the non-hyperbolic equilibrium E0 by using
center manifold theory.

We will use the theory described in [24], §18.1. This requires that the system be written in the form
(18.1.1) with (18.1.2) in [24]. We will achieve this by linear transformations of the coordinates based on the
eigenvectors of the Jacobian in the equilibrium point.
Case 1: r1 − d1 = 0, r2 < d2. In this case the eigenvalues of the Jacobian are 0, r2 − d2,−b − d3. The stable
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manifold is two-dimensional and the center manifold is one-dimensional. To investigate the stability we
will study the dynamics in the center manifold. We will exclude the case with an algebraically double and
geometrically simple eigenvalue −b− d3 = r2 − d2 i.e. when b+ d3 + r2 − d2 = 0. Under this assumption, the
eigenvectors corresponding to the three eigenvalues are the column vectors of the nonsingular matrix,

Q =


1 0 0
0 1 −

b
b−d2+d3+r2

0 0 1

 ,
with

Q−1 =


1 0 0
0 1 b

b−d2+d3+r2

0 0 1

 .
Next, we introduce the transformation X = QV where X =

 S
P
Y

, V =

 u
v
w

 into system (1) and after some

algebraic manipulations obtain the diagonal form, u̇
v̇
ẇ

 =
 0 0 0

0 r2 − d2 0
0 0 −b − d3


 u

v
w

 +
 H1(u, v,w)
H2(u, v,w)
H3(u, v,w)

 , (5)

where,

H1(u, v,w) =
αbuv

b − d2 + d3 + r2
− c1d1u2

− αuw,

H2(u, v,w) =
b2δv2

b − d2 + d3 + r2
−

b2c2r2v2

(b − d2 + d3 + r2) 2 −
b2λv2

(b − d2 + d3 + r2) 2 +
2bc2r2vw

b − d2 + d3 + r2

−
bβuv

b − d2 + d3 + r2
+

bλv2

b − d2 + d3 + r2
+

bλvw
b − d2 + d3 + r2

− bδv2
− c2r2w2 + βuw − λvw,

H3(u, v,w) = bδv2 + λvw −
bλv2

b − d2 + d3 + r2
.

The functionsH1,H2,H3 are quadratic in u, v,w, hence the system (5) has the form (18.1.1) with (18.1.2) in
[24]. The center manifold can locally be represented as follows:

Wc(0) =
{
(u, v,w) ∈ R3

|v = h1(u),w = h2(u), hi(0) = 0,Dhi(0) = 0, i = 1, 2
}
,

for u sufficiently small. We now will compute the center manifold and derive the vector field on the center
manifold. We assume,

h =
(

h1(u)
h2(u)

)
=

(
a1u2 + a2u3 +O(u4)
b1u2 + b2u3 +O(u4)

)
, (6)

the center manifold must satisfy,

Duh[Au + f (u, h1(u), h2(u))] − Bh − 1 (u, h1(u), h2(u)) = 0, (7)

where (7) is a quasilinear partial differential equation, see equation 18.1.9 on page 248 in [24], that h(u) must
satisfy in order for its graph to be an invariant center manifold.
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In (7), A = 0, B =
(

r2 − d2 0
0 −b − d3

)
, f (u, v,w) = H1(u, v,w),

1(u, v,w) =
(
H2(u, v,w)
H3(u, v,w)

)
. Substituting the above together with v = h1(u) and w = h2(u) in (7) and equating

the coefficients of u2,u3,u4 gives,

a1 = 0,

a2 = −
3βc2

1d2
1

α (b + d3) (d2 − r2)
,

b1 = −
3c2

1d2
1

α (b + d3)
,

b2 = −
6c3

1d3
1

α (b + d3) 2 .

Now, substituting a1, a2, b1, b2 in equation (6) gives,

h1(u) = −
3βc2

1d2
1u3

α (b + d3) (d2 − r2)
+O(u4),

h2(u) = −
3c2

1d2
1u2

α (b + d3)
−

6c3
1d3

1u3

α (b + d3) 2 +O(u4).

Using the formulae for h1(u) and h2(u) in (5) yields,

u̇ = −c1d1u2
−

3bc2
1d2

1u3

(b + d3) (b − d2 + d3 + r2)

+ u4

 3βc2
1d2

1

(b + d3) (d2 − r2)
−

6bc3
1d3

1

(b + d3) 2 (b − d2 + d3 + r2)

 + O(u5),

on the center manifold Wc(0) near the origin. u = 0 is an unstable equilibrium of the equation since c1d1 > 0
so that for small negative values of u the flow is in the negative direction, away from the equilibrium point.
By Theorem 18.1.3 in [24] the origin is also an unstable equilibrium of (5).
Case 2: r2 − d2 = 0, r1 < d1. We proceed as in Case 1. In this case the eigenvalues of the Jacobian are
r1 − d1, 0,−b− d3. The stable manifold is two-dimensional and the center manifold is one-dimensional. The
corresponding eigenvectors are the column vectors of,

Q =


1 0 0
0 1 −

b
b+d3

0 0 1

 ,
with

Q−1 =


1 0 0
0 1 b

b+d3

0 0 1

 .
Next, we introduce the transformation X = QV where X =

 S
P
Y

, V =

 u
v
w

 into system (1) and after some
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algebraic manipulations get the diagonal form, u̇
v̇
ẇ

 =
 r1 − d1 0 0

0 0 0
0 0 −b − d3


 u

v
w

 +
 H1(u, v,w)
H2(u, v,w)
H3(u, v,w)

 , (8)

where,

H1(u, v,w) =
αbuw
b + d3

− c1r1u2
− αuv,

H2(u, v,w) = −
b3c2d2w2

(b + d3) 3 +
2b2c2d2vw
(b + d3) 2 −

b2c2d2d3w2

(b + d3) 3 −
βb2uw

(b + d3) 2 −
bc2d2v2

b + d3

−
c2d2d3v2

b + d3
+

2bc2d2d3vw
(b + d3) 2 +

βbuv
b + d3

+
βd3uv
b + d3

−
βbd3uw

(b + d3) 2 −
d3λvw
b + d3

−
bδd3w2

b + d3
+

bd3λw2

(b + d3) 2 ,

H3(u, v,w) = −
bλw2

b + d3
+ bδw2 + λvw.

The center manifold can locally be represented as follows:

Wc(0) =
{
(u, v,w) ∈ R3

|u = h1(v),w = h2(v), hi(0) = 0,Dhi(0) = 0, i = 1, 2
}
,

for v sufficiently small. We now will compute the center manifold and derive the vector field on the center
manifold. We assume,

h =
(

h1(v)
h2(v)

)
=

(
a1v2 + a2v3 +O(v4)
b1v2 + b2v3 +O(v4)

)
. (9)

The center manifold must satisfy,

Dvh[Av + f (h1(v), v, h2(v))] − Bh − 1 (h1(v), v, h2(v)) = 0, (10)

where (10) is a quasilinear partial differential equation, see equation 18.1.9 on page 248 in [24], that h(v)
must satisfy in order for its graph to be an invariant center manifold.

In (10), A = r1 − d1, B =
(

0 0
0 −b − d3

)
, f (u, v,w) = H1(u, v,w),

1(u, v,w) =
(
H2(u, v,w)
H3(u, v,w)

)
. Substituting the above together with u = h1(v) and w = h2(v) in equation (10)
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and equating the coefficients of v3, v4 gives,

a1 =
λ2 (2bc2d2 − d3λ)

(b + d3)
(
bβ(bδ − λ) − 4αbc2d2 + d3(2αλ + bβδ)

) ,
a2 =

2b3β2c2δd2λ3
− 8αb2βc2

2d2
2λ

3
− 8αb2c2

2d2
2λ

4
− 3b2β2c2d2λ4

β (b + d3) 2 (
βb2δ − βbλ − 4αbc2d2 + βbδd3 + 2αd3λ

) 2

+
2b2β2c2δd2d3λ3 + 8αbβc2d2d3λ4 + 8αbc2d2d3λ5 + bβ2d3λ5

− 2αβd2
3λ

5
− 2αd2

3λ
6

β (b + d3) 2 (
βb2δ − βbλ − 4αbc2d2 + βbδd3 + 2αd3λ

) 2 ,

b1 =
βλ2

bβ(λ − bδ) + 4αbc2d2 − d3(2αλ + bβδ)
,

b2 = −
βλ3

(b + d3)
(
bβ(bδ − λ) − 4αbc2d2 + d3(2αλ + bβδ)

) .
Now, substituting a1, a2, b1, b2 in equation (9) gives,

h1(v) =
λ2v2 (2bc2d2 − d3λ)

(b + d3)
(
bβ(bδ − λ) − 4αbc2d2 + d3(2αλ + bβδ)

)
+ v3

[
2b3β2c2δd2λ3

− 8αb2βc2
2d2

2λ
3
− 8αb2c2

2d2
2λ

4
− 3b2β2c2d2λ4

β (b + d3) 2 (
βb2δ − βbλ − 4αbc2d2 + βbδd3 + 2αd3λ

) 2

+
2b2β2c2δd2d3λ3 + 8αbβc2d2d3λ4 + 8αbc2d2d3λ5 + bβ2d3λ5

− 2αβd2
3λ

5
− 2αd2

3λ
6

β (b + d3) 2 (
βb2δ − βbλ − 4αbc2d2 + βbδd3 + 2αd3λ

) 2

]
+O(v4),

h2(v) =
βλ2v2

bβ(λ − bδ) + 4αbc2d2 − d3(2αλ + bβδ)
−

βλ3v3

(b + d3)
(
bβ(bδ − λ) − 4αbc2d2 + d3(2αλ + bβδ)

) +O(v4).

Using the formulae for h1(v) and h2(v) in (8) yields,

v̇ = −c2d2v2
−

2v4
(
4αb2c2

2d2
2λ

4
− 4αbc2d2d3λ5 + αd2

3λ
6
)

(b + d3) 2 (
βb2δ − βbλ − 4αbc2d2 + βbδd3 + 2αd3λ

) 2 +O(v5),

on the center manifold Wc(0) near the origin. v = 0 is an unstable equilibrium of the equation since c2d2 > 0
so that for small negative values of v the flow is in the negative direction, away from the equilibrium point.
By Theorem 18.1.3 in [24] the origin is also an unstable equilibrium of (8).
Case 3: When r1 − d1 = 0 and r2 − d2 = 0, two eigenvalues of the Jacobian (4) of the system (1) become
zero. Since it is a non-hyperbolic equilibrium point, we cannot draw any conclusions about the stability or
instability of the equilibrium point based on linearization. Therefore we determine the stability using the
center manifold. The eigenvalues of the Jacobian of the system at E0 are 0, 0,−b − d3 and hence the center
manifold is two-dimensional and the stable subspace is one-dimensional. The corresponding eigenvectors
are the column vectors of,

Q =


0 1 0
1 0 −

b
b+d3

0 0 1

 ,
with

Q−1 =


0 1 b

b+d3

1 0 0
0 0 1

 .
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Next, we introduce the transformation X = QV where X =

 S
P
Y

, V =

 u
v
w

 into system (1) and after some

algebraic manipulations get the diagonal form, u̇
v̇
ẇ

 =
 0 0 0

0 0 0
0 0 −b − d3


 u

v
w

 +
 H1(u, v,w)
H2(u, v,w)
H3(u, v,w)

 , (11)

where,

H1(u, v,w) = −
b3c2d2w2

(b + d3) 3 +
2b2c2d2uw
(b + d3) 2 −

b2c2d2d3w2

(b + d3) 3 −
βb2vw

(b + d3) 2 −
bc2d2u2

b + d3
−

c2d2d3u2

b + d3

+
2bc2d2d3uw

(b + d3) 2 +
βbuv
b + d3

+
βd3uv
b + d3

−
d3λuw
b + d3

−
βbd3vw

(b + d3) 2 −
bδd3w2

b + d3
+

bd3λw2

(b + d3) 2 ,

H2(u, v,w) =
αbvw
b + d3

− c1d1v2
− αuv,

H3(u, v,w) = −
bλw2

b + d3
+ bδw2 + λuw.

The center manifold can locally be represented as follows:

Wc(0) =
{
(u, v,w) ∈ R3

|w = h(u, v), h(0, 0) = 0,Dh(0, 0) = 0
}
, (12)

for u, v, sufficiently small. We now will compute the center manifold and derive the vector field on the
center manifold. We assume,

h(u, v) = a1u2 + a2uv + a3v2 +O((|u|, |v|)3),

Dh(u, v) = [2a1u + a2v, a2u + 2a3v] +O((|u|, |v|)2).
(13)

The equation for the center manifold is given by,

Dh(u, v)
[
A

(
u
v

)
+ f (u, v, h(u, v))

]
− Bh(u, v) − 1 (u, v, h(u, v)) = 0, (14)

where equation (14) is a quasilinear partial differential equation, see equation 18.1.9 on page 248 in [24],
that h(u, v) must satisfy in order for its graph to be an invariant center manifold.
In (14),

A =
(

0 0
0 0

)
, B = −b − d3

f (u, v,w) =
(
H1(u, v,w)
H2(u, v,w)

)
, 1(u, v,w) = H3(u, v,w)
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Substituting the above in (14) gives,

(2a1u + a2v +O((|u|, |v|)2))
{bw

(
c2d2 (2bu − bw + 2d3u) − βv (b + d3) + d3λw

)
(b + d3) 2

+
bw(bδw + λu)

b + d3
− bδw2

− c2d2u2 + βuv − λuw
}
+

(
a2u + 2a3v +O((|u|, |v|)2)

)
(
αbvw
b + d3

− c1d1v2
− αuv

)
+ (b + d3)

(
a1u2 + a2uv + a3v2 +O((|u|, |v|)3)

)
− bδw2

− λuw +
bλw2

b + d3
= 0.

Putting w = h(u, v) in above equation and equating coefficients of u2v, uv2 and uv3 gives,

a1 = 1,

a2 =
2β

α + c2d2 + λ
,

a3 =
2β

(
β − c1d1

)
(2α + λ) (α + c2d2 + λ)

.

Thus,

h(u, v) = u2 +
2βuv

α + c2d2 + λ
+

2βv2 (
β − c1d1

)
(2α + λ) (α + c2d2 + λ)

+O
(
(|u|, |v|)3

)
.

Using (11) yields,

u̇ = −c2d2u2 + βuv +
u2v

(
−αbβ − bβλ + 3bβc2d2 − 2βd3λ

)
(b + d3) (α + c2d2 + λ)

−

2uv2
(
2αbβ2 + bβ2λ − 2bβ2c2d2 + 2bβc1c2d1d2 − βc1d1d3λ + β2d3λ

)
(2α + λ) (b + d3) (α + c2d2 + λ)

+O((|u|, |v|)4),

v̇ = −αuv − c1d1v2 +
αbu2v
b + d3

+
2αbβuv2

(b + d3) (α + c2d2 + λ)
+O((|u|, |v|)4).

(15)

on the center manifold Wc(0) near the origin.

Clearly, (0, 0) is an equilibrium point of the reduced system (15). We draw the phase portrait of (15)
neglecting order terms O((|u|, |v|)4) with the parameters in Table 1 except for r1 = 0.2/day and δ = 0.02/day,
see Figure 3. By Theorem 18.1.3 in [24] the equilibrium E0 of (1) has the same stability properties as the
equilibrium (0, 0) of (15). So we have reduced a 3D problem to a 2D problem.

4.2. Stability of the axial equilibrium E1(Ŝ, 0, 0)

The Jacobian of the system (1) at the axial equilibrium E1 has eigenvalues
ζ11 = −b − d3, ζ12 = d1 − r1, ζ13 =

β(r1−d1)
c1r1

− d2 + r2. Therefore at E1 the system is locally asymptotically

stable if d1 < r1, β(r1−d1)
c1r1

< d2 − r2.
As in section 4.1 there are non-hyperbolic cases which could be studied by using center manifold theory.
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4.3. Stability of the disease-free equilibrium E2(S̄, P̄, 0)
The Jacobian of the system (1) at the disease-free equilibrium E2 has a pair of complex conjugate

characteristic roots ζ21,22 = θ ± iϕwhere,

θ =
c1r1

(
r2 (α + c2 (d1 + d2 − r1)) − c2r2

2 − αd2

)
+ βc2r2 (d1 − r1)

2
(
αβ + c1c2r1r2

) , and ϕ , 0,

and

ζ23 = −
αbβ + bc1c2r1r2 + d3

(
αβ + c1c2r1r2

)
+ c1d2λr1 − c1λr1r2 + βd1λ − βλr1

αβ + c1c2r1r2
.

Near the equilibrium state E3, the system (1) is locally asymptotically stable if ζ23 < 0 and θ < 0, which
implies,

r2 > d2, 0 < d1 <
−c1d2r1 + c1r2

1 + c1r2r1 + βr1

β + c1r1
,

c2 >
αc1r1r2 − αc1d2r1

−c1d1r2r1 − c1d2r2r1 + c1r2r2
1 + c1r2

2r1 − βd1r2 + βr2r1
,

0 < λ <
αbβ + bc1c2r1r2 + c1c2d3r1r2 + αβd3

−c1d2r1 + c1r1r2 − βd1 + βr1
.

4.4. Stability of the prey and infection free equilibrium E3(0,P3 > 0, 0)
The Jacobian of the system (1) at the prey and infection free equilibrium E3 has eigenvalues,

ζ31 = d2 − r2, ζ32 = −
bc2r2 + c2d3r2 + d2λ − λr2

c2r2
and ζ33 = −

c2d1r2 − c2r1r2 − αd2 + αr2

c2r2
.

Therefore the equilibrium E3 is locally asymptotically stable if r2 − d2 > 0,
λ(r2 − d2) − c2r2(b + d3) < 0 and α(r2 − d2) + c2r2(d1 − r1) > 0.

4.5. Stability of the prey-free equilibrium E4(0,P4 > 0,Y4 > 0):
The Jacobian of the system (1) at the prey-free equilibrium E4 has eigenvalues,

ζ41 =
αK − 2bc2δd1r2 + 2bc2δr1r2 + αbδd2 − αbδr2 − αd3λ

2bc2δr2
,

Re(ζ42,43) =
bδr2

(
2c2

(
b2δ + d3(bδ − 2λ) − bλ +K

)
+ λ(λ − bδ)

)
+ λ(bδ − λ) (bδd2 − d3λ +K )

4b2c2δ2r2
.

Therefore the equilibrium E4 is locally asymptotically stable if,

0 < δ <
bλ + d3λ

b2 + b (r2 − d2) + bd3
, 0 < K < bδ (r2 − d2) + d3λ,

0 < c2 <
λ(bδ − λ) (bδ (r2 − d2) + d3λ −K )
2bδr2 (b2δ + d3(bδ − 2λ) − bλ +K )

, α >
2bc2δr2 (r1 − d1)

bδ (r2 − d2) + d3λ −K
.

For the parameter set in Table 1 (with d2 = 0.4 and δ = 0.02 such that r2 − d2 > 0) the equilibrium E4 is not
locally asymptotically stable as 0 < c2 ≮

λ(bδ−λ)(bδ(r2−d2)+d3λ−K )
2bδr2(b2δ+d3(bδ−2λ)−bλ+K ) .
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4.6. Stability of a coexistence equilibrium state E∗ = (S∗,P∗,Y∗)

The Jacobian of (1) at the coexistence equilibrium E∗ is,

JE∗ =

 r1 (1 − 2c1S∗) − d1 + α(−P∗) α(−S∗) 0
βP∗ r2 (1 − 2c2P∗) − d2 + βS∗ − λY∗ −2bδY∗ + b − λP∗

0 λY∗ b(2δY∗ − 1) − d3 + λP∗

 (16)

The characteristic equation of JE∗ has the form,

χ3 +D1χ
2 +D2χ +D3 = 0. (17)

By the Routh-Hurwitz criteria, the coexistence equilibrium E∗ is locally asymptotically stable if D1,D3 > 0
and ∆ = D1D2 − D3 > 0. If the coexistence equilibrium E∗ depends on a parameter, say δ in this case, then
it undergoes a Hopf bifurcation at the threshold value δ = δH if D1(δH) > 0,D2(δH) > 0,D3(δH) > 0;
∆ = D1(δH).D2(δH) −D3(δH) = 0 and ∂∆

∂δ (δH) , 0, see [18].

4.6.1. Normal form reduction of Hopf bifurcation using center manifold reduction
In this subsection we study theoretically the center manifold of (1) at a coexistence equilibrium point E∗

which is also a Hopf bifurcation point (a numerical example will be given in section 5). We will obtain the
normal form of this point by using center manifold theory. Poincaré’s method will be used to convert the
system into normal form. We introduce new variables x1 = S− S∗, x2 = P− P∗ and x3 = Y−Y∗. Then (1) can
be represented in matrix form as,

Ẋ = ÂX + B̂, (18)

where Â denotes the Jacobian matrix of the converted system (18). ÂX and B̂ denote the linear and nonlinear
parts of the new system respectively, where

X =

 x1
x2
x3

, Â =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

, B̂ =

 B1(x1, x2, x3)
B2(x1, x2, x3)
B3(x1, x2, x3)

,

ai j(i, j = 1, 2, 3), Bi(x1, x2, x3)(i = 1, 2, 3) are given in the Appendix. At the threshold parameter δ = δH, the
system (1) has a pair of purely imaginary eigenvalues. We consider two conjugate imaginary eigenvalues
ρ1,2 = ±iσ , ρ3 = ν where σ > 0 and ρ3 < 0. Next, we find an invertible transformation matrix T which
transforms the matrix Â to the form,

T−1ÂT =

 0 −σ 0
σ 0 0
0 0 ν

 ,
where,

T =

 1 0 1
c21 c22 c23
c31 c32 c33

 ,
where ci j(i = 2; 3, j = 1; 2; 3) are given in the Appendix. We perform a further transformation of the variables
X = TV, where V = (u, v,w)′ to achieve the normal form of (18). Then the V− form of corresponding to (18)
is,

dV
dt
= T−1ÂTV + F, (19)
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where

F = T−1B̂ =

 F1(u, v,w)
F2(u, v,w)
F3(u, v,w)

 .
Fi(u, v,w)(i = 1, 2, 3) (given in the Appendix) can be determined by converting Bi’s using the new variables
x1 = u+w, x2 = c21u+ c22v+ c23w, x3 = c31u+ c32v+ c33w. Next, on the basis of the center manifold theorem,
we determine the center manifold Wc(0, 0, 0) of the system (19) at the origin, which can be described as
follows:
Assume,

h(u, v) = a1u2 + a2uv + a3v2 +O((|u|, |v|)3),

Dh(u, v) = [2a1u + a2v, a2u + 2a3v] +O((|u|, |v|)2).
(20)

h(u, v) must satisfy (14) with

A =
(

0 −σ
σ 0

)
, B = ν, f (u, v,w) =

(
F1(u, v,w)
F2(u, v,w)

)
, 1(u, v,w) = F3(u, v,w).

Substituting the above in (14) gives

(
2a1u + a2v +O((|u|, |v|)2)

) {
− σv + F1(u, v,w)

}
+ (a2u + 2a3v +O((|u|, |v|)2)){

σu + F2(u, v,w)
}
− Bh(u, v) − 1(u, v, h(u, v)) = 0.

(21)

Putting w = h(u, v) in (21) and equating coefficients of u2,uv and v2 gives,

a1 =
bc2

31δ(c22 + c32) − αc2
21c32 + c21(c22c31(α + λ) + c31c32λ + β(−c32))

ν(c32(c23 − c21) + c22(c31 − c33))

+
c2c2

21c32r2 + c1r1(c22c31 − c21c32)

ν(c32(c23 − c21) + c22(c31 − c33))
,

a2 = 0,

a3 =
c32

(
(c22 + c32)(bc32δ + c22λ) + c2c2

22r2

)
ν(c32(c23 − c21) + c22(c31 − c33))

.

Thus substituting a1, a2, a3 in equation (20),

h(u, v) =
u2

(
c2c2

21c32r2 + c1r1(c22c31 − c21c32)
)

ν(c32(c23 − c21) + c22(c31 − c33))
+

c32v2
(
(c22 + c32)(bc32δ + c22λ) + c2c2

22r2

)
ν(c32(c23 − c21) + c22(c31 − c33))

+
u2

(
bc2

31δ(c22 + c32) − αc2
21c32 + c21(c22c31(α + λ) + c31c32λ + β(−c32))

)
ν(c32(c23 − c21) + c22(c31 − c33))

+O
(
(|u|, |v|)3

)
.

(22)

Substituting (22) in (19) yields,

u̇ = −σv + ξ11u2 + ξ12uv + ξ13v2 + ξ14u2v + ξ15uv2 +O
(
(|u|, |v|)4

)
,

v̇ = σu + ξ21u2 + ξ22uv + ξ23v2 + ξ24u2v + ξ25uv2 +O
(
(|u|, |v|)4

)
,

(23)

on the center manifold Wc(0) near the origin where ξi j (i = 1; 2, j = 1; 2; 3; 4; 5) are given in the Appendix.
Clearly, (0, 0) is an equilibrium point of the reduced system (23).
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Now, we use the method of normal forms to simplify the new system (23). For this we follow the procedure
mentioned in [19]. The Jacobian matrix of the system (23) near the origin has eigenvalues ±iσ. The right

and left eigenvectors of the matrix corresponding to the eigenvalue iσ are p =
(

i
1

)
and q = 1

2

(
−i
1

)
.

Second, we introduce the transformation, (
u
v

)
= px(t) + p̄x̄(t),

and obtain,
u(t) = ix(t) − ix̄(t), v(t) = x(t) + x̄(t). Using this transformation system (23) and multiplying the result from
the left with q yields,

ẋ = iσx
1
2
+ (iξ11 + ξ12 − iξ13 − ξ21 + iξ22 + ξ23) x2 +

1
2

(
(−iξ14 + ξ15 + ξ24 + iξ25) x2x̄

)
− (i (ξ11 + ξ13 + iξ21 + iξ23) xxx̄) +

1
2

(
(−iξ14 − ξ15 + ξ24 − iξ25) xx̄2

)
+

1
2

(iξ11 − ξ12 − iξ13 − ξ21 − iξ22 + ξ23) x̄2 + nonresonance cubic and higher-order terms.

(24)

Third, we introduce a near-identity transformation of the form,

z(t) = z(t) + q̂1z(t)2 + q̂2z(t)z̄(t) + q̂3z̄(t)2,

into system (24), approximate ˙̄z = −iz̄, and obtain

ż = iσz + zz̄
(
−iξ11 − iξ13 + ξ21 + ξ23 + iq̂2

)
+

1
2

z2(iξ11 + ξ12 − iξ13 − ξ21 + iξ22 + ξ23

− 2iq̂1σ) +
1
2

iz̄2 (
ξ11 + iξ12 − ξ13 + iξ21 − ξ22 − iξ23 + 2q̂3σ + 4q̂3

)
+

1
2

z2z̄(−iξ14 + ξ15 + ξ24

+ iξ25 − iξ11q̂2 + ξ12q̂2 − 3iξ13q̂2 + ξ21q̂2 + iξ22q̂2 + 3ξ23q̂2 + 2iξ11q̂1 + 2iξ11q̂3 − 2ξ12q̂3

+ 2iξ13q̂1 − 2iξ13q̂3 − 2ξ21q̂1 − 2ξ21q̂3 − 2iξ22q̂3 − 2ξ23q̂1 + 2ξ23q̂3 + 2iq̂1q̂2σ − 4iq̂1q̂2).

(25)

Fourth, we choose the q̂i, (i = 1, 2, 3) to eliminate the quadratic terms and obtain,

q̂1 =
ξ11 − ξ13 + ξ22 + i (−ξ12 + ξ21 − ξ23)

2σ
,

q̂2 = ξ11 + ξ13 + i (ξ21 + ξ23) ,

q̂3 =
−ξ11 + ξ13 + ξ22 + i (−ξ12 − ξ21 + ξ23)

2(σ + 2)
.

(26)

Finally, we substitute the q̂i in (25) and obtain the normal form

ż = iσz − κz2z̄, (27)

where κ is given in the Appendix.
We note that for the system (27) the first Lyapunov coefficient l1 (in the version implemented in MatCont

[9]) is equal to −2Re(κ). Hence the Hopf bifurcation is supercritical if κ > 0 and subcritical if κ < 0.

5. Unfolding of the Generalized Hopf bifurcation

In this section we briefly summarize the parts of [17], §8.3 which are relevant to our numerical com-
putations in §7.1. At a generalized Hopf bifurcation (also called Bautin bifurcation) the Jacobian matrix of
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system (1) has a pair of simple purely imaginary eigenvalues ζ1,2 = ±iω0, ω0 > 0, and the first Lyapunov
coefficient vanishes: l1 = 0. In this case, the restriction of the system to the center manifold of dimension
2 at the critical parameter values is locally smoothly orbitally equivalent to the one-dimensional complex
normal form

ż = iz + l2z|z|4 +O(|z|6). (28)

The second Lyapunov coefficient l2 is given in [17], eq. (8.23). More precisely, there is a smooth invertible
local coordinate transformation combined with a time reparametrization reducing the restriction of the
system (1) to the center manifold at the generalized Hopf bifurcation point to the form (28). If l2 , 0 then
the reduced system on the parameter-dependent center manifold is orbitally topologically equivalent to

ż = (β1 + i)z + β2z|z|2 + sz|z|4 +O(|z|6), (29)

with s = si1n(l2) and two unfolding parameters β1, β2.

Figure 1: Unfolding of the truncated normal form of the Generalized Hopf bifurcation. Figure reproduced
from [17], Fig. 8.7.

The truncated normal form of (29) is obtained by omitting the O(|z|6) terms. The unfolding of this
truncated normal form in the case l2 < 0 is displayed in [17], Fig. 8.7 and shown here in Figure 1.
The β2−axis is the Hopf bifurcation curve where H+, respectively H−, consists of subcritical, respectively,
supercritical Hopf bifurcations. The GH point is at the origin. The β1−axis is not a bifurcation curve. In
region 1 the system has a single stable equilibrium and no cycles at all. In the region 2 the system has an
unstable equilibrium and a stable limit cycle. In region 3 the system has a stable equilibrium, a stable cycle
and an unstable limit cycle. The two limit cycles collide and disappear at the curve of folds of cycles (LPC)
curve T.

In [17] it is proved that the unfolding of the truncated normal form is also the topological normal form
of the Generalized Hopf bifurcation.
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6. Unfolding of the fold-Hopf bifurcation

In this section we briefly summarize the parts of [17], §8.5 which are relevant to our numerical com-
putations in §7.1. The fold-Hopf bifurcation is a codimension 2 bifurcation which is also called zero-Hopf
(ZH) bifurcation, saddle-node Hopf bifurcation or Gavrilov-Guckenheimer bifurcation. At a fold-Hopf
bifurcation the Jacobian matrix of system (1) has one zero eigenvalue ζ1 = 0 and a pair of simple purely
imaginary eigenvalues ζ2,3 = ±iω0, ω0 > 0. In this case, the system is locally orbitally smoothly equivalent
near the origin to the complex normal form

ξ̇ = β1 + ξ
2 + s|ζ|2 +O(∥ξ, ζ, ζ̄∥4),

ζ̇ = (β2 + iω1)ζ + (θ + iν)ξζ + ξ2ζ +O(∥ξ, ζ, ζ̄∥4),
(30)

ξ ∈ R1, ζ ∈ C1 are new variables; β1 and β2 are new parameters; θ, ν, ω1 are smooth real-valued functions
of β = (β1, β2). The normal form coefficients of the ZH bifurcation are s, θ0 = θ(0, 0) and E0. E0 does not
appear in (30) but a negative value of E0 indicates that the orbits of the systems must be computed in reverse
time. In coordinates (ξ, ρ, φ) with ζ = ρeiφ, the (truncated) normal form of (30) without O(∥.∥4)-terms can
be written as

ξ̇ = β1 + ξ
2 + sρ2,

ρ̇ = ρ(β2 + θξ + ξ
2),

φ̇ = ω1 + ϑξ.

(31)

To understand the bifurcations in (31), one needs to study only the planar system for (ξ, ρ) with ρ ≥ 0:

ξ̇ = β1 + ξ
2 + sρ2,

ρ̇ = ρ(β2 + θξ + ξ
2).

(32)

System (32) is also called the truncated amplitude system.

Figure 2: Unfolding of the truncated amplitude system of the fold-Hopf bifurcation in the case (s = 1, θ <
0),([17],Fig. 8.16)
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We will restrict to the case s = 1, θ < 0,E0 < 0. The unfolding of (32) in the case (s = 1, θ < 0,E0 > 0) is
displayed in [17], Fig. 8.16 and shown here in Figure 2. The β2−axis is the generic fold bifurcation curve
where S+ and S− are two branches of the fold curve, separated by the point ZH at the origin. Crossing the
branch S+ gives rise to an unstable node and a saddle,while passing through S− implies a stable node and a
saddle. H+, H− are subcritical and supercritical Hopf bifurcation curves, respectively. Along the curve H+
new equilibria of (32) are born into region 3 of Figure 2. Because of the time reversal, they are unstable if
E0 > 0 and stable if E0 < 0 and correspond to limit cycles of (31). The curve T = {(β1, β2) : β1 < 0, β2 = 0} is
a Hopf bifurcation curve of (32) which corresponds to a Neimarck-Sacker bifurcation curve of (31). We can
therefore expect to find invariant tori of (31) near T.
In coordinates (ξ, ρ, φ) system (30) also can be written as

ξ̇ = β1 + ξ
2 + sρ2 + Θβ(ξ, ρ, φ),

ρ̇ = ρ(β2 + θξ + ξ
2) +Ψβ(ξ, ρ, φ),

φ̇ = ω1 + ϑξ + Φβ(ξ, ρ, φ),

(33)

where Θβ(ξ, ρ, φ),Ψβ(ξ, ρ, φ) = O((ξ2 + ρ2)2), and Φβ(ξ, ρ, φ) = O(ξ + ρ)2 are smooth functions that are
2π-periodic in φ. For sufficiently small β, system (33) exhibits the same local bifurcations in a small
neighborhood of the origin in the phase space as (31). This system has at most two equilibria, which appear
via the fold bifurcation on a curve that is close to S, and undergo a Hopf bifurcation at a curve close to H,
thus giving rise to a unique limit cycle. If sθ < 0, this cycle loses stability and generates a torus via the
Neimark-Sacker bifurcation at some curve close to the curve T.

7. Computational results & discussion

Definition Parameters Values (in per day)
Reproduction rate of prey r1 1.5

Density factor in prey c1 0.1
Predation rate of prey α 0.5

Natural death rate of prey d1 0.2
Reproduction rate of predator r2 0.5

Density factor in predator c2 0.1
Energy transfer rate in predator β 0.2

Disease transformation rate λ 0.5
Disease recovery rate b 0.2

Density factor in recovery δ -
Death rate of susceptible predator d2 0.5

Death rate of infected predator d3 0.2

Table 1: Parameter values

In this section we compare our analytical results with numerical results in the case of the biologically
plausible parameter set in Table 1. The parameter δ is variable. Figures are drawn with Mathematica
and Matlab. For the numerical continuation of equilibria and periodic orbits we use the Matlab-based
software MatCont 7.3 [9]. We start with computing orbits for δ = 0.02/day from several starting points and
observe that all trajectories converge to the same coexistence equilibrium E∗ = (6.12077, 0.763768, 4.52902),
which suggests that it has a large domain of attraction, see Figure 4. Using δ as a bifurcation parameter,
we perform the numerical continuation of the coexistence equilibrium. We plot D1,D3 and D1D2 − D3 as
defined in (17) as a function of δ. We find that for δ ∈ [0, δH

≈ 0.354594] the three species coexist, see
Figure 5. For δ > δH the coexistence equilibrium loses stability. During the continuation, a pair of complex
eigenvalues of the Jacobian matrix crosses the imaginary axis at δ = δH, implying that stability is lost
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through a Hopf bifurcation. Ecologically, there is a threshold value for the parameter associated with the
density factor in recovery, below which a stable coexistence of all the species appears. δH is nothing but the
root of the function D1D2 − D3. At δ = δH, trajectories of the system (1) start oscillating periodically, i.e.,
the biomass of all the species becomes unstable. From (27), Re(κ) = −0.0491876 and Im(κ) = 0.0683601 at
δ = δH which implies that the Hopf bifurcation is subcritical. The first Lyapunov coefficient computed by
MatCont is found to be 1.238138e × 10−02 which confirms the subcriticality of the Hopf point. Ecologically,
the appearance of a subcritical Hopf bifurcation means that the oscillating periodic solutions are orbitally
unstable. At δ = 0.354594/day we plot the center manifold of the system neglecting the order terms
O((|u|, |v|)4), see (Figure 7). Continuation of the periodic orbits with free parameter δ shows a saddle-node
bifurcation of limit cycles (Limit point of cycles, LPC) at δ = δLPC

≈ 0.3415959/day where the periodic orbits
gain stability (Figure 6 and Figure 8(b)). Further continuation of the stable periodic orbits leads to the
detection of several period doubling points, see Figure 8(a).

7.1. Codimension 2 bifurcations

Starting from the Hopf bifurcation point where δ = δH, we compute a Hopf bifurcation curve with δ and
λ as the two free parameters (Figure 9). This leads to the detection of a generalized Hopf bifurcation (de-
noted as GH) at (δ ≈ 0.304611;λ ≈ 0.376872) and a fold-Hopf bifurcation at ZH (δ ≈ 0.293428;λ ≈ 0.071447).
The equilibrium state vectors at the GH and ZH bifurcation points are (6.989579, 0.503126, 3.453357) and
(4.069406, 1.379178, 5.136903) respectively. The normal form coefficient of the GH bifurcation is l2 =
−1.282226× 10−03 and the ZH bifurcation has normal form coefficients are s = 1, θ = −7.217617−01,E0 = −1.
At the GH point the first Lyapunov coefficient vanishes and the nature of the Hopf bifurcation changes
from subcritical to supercritical. In Figure 9 we compute a LPC curve starting from the GH point with the
same free parameters δ and λ. In region II, the system (1) has a unique stable limit cycle. System (1) has
a stable equilibrium surrounded by two limit cycles of opposite stability in region I (region 3 in Figure 1)
that collide and disappear at the LPC curve. At the ZH bifurcation point the projections of the Hopf curve
and the saddle-node curve on the parameter plane are tangential. Starting from the bifurcation point ZH,
we also compute a Neimark-Sacker curve with the same free parameters (Figure 9). In our case (E0 < 0) by
the time reversal there are stable cycles in region 4 (Figure 2).

We note that the curve T in Figure 1 corresponds to the LPC curve in Figure 9. Also, the curve
{(β1, β2) : β1 < 0, β2 = 0} in Figure 2 corresponds to the Neimark-Sacker curve in Figure 9. Finally, the
existence of a Neimark-Sacker curve suggests the existence of tori. In a numerical integration with starting
point (δ ≈ 0.293428, λ ≈ 0.072447) near the ZH point we indeed observe convergence to a stable torus, see
Figure 10.
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Figure 3: Phase portrait of the center manifold with parameters in Table 1 except for r1 = 0.2/day and
δ = 0.02/day.
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(a) (b)

(c) (d)

Figure 4: Time series and phase diagram for δ = 0.02/day (other parameters as in Table 1).
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Figure 5: Plot of D1,D3 and D1D2 −D3 as functions of density factor δ.
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Figure 6: Bifurcation diagram of system (1) near the equilibrium E∗with respect to the bifurcation parameter
δ ( δH

≈ 0.354594, δLPC
≈ 0.3415959). H and the left LPC denote the same point, see the caption of Figure 8.

Figure 7: Phase diagram of the center manifold equations at δ = 0.354594/day neglecting the order terms
O((|u|, |v|)4).
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(a) (b)

Figure 8: (a) Period doubling bifurcations with respect to bifurcation parameter δ. Red coloured lines in (a)
depict Period doubling points. (b) Period of the cycle versus δ. We note that in MatCont a Hopf bifurcation
point is often rediscovered as an LPC curve, when a branch of periodic orbits is started from the Hopf point.

Figure 9: Two-dimensional projection of a Hopf bifurcation curve with free parameters δ and λ. H+ and
H− denote subcritical and supercritical Hopf bifurcations, respectively.
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Figure 10: Formation of a torus near a ZH point.

8. Conclusion

In this article, we have proposed and investigated an epidemiological predator-prey interactive system.
In this study, the disease affects only the predator species. The predator species is subdivided into suscep-
tible and infected. The disease is assumed to be transmitted horizontally, and the recovery from the disease
is assumed to be density-dependent. The asymptotic stability of different steady states of the system (1) is
discussed both analytically and numerically. In each of the three cases (i) r1 = d1, r2 < d2, (ii) r2 = d2, r1 < d1,
and (iii) r1 = d1, r2 = d2, the system (1) has a non-hyperbolic trivial equilibrium point E0. So the linearization
technique is not applicable to describe the stability nature near E0. We compute the center manifolds of E0
and the flow in these manifolds. In the cases (i) and (ii) E0 turns out to be always unstable. In the case (iii)
we reduce the stability of E0 to that of the origin in a 2D problem. We also perform a numerical study using
the set of parameters in Table 1. Under numerical continuation of a coexistence equilibrium of (1) with free
parameter δ we observe that the equilibrium loses its stability at δH

≈ 0.354594/day and starts oscillating
due to a Hopf bifurcation (Figure 6). This bifurcation is subcritical, which implies that unstable periodic
orbits are born there. We compute the dynamical equations (23) in the two-dimensional center manifold
of (1) at the Hopf point (δ = δH) and draw the phase portrait of (23) neglecting the fourth order terms. We
also symbolically compute (a version of) the normal form coefficient of the Hopf bifurcation and compare
it with the numerically computed normal form coefficient in MatCont.

The numerical continuation of a Hopf bifurcation curve from the Hopf coexistence equilibrium for
δ = δH with δ and λ as free parameters, leads to the detection of a Generalized Hopf (GH) bifurcation
point and a Zero-Hopf (ZH) bifurcation point (Figure 9). We briefly recall the mathematical results about
unfoldings of GH and ZH bifurcation points in the cases of the normal form coefficients that we obtained.
We apply these results to our situation and compute the predicted new bifurcation objects numerically. This
includes a curve of folds of cycles (LPC) rooted in the GH point, a curve of Neimark-Sacker bifurcations
rooted in the ZH point, and a stable invariant torus near the ZH point.
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Appendix

Expressions of ai j and Bi(x1, x2, x3) in (18):

a11 = r1 (1 − 2c1 (S∗ + x1)) − d1 − α (P∗ + x2) ,
a12 = −α (S∗ + x1) ,
a21 = β (P∗ + x2) ,
a22 = r2 (1 − 2c2 (P∗ + x2)) − d2 + βS∗ + βx1 − λx3 − λY∗,
a23 = −2bδx3 − 2bδY∗ + b − λP∗ − λx2,

a32 = λ (x3 + Y∗)
a33 = 2bδx3 + 2bδY∗ − b − d3 + λP∗ + λx2,

a13 = a31 = 0,

B1(x1, x2, x3) = −c1r1x2
1 − αx2x1,

B2(x1, x2, x3) = −bδx2
3 − c2r2x2

2 + βx1x2 − λx3x2,

B3(x1, x2, x3) = bδx2
3 + λx2x3.
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Expressions of ci j in transformation matrix T:

c21 = −
a23a31

(
a23a32 − a22a33 + σ2

)
+ a21

(
a22

(
a2

33 + σ
2
)
− a23a32a33

)
a2

33σ
2 + 2a23a32σ2 + a2

22

(
a2

33 + σ
2
)
+ a2

23a2
32 − 2a22a23a32a33 + σ4

,

c22 =
σ
(
a21

(
a2

33 + a23a32 + σ2
)
− a23a31 (a22 + a33)

)
a2

33σ
2 + 2a23a32σ2 + a2

22

(
a2

33 + σ
2
)
+ a2

23a2
32 − 2a22a23a32a33 + σ4

,

c23 =
a21 (ν − a33) + a23a31

ν (ν − a33) + a22 (a33 − ν) − a23a32
,

c31 = −
a31

(
a33σ2

− a22a23a32 + a2
22a33

)
+ a21a32

(
a23a32 − a22a33 + σ2

)
a2

33σ
2 + 2a23a32σ2 + a2

22

(
a2

33 + σ
2
)
+ a2

23a2
32 − 2a22a23a32a33 + σ4

,

c32 =
σ
(
a31

(
a2

22 + a23a32 + σ2
)
− a21a32 (a22 + a33)

)
a2

33σ
2 + 2a23a32σ2 + a2

22

(
a2

33 + σ
2
)
+ a2

23a2
32 − 2a22a23a32a33 + σ4

,

c33 =
a31 (ν − a22) + a21a32

ν (ν − a33) + a22 (a33 − ν) − a23a32
,

F1(u, v,w) = −
c22

(
bδ(c31u + c32v + c33w)2 + λ(c21u + c22v + c23w)(c31u + c32v + c33w)

)
c21c32 − c22c31 + c22c33 − c23c32

+
(c22c33 − c23c32)

(
−c1r1(u + w)2

− α(u + w)(c21u + c22v + c23w)
)

c21c32 − c22c31 + c22c33 − c23c32

+
c32

(
β(u + w)(c21u + c22v + c23w) − bδ(c31u + c32v + c33w)2

)
c21c32 − c22c31 + c22c33 − c23c32

−
c2r2(c21u + c22v + c23w)2 + λ(c21u + c22v + c23w)(c31u + c32v + c33w)

c21c32 − c22c31 + c22c33 − c23c32
,

F2(u, v,w) =
(c21 − c23)

(
bδ (c31u + c32v + c33w) 2 + λ (c21u + c22v + c23w) (c31u + c32v + c33w)

)
−c22c31 + c21c32 − c23c32 + c22c33

+
(c23c31 − c21c33)

(
−c1r1(u + w)2

− α(u + w) (c21u + c22v + c23w)
)

−c22c31 + c21c32 − c23c32 + c22c33

+
(c33 − c31)

(
β(u + w) (c21u + c22v + c23w) − bδ (c31u + c32v + c33w) 2

)
−c22c31 + c21c32 − c23c32 + c22c33

−

(c33 − c31)
(
λ (c21u + c22v + c23w) (c31u + c32v + c33w) − c2r2 (c21u + c22v + c23w) 2

)
−c22c31 + c21c32 − c23c32 + c22c33

,

F3(u, v,w) =
c22

(
bδ (c31u + c32v + c33w) 2 + λ (c21u + c22v + c23w) (c31u + c32v + c33w)

)
−c22c31 + c21c32 − c23c32 + c22c33

+
(c21c32 − c22c31)

(
−c1r1(u + w)2

− α(u + w) (c21u + c22v + c23w)
)

−c22c31 + c21c32 − c23c32 + c22c33

−

c32

(
β(u + w) (c21u + c22v + c23w) − bδ (c31u + c32v + c33w) 2

)
−c22c31 + c21c32 − c23c32 + c22c33

−

c32

(
λ (c21u + c22v + c23w) (c31u + c32v + c33w) − c2r2 (c21u + c22v + c23w) 2

)
−c22c31 + c21c32 − c23c32 + c22c33

.
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Expressions of ξi j in (24):

ξ11 =
c21

(
αc23c32 − αc22c33 + βc32 − c31 (c22 + c32)λ

)
− bc2

31 (c22 + c32) δ
(c21 − c23) c32 + c22 (c33 − c31)

+
(c23c32 − c22c33) c1r1 − c2

21c32c2r2

(c21 − c23) c32 + c22 (c33 − c31)
,

ξ12 =
c2

32(2bc31δ + c21λ) + 2c2c21c22c32r2 + c2
22(c31λ + αc33)

c22(c33 − c31) − c32(c21 − c23)

+
c22c32(2bc31δ − β + c21λ + α(−c23) + c31λ)

c22(c33 − c31) − c32(c21 − c23)
,

ξ13 =
bc22c2

32δ + bc3
32δ + c2c2

22c32r2 + c2
22c32λ + c22c2

32λ

−c21c32 + c22c31 − c22c33 + c23c32
,

ξ21 =
(c21 − c23)

(
bc2

31δ + c21c31λ
)

c21c32 − c22c31 + c22c33 − c23c32
+

(c1r1 + αc21) (c23c31 − c21c33)
−c21c32 + c22c31 − c22c33 + c23c32

−

(c31 − c33)
(
bc2

31δ + c2c2
21r2 − βc21 + c21c31λ

)
−c21c32 + c22c31 − c22c33 + c23c32

,

ξ22 =
(c21 − c23)(2bc31c32δ + c21c32λ + c22c31λ)

c21c32 − c22c31 + c22c33 − c23c32
+

αc22(c23c31 − c21c33)
−c21c32 + c22c31 − c22c33 + c23c32

+
(c33 − c31)

(
−2bc31c32δ − 2c2c21c22r2 − λ(c21c32 + c22c31) + βc22

)
c21c32 − c22c31 + c22c33 − c23c32

,

ξ23 =
(c21 − c23)

(
bc2

32δ + c22c32λ
)

c21c32 − c22c31 + c22c33 − c23c32
−

(c31 − c33)
(
bc2

32δ + c2c2
22r2 + c22c32λ

)
−c21c32 + c22c31 − c22c33 + c23c32

.

Expression of κ in (27):

κ =
i

2σ(σ + 2)
(4ξ2

13σ
2
− 4ξ2

23σ
2 + ξ14σ

2 + iξ15σ
2 + 4iξ13ξ21σ

2
− 2ξ13ξ22σ

2
− 2iξ21ξ22σ

2 + 8iξ13ξ23σ
2

− 4ξ21ξ23σ
2
− 2iξ22ξ23σ

2 + iξ24σ
2 + ξ12(iξ13

(
2σ2 + σ − 2

)
− ξ23

(
2σ2 + σ − 2

)
+ ξ21(2 − σ(2σ + 5))

− 2iξ22σ) − ξ2
12σ + 8ξ2

13σ − 2ξ2
21σ + ξ

2
22σ − 8ξ2

23σ + 2ξ14σ + 2iξ15σ + 6iξ13ξ21σ − ξ13ξ22σ − 5iξ21ξ22σ

+ 16iξ13ξ23σ − 6ξ21ξ23σ − iξ22ξ23σ + 2iξ24σ − ξ25(σ + 2)σ + 2ξ2
11(σ + 1) + ξ11(iξ12(σ(2σ + 5) − 2)

+ σ (ξ13(4σ + 6) − ξ22(2σ + 5) + 2iξ23(2σ + 3) + 4iξ21) + 2 (ξ22 + 2iξ21)) − 2ξ2
13 − 2ξ2

21 + 2ξ2
23

+ 2ξ13ξ22 + 2iξ21ξ22 − 4iξ13ξ23 + 2iξ22ξ23),

Re(κ) = −
1

2σ(σ + 2)
(ξ15σ

2 + 4ξ13ξ21σ
2
− 2ξ21ξ22σ

2 + 8ξ13ξ23σ
2
− 2ξ22ξ23σ

2 + ξ24σ
2
− ξ12(2ξ22σ

− ξ13

(
2σ2 + σ − 2

)
) + ξ11

(
ξ12

(
2σ2 + 5σ − 2

)
+ 4ξ21(σ + 1) + 2ξ23σ(2σ + 3)

)
+ 2ξ15σ

+ 6ξ13ξ21σ − 5ξ21ξ22σ + 16ξ13ξ23σ − ξ22ξ23σ + 2ξ24σ + 2ξ21ξ22 − 4ξ13ξ23 + 2ξ22ξ23),

Im(κ) =
1

2σ(σ + 2)
(4ξ2

13σ
2
− 4ξ2

23σ
2 + ξ14σ

2
− 2ξ13ξ22σ

2
− 4ξ21ξ23σ

2
− ξ25σ

2 + ξ11(ξ22

(
−2σ2

− 5σ + 2
)

+ 2ξ13σ(2σ + 3)) − ξ12

(
ξ21

(
2σ2 + 5σ − 2

)
+ ξ23

(
2σ2 + σ − 2

))
− ξ2

12σ + 8ξ2
13σ − 2ξ2

21σ

+ ξ2
22σ − 8ξ2

23σ + 2ξ14σ − ξ13ξ22σ − 6ξ21ξ23σ − 2ξ25σ + 2ξ2
11(σ + 1) − 2ξ2

13 − 2ξ2
21

+ 2ξ2
23 + 2ξ13ξ22).
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