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On Stevi¢-Sharma Operator from Qx(p, q) Space
to Zygmund-Type Space

Zhitao Guo?

?School of Science, Henan Institute of Technology, Xinxiang, 453003, China

Abstract. The aim of this paper is to investigate the boundedness and compactness of Stevi¢-Sharma

operator Ty, v, from Qx(p, ) and Qo (p, 9) spaces to Zygmund-type space and little Zygmund-type space.
We also give the upper and lower estimations for the norm of Ty, 4, ¢

1. Introduction

Denote by ID the open unit disk in the complex plane C, H(ID) the space of all analytic functions on D,
and S(ID) the family of all analytic self-maps of ID. Let IN be the set of positive integers and INy = IN U {0}.
Let ¢ € S(ID), ¢ € H(ID), the weighted composition operator is defined by

Wyo)2) = 9(2)f(9(z), f€HD).

In particular, we can get the composition operator C, and multiplication operator My when ¢ = 1 and
@(z) = z, respectively. For the theory of (weighted) composition operators on analytic function spaces,
we refer to [2]. The differentiation operator D, which is defined by (Df)(z) = f'(z), f € H(ID), plays an
important role in operator theory and dynamical system.

In [32, 33], Stevi¢ et al. introduced the following so-called Stevi¢-Sharma operator:

Ty, 020 )@) = P12 f(9(2) + P22 f (9(2)),

f € HD),
where {1, ¢, € H(ID) and ¢ € S(ID). By taking some specific choices of the involving symbols, we can easily
get the general product-type operators:
MyCop =Typp,  CoMy =Tyopop,  MyD =Toyia, DMy =Ty pa,
DCy, =Top,p, MyCyD =Toy,e,

CoD = To1p,
CoMyD = Toyop,p,
DCyMy = Ty (yrop)er (wog)p-

MyDCy = To gy g,
DMyCo =Ty ygrpr  CoDMy = Tyroppogps
Some of these operators had been investigated before introduction of Stevi¢-Sharma operator for exam-
plein [6, 13, 14, 21, 27-29]. Recently, the research of Ty, y,, between analytic function spaces has aroused
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the interest of experts. Under some assumptions, Stevi¢ et al. [32, 33] characterized the boundedness, com-
pactness and essential norm of Ty, 4, , on the weighted Bergman space. Liu et al. [16-18, 38] studied the
boundedness and compactness of Ty, y, (, from several specific analytic function spaces to the weighted-type
space or Zygmund-type space. Wang et al. [34] considered the differences of two Stevié-Sharma operators
and investigated its boundedness, compactness and order boundedness between Banach spaces of analytic
functions. Some more related results can be found (see, e.g.,[1, 3-5, 7] and the references therein).

A positive continuous function ¢ on [0,1) is called normal if there exist two positive numbers s and ¢
with 0 <s < t,and 6 € [0, 1) such that (see[24])

% is decreasing on [6,1), lim (;P_(?)S _o:

(1‘1)_(7’}),)[ is increasing on [0, 1), 1r1_r)rl1 ({P_(r’),)t _

Let u : ID — (0, +00) be a normal function satisfying u(z) = u(|zl). The Bloch-type space, denoted by B*,
consists of all f € H(ID) such that

I fll: = 1f(O)] + sup H@)If (@) < co.

B is a Banach space under the above norm. Moreover, 8* induces the a-Bloch space 8% when u(z) =
(1 - [z%)*, a > 0. In particular, we get the classical Bloch space Bif a = 1.
An f € H(ID) is said to belong to Zygmund-type space Z,, if

Iflliz, = 1f©) +1f(0) + sup u(z)|f " (2)| < co.

zeD

Under the above norm, Z,, becomes a Banach space. The little Zygmund-type space Z,,0 consists of those
functions f in Z,, satisfying

lginﬂ p@)If" @) =0,

and it can be shown that Z,¢ is a closed subspace of Z,. Some results on Bloch-type space and Zygmund-
type space and operators on them can be found, for instance, in [4, 7, 9-12, 14, 19, 22, 23, 26, 30, 31, 38—40].

Let K : [0,00) — [0,0) be a nondecreasing continuous function and g(z,a) the Green function with
logarithmic singularity at 4, i.e., g(z,a) = log m, where ¢,(z) = {=. fora € D. Forp >0, g > -2, Qx(p,q)
space consists of those f € H(ID) such that (see [20, 35])

1 e = LFO)1 +sup fD I @P 1 - 1z)K(g(z, a))dA(z) < oo,

aeD

where dA denotes the normalized Lebesgue area measure in ID. Under the norm || - [lg .9, Qx(p,q) is a
Banach space when p > 1. An f € H(ID) is said to belong to Qxo(p, q) space if

lim L If @)1 - |z|2)”K(g(z,a))dA(z) =0.

la|l—1

Throughout the paper we assume that (see [35])

1
f (1—r*)I1K(- log r)rdr < oo,
0

since otherwise Qk(p, q) consists only of constant functions. Recently, many researchers have studied various
concrete operators from or to Qk(p, g) space. For instance, Kotilainen [8] characterized the boundedness and
compactness of composition operator between 8% and Qx(p, q) spaces. The boundedness and compactness
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of an integral-type operator from Qx(p, q) space to Bloch-type space and Zygmund-type space were studied
by Pan [22] and Ren [23], respectively. Some more related results can be found (see, e.g.,[9, 15, 36, 37] and
the references therein).

Inspired by the above results, this paper is devoted to investigating the boundedness and compactness
of Stevi¢-Sharma operator Ty, 4, from Qx(p,q) and Qgo(p,q) spaces to Zygmund-type space and little
Zygmund-type space.

Throughout the paper we use the letter C to denote a positive constant whose value may change at each
occurrence. The notation abbreviation X < Y or Y 2 X for nonnegative quantities X and Y means that there
is a positive constant C such that X < CY. Moreover, if both X < Y and Y < X hold, then one says that
X=Y.

2. Auxiliary results
In this section, we state several auxiliary results which will be used in the proofs of the main results.

Lemma 2.1. [25] Let f € B%, 0 < a < o0. Then

I f1ls2, 0O<a<l,
If@Is:lfllsln =, a=1,
Wﬂfﬂﬂw, a>1.

The following lemma is well-known (see [40]).
Lemma 2.2. Suppose a > 0,n € N and f € B*. Then

Ifllge = IFQO)] + /()] + -+ + [f*DO)] + sup(l — [z)**" 1 f*)(z)|.

zeD

Lemma 2.3. [35] Let p > 0, q > —2 and K be a nonnegative nondecreasing function on [0, o). For f € Qx(p, q), we
+2
have f € B and

||f||84%2 < flloxp.g)-

Lemma 2.4. [39] Fix 0 < o < 1 and let {fi}xen be a bounded sequence in B* which converges to zero uniformly on
compact subsets of ID as k — oco. Then we have

hm sup |fr(z)| =

RGPS »)

By a standard arguments in [2, Proposition 3.11], which is omitted here, we can get the following lemma.
Lemma 2.5. Let p > 0, ¢ > -2 and K be a nonnegative nondecreasing function on [0, c0). Then the operator
Ty, - Qr(p, q) (0r Qro(p, ) — ZH is compact if and only if Ty, y, o : Qx(p,q) (or Qko(p,q)) — L, is bounded
and for each sequence { f }xew which is bounded in Qk(p, q) (or Qko(p, q)) and converges to zero uniformly on compact
subsets of ID as k — oo, we have ||Ty, y,,¢ fillz, — 04ask — co.

The lemma below can be obtained by the same method as [19, Lemma 1].

Lemma 2.6. A closed set K in Z, is compact if and only if it is bounded and satisfies

lim sup p(z)|f"(z)l = 0
|z]—=1 fek
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3. Main results

In this section, our main results are stated and proved. For simplicity of notation, we set

Ao(z) = @)WY (2)),
A1(2) = u@29] @)@’ (2) + Y1(2)9” @) + Py )],
Ax(2) = u@I1 (29’ @) + 29529’ (2) + Pa(2)9” ()],
A3(2) = p@2 )¢ (),
E := [1(0)] + [} 0)],
Eq := [2(0)] + [¥5(0)] + [1(0)¢’ (O)],
E; := [2(0)¢’ (0)l,
and
M; :=sup =L e
b (1= lp@P) 7
N;:= lim Ai@)
O (1= lp@P) T
R]- = lim A]'(z)

lzj—1 (1- |§0(Z)|2)¥_1+]
where j =0,1,2,3.

Theorem 3.1. Lety1, ¢, € H(D), ¢ € S(ID),p > 0, > =2 such that q+2 > p and K be a nonnegative nondecreasing
function on [0, co) such that

1 -
f K(~log r)(1 - n™nt=14(log %)A D dr < oo, (1)
0

where xo(x) denotes the characteristic function of the set O. Then the following statements are true.
Q) Ifqg+2>p, then Ty, y, : Qx(p, q) (or Qro(p,q)) — L is bounded if and only if Mo, M1, M, M3 < co.
Moreover, the following asymptotic relations hold:

Mo + My + Mz + Ms < Ty, s,0ll0cp.0) o Quop.a)—2,
2
E,
S Mo+ M +Mp+Ms+ ) . 2
0 (1-lp©)R)r

(i) If g +2 = p, then Ty, y, o : Qx(p,q) (0r Qxo(p,q)) — Ly is bounded if and only if My, My, M3 < oo and

e
My := sup Ap(z ln— <
R Aol “lpeP =7

Moreover, the following asymptotic relations hold:

My + My + Mz + My 5 1Ty, yopllonpa) or Quotpan—~z.
Ej
P(O)P)!

2
e
< Mi+ My + Mj + My + Egl +
1 2 3 4 On1—|§0(0)|2 ;(1_|
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(iii) If g + 2 < p, then Ty, y,e : Qx(p,q) (or Qro(p,q)) — Ly is bounded if and only if 1 € Z, and

er MZr M3 < ©0.
Moreover, the following asymptotic relations hold:

Lo+ My + Mz + M3 < Ty, p0llocps o Qcopan-2.

< Lo+ M +Mp+M;+E Zz“ E
S Lo+ My + My + M3+ Eg + RPN
(1= Ip(O)P)

where Ly := sup,., Za(z).

(4)

Proof. (i) Suppose that g +2 > p and Ty, g, : Qx(p,q) (or Qko(p,q)) — <, is bounded. Note that if

Ty, 409 : Qx(p,q) = Z, is bounded, then Ty, y, , : Qxo(p,q) — L, is bounded, and

1Ty pzpllocpa-z. < Ty ellopa-z.:
Taking the function f(z) = 1 € Qko(p, q), we get

Ly := supAo(z) < ||T¢],¢Z,(Pl||zp < ”Tl/}l,1P2,¢’||QK,0(}7,!1)—>Z“ < 00,
zeD

Likewise, using the function f(z) = z € Qko(p, g) we obtain
sup p(2)lY] (@)(2) + 241 (29" (2) + 19" @) + 5 @ < 1Ty, pmp?llz, < M Tpipapllowpa-z,
z€D

which along with (6), the triangle inequality and the fact that |[p(z)| < 1 implies that

Ly == sup A1(2) S 1Ty, 0llopa—z, < -
zelD

Taking the functions f(z) = 272 and f(z) = % € Qko(p, q), in the same manner we have

L, := SupAz(Z) < ||T1P1r1l’zr<P”QK,0(P,q)—>Zp < 00,
zeD

and

Ls := sup A3(2) < Ty, pm0llQeopa—z, < -
zelD

Forw € D, set
q+2 3q+6
Tt I-lpw)P T T8 (1-lp@)P)?

fouw(z) = — o = o — =
T+l -pnr S +21-p@3z) "

TS A-lp@PP | (- lp@py

243 (1 @) (- "

Using the condition (1), we have fy., € Qxo(p, 9) (see [8]). By a direct calculation, we obtain

fow@@)) = f,(@@)) = fo(@@)) =0,

and

ﬁ+10 1

fouwlp@)) = - :

(7 + DOEE + 2 +3) - o)) 7

(5)
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which along with the boundedness of Ty, 4, , implies that

1Ty p20llokema—z0 2 I Typne forllz,
> 1(W)|[(Tyy . for) @)|
Ag(w)

= —ﬂ—l. (10)
1 = lp@)P)7
Thus
Mo < 1Ty gz pllocpa-z, < - (1)
For w € D, take the function
9+2 q+2 39+6
@ = I T -lpw) G AT (1 jp(w)P)
' Zi20-p@pr)t (G +EE+3) 1-p@) T
3q+6
Tt A-le@Py | (A -le@)P)t
+2 _ 2 — g2 7
T A-p@r) T (11— @)
then fi,, € Qko(p, g) by using the condition (1). Moreover, we have
fralp@)) = f7,(p)) = fi(pw)) =0,
and
TS W)
fll,w((P(w)) = - qf_2 M 4
T H3A-le@)P) 7
which along with the boundedness of T, 4, , implies that
”TLPLLPL(PHQK,O(%Q)—’Z# be ”Tl/)l,lpz,(()fl,w”.z“
> p(@)|(Tps oip fri) ' @)|
Ar(@)lp(@)
, (12)
1= lp@w)P) 7
From (7) and (12), we have
weD (1 — |p(w)P) *
i<t (1 - lp@)P) 7 z<ip@i<t (1 = |pw)P?) 7
e I
S(é) " sup Ai(w)+2 sup _A@lp@l -
3 -2
lp(w)l<3 Ip@)<1 (1 = |p(w)[?)

Sl|T¢1,¢2,¢||QK,0(P#)—’ZH :
It follows that

My S ITy, popllokpa—z, < - (13)
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For w € ID, consider the function
q+2 3g+6
Tt d-lp@)P Tt - Jp@)P)?

— q+:

+2 q+2 +2 _ g2
=431 -pz)r L +3 (11—

fow(z) =~

A0 -lp@P? | (- lp@py
43 (1-p@p)7 2 (1-p@p) P

Then f>, € Qko(p, 9) and

—
Frolp@) = f 00D = @) =0, f(p(w) = 2 — PO
7 T3 —lp@)P) 7

Since Ty, y,,p : Qro(p,q) — <y is bounded, we have
1Ty ppllowea-z, 2 1Tyupme follz,
> (@)|(Ty g0 fr0)” ()|
As(w)lg(w)P?

(1 - lp()P) 7
From (8) and (14) it follows that
Ax(w)
Sup ——————
weD (1 — |(P(w)|2)7+
pwl<d (1= lp@)P) 7 ™ Lelp@i<t (1= |p(w)?) 7+
2 1 ~ X 2
5(%) P sup Ax(w)+4 sup L@(wl
lp(w)l< Lp@)<t (1 — p(@)) »
SHTL/M A2p ”QK,U(P#)_’Z‘LL .
Consequently,
M, < ”Tll’lfwzrfP'|QK,0(PJ1)—>ZH < ©o. (15)
Set
P e € ) € ) A Ll V0
' 1-p@D7  (1-pw)7 "  (-p@2)7? 1-p@2)7 "
where w € D. Then f3,, € Qo(p, 9) and
3
’ 17 244 (w)
al@@) = £, 0@) = L p@) =0, flplw)) = 6—————-—.
A =lp@)P) ™
Since Ty, y,,¢ : Qxo(p,9) — Z, is bounded, we have
”Tll}l,l,l}z,({?l|QK,0(P:W)—>ZH R ”Tl,Ul,le,fPf?nw”Zp
> p@)|(Ty,gip fr) @)
Ax 3
3(w)|p(w)| (16)

T (- lp@)P) T
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From (9) and (16), we obtain

As(w)
sup ———————
weD (1 — |(P(w)|2)7+
S sup L)M + sup L)M
s} (1—lp@)R) 7 2 I<pwi<t (1 - |p@@)P) 7
25 . i
<(é T sup As(w)+8 sup S(W)Iqo(z?z'
lp(w)l<3 L<lp@)l<1 (1 — I(p(w)|2)7+2”

STy pllowp.o-z.-
It follows that

M3 S Ty pllokpa—z, < - (17)
Combining (11), (13), (15) with (17) we see that

Mo + My + My + Mz < 1Ty, yo,0llokepa -2, (18)

Conversely, assume that My, M1, M, M3 < co. By using Lemmas 2.1, 2.2 and 2.3, for each f € Qx(p,9),
we have

u@NTY, 0 0 G
<A@ f (@) + AL @I (@) + A" (@) + As@If” (@)
2 e s —2E g

(1~ lp@PR) 7~ 1 -lp@EPR) "

+ AZ—(Z)Ml“f”B# + Ag—(Z)MZ ||B%2

(1 -lp@PR) 7 * A-lp@E)P) 7"
<(Mo + M1 + Mz + M3)l| fllokp.a)- (19)
On the other hand,

Ty, S)ON + [Ty, ) (O)]
<Eolf(O)I + Eal f'(@(O))] + E2l " ((0))]

2
E,
<) ——Ifllocea (20)
=0 (1= lpO)P) 7"

In view of (19) and (20), we conclude that Ty, y, » : Qx(p,q) (or Qko(p,q)) — L is bounded and

2
E.
]
T 1,400k ) (or Quotpan -z, S Mo + My + My + M3 + Z w2
=0 (1=lpO)?)» "

(21)

From (5), (18) and (21) we deduce that (2) holds.
(ii) Suppose that g + 2 = p and Ty, y,, : Qx(p,q) (or Qko(p,q)) — Zu is bounded. From the proof of (i),
we see that (13), (15) and (17) also hold in this case. That is, My, M, M3 < co. Take the function
e

w =In ———,
T
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where w € ID. Then f3,, € Qko(p, 9) (see [8]) and it is easy to calculate that

_ ; ’ — ﬂ
f4,w((P(w)) =1In 1— |(P(w)|2’ f4w((P(w)) T 1- |(P(w)|ZI
N -3
2
L) = P ) = )

1 - lp@)P?’ 1 = lp@)P)’
which along with the boundedness of Ty, 4, , and the triangle inequality implies that

”T‘Plr‘l’Zr(P”QK,U(P/q)—’Zp Z||T¢1r¢2r@f4,w”2,,
> 1(W)|(Tpy g firo) @)]

_ e Ar(@)lp ()|
2Ap(w)In 1 - |p(w)? 11— lp(w)I?

_ A@)p@)P  2A3@)lp(w)P
A-lp@)P? A -lp@)P)?
From (13), (15), (17) and the fact that |p(w)| < 1 it follows that

My < ”TI,UMPZ,(P'|QK,0(PM)—>Z“ < .
Hence we have
My + My + Mz + My 5 Ty yoplloepa—z,- (22)

Conversely, assume that M, My, M3, My < co. For each f € Qk(p,q), by using Lemmas 2.1, 2.2 and 2.3
we obtain

H@NTY, 4, o0 @
<A@)If (@@ + A1) ()] + A @) (@) + A (@)

— Ai(2) Ay(2) A3(2)
SAo@)lfllg In 1= |(P(Z)|2 + 1= |§0(Z)|2 IIflls + = |§0(Z)|2)2 Iflls + W”f”s
<M1 + My + Mz + Mol fllox .- (23)

Furthermore,
[(Ty1,2,0 ) ON + (T 00, f) ()]
<Eol f((0))] + Eal f ((O)I + Ealf” (0(0))|
e 2 E;
S(EO In w + ]_Zl W)Hf”(gﬂpﬂ) (24)

From (23) and (24) we see that Ty, 4, : Qx(p,q) (or Qxo(p,q)) — L, is bounded and

2
e E;
T 7 SM{+My+Mz+My+Egln ———— + PR ——
1T g1, 0llQcw.0) (or Qotp.a)—Z, 1+ M+ My + My + Eoln 7700 12_1 A= IpOR)

which along with (5) and (22) yields (3).
(iii) Suppose that g + 2 < p and Ty, y, : Qx(p, 9)(0r Qko(p,q)) — <, is bounded. From the proof of (i),
we see that (6), (13), (15) and (17) also hold in this case. That is, 1 € Z, and My, M, M3 < co. We also have

Lo+ M+ My +Mj < ||T1P1,1P2,§0HQK,O(P/Q)—)Zp' (25)
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On the contrary, assume that i; € Z,, and My, M, M3 < c0. By using Lemmas 2.1, 2.2 and 2.3, for each
f € Qk(p,q), we have

u@ITY, 4, o0 @)
<A@)If (@@ + A1) ()] + A @) (@) + A (@)

— Az Az As(z
SAO(Z)”f”B# + %”f”y%z + % | HB# % |B%2
(1 -lp@P)7 (1 -lp@P) 7 (1 -le@)?)7
<(Lo + M1 + Mz + M)l flloxp,9)- (26)

Moreover,

(T, 02,0 PO + (T 0,00’ (O)]
<Eolf(O)I + Eal /' (@(O))] + E2lf” ((0))]

2
Ej
S(EO + ]:21 W)”f“@((ﬁ#)' @)

From (26) and (27) we deduce that Ty, y, , : Qx(p, ) (or Qko(p,q)) — Z, is bounded and

(28)

2
E.
]
T2l or Ocatpar—z, < Lo+ Mi+ Ma+ Ms +Eo+ ) OBk
j=1

Combining (5), (25) with (28) we can assert that (4) holds. [

Theorem 3.2. Let 1,1y, € H(D), ¢ € S(ID),p > 0,9 > =2 such that q+2 > p and K be a nonnegative nondecreasing
function on [0, co) such that (1) holds. Then the following statements are true.

Q) If g+ 2 > p, then Ty, 4, : Qx(p,q) (or Qro(p,q)) — Ly is compact if and only if Ty, y,e : Qx(p,q)
(or Qxo(p,q)) — Ly is bounded and No = Ny = N = N3 = 0.

(i) If g + 2 = p, then Ty, y, o = Qx(p,q) (or Qko(p,q9)) — L, is compact if and only if Ty, y,, : Qx(p,q)
(or Qo(p,q)) — Ly is bounded, Ny = Np = N3 = 0 and

—~ e
Ny = lim Ap(z)lIn ——— =
7 io o@1n 3= lp(z) P2

(iii) If g + 2 < p, then Ty, y, o : Qx(p,q) (or Qro(p,q)) — Ly is compact if and only if Ty, y,e : Qx(p,q)
(or Qxo(p,q)) — Ly is bounded and Ny = N; = N3 = 0.

Proof. (i) Suppose that g +2 > p and Ty, y,, : Qx(p,9) (or Qko(p,q)) — <Ly is compact. It is evident that
Ty, pn = Qx(p,q) (or Qko(p,9)) — Ly is bounded. Let {z}ren be a sequence in ID such that |p(z¢)| — 1 as
k — oco. Set

fix(@) = fiz(2), j=0,1,2,3,

where f;,, is defined in the proof of Theorem 3.1. Moreover, we have {fj}keN,j=0,1,2,3 are norm bounded
sequences in Qko(p, 9), and it is easily seen that f;x converges to zero uniformly on compact subsets of ID as
k — co. By Lemma 2.5, we have

lim 1Ty, s fixllz, =0, j=0,1,2,3. 29)
On the other hand, from (10), (12), (14) and (16) it follows that
Ai@)lg(z0l
(1= lpGoR)

s ||T1p1,1p2,<pfj,k||zu ] = Or 172/3' (30)
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Letting k — oo in (30) and employing (29), we can see that No = N; = N, = N3 = 0.
Conversely, assume that Ty, 4, : Qk(p,q) (or Qko(p,q)) — <, is bounded and Ny = N1 = N, = N3 = 0.
Then for any € > 0, there exists 6 € (0, 1) such that

Az
i ")M <e, j=0,1,2,3 (31)
(1= lp@P) >

whenever 6 < |p(z)| < 1. Moreover, by Theorem 3.1 we have Ly, L1, Ly, L3, which are defined in (6)-(9), are
finite.

Let {fi}kew be a sequence in Qk(p, q) (or Qko(p, 9)) such that sup, Il filloxpg < 1 and fr — 0 uniformly
on compact subset of ID as k — co. Applying (31), Lemmas 2.1, 2.2 and 2.3 we obtain

ITy1, 92,0 fellZ,
=Ty 2.0 SO + (T o f1) O)] + sup BTy, g2 ) @)

<Eolf(p(O)] + Erlf (9(O))| + Exlf " (p(O)] + Z( sup LI @@+ sup AN (0E))

lp(2)I<6 5<lp(z)l<1
17 (]) : g(z)
SEolf(@O)] + Ealf (9(O)| + Ealf” (9(0))] + Z L; sup If (@) + ), sup
R =0 oot (1= fp()?) T
<Eolf(@(0)| + E1lf (9(0)] + E2l f” (9(0))] + ZL sup |£ (w)] + de. (32)

j=0  lwl<d

Since fy — 0 uniformly on compact subset of ID as k — oo, we conclude that f/, f” and f/”" also do by
Cauchy’s estimate. In particular, {¢(0)} and {w : [w| < 6} are compact subsets of D, hence lettmg k — ocoin
(32) yields

limsup Ty, y, o fellz, < 4e.
k—o0

From the arbitrariness of € it follows that limye Ty, y,pfkllz, = 0, and so by Lemma 2.5, Ty, y, :
Qx(p, q) (or Qko(p,q)) = L, is compact.

(ii) Suppose that g +2 = p and Ty, y,, : Qx(p,q) (or Qko(p,q)) — L, is compact, then it is bounded
obviously. From the proof of (i), we can see that Ny = N, = N3 = 0. Let {z;}reiy be a sequence in ID satisfying
lp(zk)l = 1as k — oo, set

e 2 e -1
fuxl@) = (In— (p(zk)z) (I = foee) -

then {fsi}ken is a bounded sequences in Qko(p, ) and converges to zero uniformly on compact subsets of
D as k — oo. By Lemma 2.5, we have

%LI?O I Tp1,00,0 fakllz, = 0. (33)

Furthermore,

Ty, 10,00 fakll z,
> 10(z0)|[(Ty i k) (z0)]

e 2A4E)pGE)
o 1—le@z?

2)Aé<zk)|<p(zk>|2_( 6
(1=lp@IP?  \In

>Ao(z) In -

( 2
[
In 0ep

)21”3<zk>|(p<zk>|3 (34)

1= lpP)?
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Letting k — oo in (34) and employing (33), the fact that Ny = N, = N3 = 0, we get Ny = 0.
Conversely, assume that Ty, 4, : Qk(p,q) (or Qko(p,q)) — <, is bounded and N1 = N» = N3 = Ny =0
Then for any € > 0, there exists 6 € (0, 1) such that

-~ e
A()(Z) In W <E, (35)
and
Aj(z) .
FErEETR o

whenever 6 < |p(z)| < 1. Let {filxew be a sequence in Qk(p, q) (or Qko(p, q)) such that sup, Il fillocpg < 1
and f;r — 0 uniformly on compact subset of ID as k — oo. Applying (35), (36), Lemmas 2.1, 2.2 and 2.3, we
obtain

1Ty, 0 fillz,

SEolf(@O)] + Ealf (9(O)] + Exlf” (p(0))] + Z L; sup | (p()l

j=0  lp@)<d

— - Aj(z)
+ sup Az ln sup —————
6<\(p(zP))|<1 ole) | (2)? Zl‘é<|¢(z1))|<1 (1 -lp@)Py

<Eolf(@(O)] + Exlf (p(O)| + Ealf (9(0))] + Z Lysup | (w)| + 4e.

lw]|<d

Analysis similar to (i) shows that Ty, y, », : Qk(p,q) (or Qko(p,q)) — <, is compact.

(iii) Suppose that g + 2 < p and Ty, y, : Qx(p,q) (or Qxo(p,q)) — Ly is compact, then it is bounded.
Moreover, from (i) it follows that N; = N, = N3 = 0.

Conversely, suppose that Ty, y, » : Qk(p,q) (or Qko(p,9)) = Z, is bounded and N1 = N = N3 = 0. Then
for any € > 0, there exists 6 € (0, 1) such that

Aj(zi)
(1-lp@P) T i

whenever § < |p(z)| < 1. Let {filxen be a sequence in Qk(p, 9) (or Qko(p, 9)) such that sup, .y ll filloxpg S 1
and f; — 0 uniformly on compact subset of ID as k — co. Applying (37), Lemmas 2.1, 2.2 and 2.3 we get

<e, j=1,2,3, (37)

”Tl,’)l/ll’z/({’fknzu
SEf(@(O)] + Exlf (9(O)] + Eolf"(9(O)] + Lo sup  fi(p ()

zeD

3 ~,
+ZL sup | (]) (p(z))|+Z sup (Z)

T lplso =1 0<lp@I<1 (1 — |<p(Z)I2)*_1+’

<Elf(p(O)] + Erlf (p(O)] + Exlf"(p(O)| + Losup lfi(w) + 2 Ljsup | (w)] + 3e. (38)

=1 [w]<o
Note that 0 < E < 1, applying Lemma 2.4 yields

hm sup | fuw(z)l =

k=co 1ed

Lettingk — oo in (38) and by the same arguments as before, we can deduce that Ty, v, , : Qk(p, q) (or Qko(p, 9)) —

Zyis compact. [0
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When the target space is .0, we have the following results.

Theorem 3.3. Let 1,1, € H(ID), ¢ € S(ID), n € Ny, p > 0, g > =2 and K be a nonnegative nondecreasing function
on [0,00). Then Ty, y,e : Qrop,q) — Ly is bounded if and only if Ty, y, : Qxo(p,q) = L, is bounded and

lim A;(z) = 0, (39)

|z|—1
where j=0,1,2,3.

Proof. Assume that Ty, 4, : Qro(p,q) — <0 is bounded, then it is evident that Ty, y, ¢ : Qro(p,q) — Ly is
bounded and for every f € Qxo(p,q), we have Ty, y, »f € Z,0. Taking f(z) = 1 € Qko(p, q) yields

lim ()T, gs.p1)' (D) = limy Ao(z) = 0. (40)
Instead of using the function f(z) = z € Qko(p, q), we obtain
|B£n>1 pE@IWY @e(2) + 201 ()¢ (2) + P1(2)p” (2) + 5 (2)] = 0,

which along with (40), the triangle inequality and the fact that |p(z)| < 1, we deduce that (39) holds for j = 1.
By using the functions f(z) = %2 and f(z) = %3 € Qko(p, q), in the same manner we can see that (39) holds for
j=2,3.

Conversely, suppose that Ty, y, : Qro(p,q) — <, is bounded and (39) holds for j = 0,1,2,3. Then for
each polynomial 7(z), we have

UE(Tyy pro7) @) As@IHQE)] + A1 (@) + A2 @) (@(2)] + As@)F (@(2))]
SAN(2) + A1(2) + Az(2) + As(2).

Letting |z| — 1 in the above inequality and employing (39) gives
B 4Ty 7) @) =0,

which says that Ty, y,,r € Zy0. Since the set of all polynomials is dense in Qko(p, q) (see [8]), and hence
for each f € Qko(p, q), there is a sequence of polynomials {r}ren such that limg e Ik = flloxp,g) = 0, which
along with the boundedness of Ty, y, ¢ : Qxo(p,q) — L, implies that

||T¢1,¢2,(Prk - Tl/hﬂ/)z,gvfllzp < ||T1P1,1P2,<P||Q1</0(Prﬂ)—>zp e = fHQK(PrlI) -0,

as k — oo. Since Z, is a closed subspace of Z,, we have Ty, y,of € Zyuo, and consequently Ty, y, :
Qko(p,q) = Z,0 is bounded. O

Theorem 3.4. Let Y1,y € H(D), p € S(ID),p > 0,9 > =2 such that q+2 > p and K be a nonnegative nondecreasing
function on [0, co) such that (1) holds. Then the following statements are true.
Q) If g +2 > p, then Ty, y, : Qx(p, q) (or Qro(p,q)) — Lyo is compact if and only if Ro = Ry = R, = R3 = 0.
(i) If g + 2 = p, then Ty, y, o : Qx(p,q) (or Qo(p,q)) = Ly is compact if and only if Ry = Ry = R3 = 0 and

— e
Ry :=1lim A In—— =
4:= lim 0(z) In T lp@P

(iii) If g + 2 < p, then Ty, y,o : Qx(p,q) (or Qko(p,q)) — Lo is compact if and only if Y1 € ZM/O and
Ri=R,=R3=0.
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Proof. (i) Suppose thatq+2 > pand Ty, y,, : Qk(p,q) (or Qxo(p,q)) — Z,0is compact. Then the compactness
of Ty, .0 + Qr(p,q) (or Qxo(p,q)) — L, easily follows. By using Theorem 3.2, for any € > 0, there exists
0 € (0,1) such that (31) holds whenever 6 < |p(z)| < 1. Note that if Ty, y,, : Qx(p,q) — <0 is compact, then
Ty, 40 : Qro(p,q) — Lup is compact. Moreover, the compactness of Ty, y, ¢ : Qro(p, q) — L0 implies that
Ty, 40 : Qro(p,q) = Zyo is bounded. Then (39) follows from Theorem 3.3, and for any € > 0, there exists
1 € (0,1) such that

A <el-HT T, j=0,1,2,3, (41)
whenever 17 < |z| < 1. From (31), when 1 < |z| < 1 and 6 < |@p(z)| < 1, we have

Aj(2)

(1 -lp@P) 7

On the other hand, when 1 < |z| < 1 and |@(z)| < 0, using (41) yields

<e, j=0,1,2,3. (42)

Ai?) . A@
A= lp@R) T -6
From (42) and (43) we deduce that Ry = R; = R, = R3 = 0.

Conversely, assume that Ry = Ry = Ry = R3 = 0. Let f € Qk(p, 9) (or Qko(p, q)), analysis similar to (19) in
the proof of Theorem 3.1 shows that

> Ai(2)
LTy, f) (@) S I flloxea-
Y192, ]Z;, A= lp@R) " 4] Qk(p.a)

Taking the supremum in the above inequality over all f € Qk(p, q) (or Qko(p, q)) such that ||f|lg, g < 1 and
letting |z| — 1, we have

<e, j=0,1,2,3. (43)

lim  sup  p@I(Ty,pef) @ =

E=1 ) Al <1

Therefore, the operator Ty, 4, : Qx(p,q) (or Qko(p,q)) = Ly is compact by Lemma 2.6.

(ii) Suppose that g + 2 = p and Ty, y,,» : Qx(p,q) (or Qxo(p,q)) — Luo is compact. By (i), we can see that
Ri = Ry = R3 = 0. From Theorem 3.2, for any € > 0, there exists 6 € (0,1) such that (36) holds whenever
0 <lp(z)] < 1. Moreover, (39) follows from Theorem 3.3, and for any € > 0, there exists i € (0, 1) such that

A (44)
whenever 17 < |z| < 1. From (36), when 1 < |z| <1 and 6 < |p(z)| < 1, we have

-~ e

Ayz)In ———— <€ 45

R ErTET: @

On the other hand, when 1 < |z| < 1 and |@p(z)| < 0, using (44) yields

_— e — e

- < - .
Ap(z) In T=Io@E Ap(z) In T— <e (46)

From (45) and (46) we conclude that Ry = 0.
Conversely, assume that Ry = Ry = R3 = Ry = 0. Let f € Qx(p, q) (or Qxo(p, 9)), then we have

](Z

oy )uanK(pq

3
" — e
BTy @1 5 (Ao@In s + M erae]
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Analysis similar to (i) shows that Ty, y, » : Qx(p,q) (or Qko(p, 9)) = ;0 is compact.
(iii) Suppose that Ty, y, » : Qk(p,q) (or Qko(p,q)) — L0 is compact. From (i) we see that Ry = R, = R3 =
0. Taking f(z) = 1 € Qko(p, ), we have Ty, y, o1 = 11 € Zyp.

Conversely, assume thatR; = Ry = R3 = 0and i1 € Z,,0,i.e., limp Zg(z) =0. Let f € Qk(p, q) (or Qko(p, 9)),
then we have

L
— A;
M Tt O % (R + Y 2 o
=

— lp(2)?)

Similar to (i) we deduce that Ty, y, » : Qx(p, q) (or Qko(p, 9)) = Zy0 is compact. I
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