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Abstract. In this work, we give a partial positive answer to the question concerning the set-valued quasi-
contraction proposed by Amini-Harandi (Appl. Math. Lett. 24:1791-1794 2011). By a useful lemma, we
prove a fixed point theorem for the set-valued quasi-contraction, which extends the range of contraction

constant in result of Amini-Harandi from [0, %) to |0, %) Also, we give a new simple proof for the

result of quasi-contraction type proposed by Haghi et al. (Appl. Math. Lett. 25:843-846 2012). Finally,

a counterexample and a theorem concerning cyclic set-valued mapping are given, which improve some
recent results.

1. Introduction

In 1974, Ciri¢ [9] introduced a class of well known contraction, called Ciri¢ type contraction, and
established the corresponding fixed point theorem. Since then, many authors studied and extended Ciri¢
type contraction in various distinct directions, see e.g. [2, 6, 16, 19]. We recall the notion of Ciri¢ type
contraction as follows.

Let (X,d) be a metric space. A mapping T : X — X is said to be a Ciri¢ type contraction (or called
quasi-contraction) if there exists A € [0, 1) such that

d(Tx, Ty) < Amax{d(x, y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}
forall x,y € X.

In 1969, Nadler [18] generalized the Banach contraction principle to set-valued mappings by the Haus-
dorff metric. The theory of set-valued mappings has many applications and a lot of authors investigated
the fixed point theorem for set-valued contraction, see e.g. [3-5,7, 8, 10, 13-15, 17, 20]. The relative concepts
are introduced as below.

Throughout this paper, let IN and IN* denote the nonnegative integers, the positive integers, respectively.
Let (X,d) be a metric space. We denote by 2X and CB(X), the collection of all nonempty subsets of X, the
collection of all nonempty closed bounded subsets of (X, d), respectively. Let T : X — 2% be a multi-valued
mapping. We say that x € X is a fixed point of T if x € Tx.
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Definition 1.1. Let (X, d) be a metric space. For any x € X and A, B € CB(X), denote

d(x,A) = infd(x,y) and O(A,B) =supd(a,B).
yeA acA

We say that H(A, B) : CB(X) X CB(X) — R* is a Hausdorff metric on CB(X) induced by d if
H(A, B) = max{6(A, B), 6(B, A)}.

In what follows, the set-valued version of Ciri¢ type fixed point theorem is considered. Let (X,d) be
a metric space. A set-valued mapping T : X — CB(X) is called a set-valued quasi-contraction if there exists
A €[0,1) such that

H(Tx, Ty) < AM(x, v) 1

for all x, y € X, where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty),

d(y, Tx)}.
In 2011, Amini-Harandi [3] proved a set-valued quasi-contraction fixed point theorem as follows.

Theorem 1.2 ([3]). Let (X, d) be a complete metric space. Let T : X — CB(X) be a set-valued quasi-contraction with
constant A < 1. Then T has a fixed point.

And then, a question was raised following the above theorem in [3].
Problem 1.3 ([3]). Does the conclusion of [3, Theorem 2.2] remain true for any 3 < A < 1?

In the last decade, many scholars devoted to investigating set-valued version of quasi-contraction
mappings and obtain some valuable results, see e.g. [11, 13, 17, 20]. In [11], Haghi et al. gave a similar
result called quasi-contraction type, but Mohammadi et al. [17] showed that a set-valued quasi-contraction
need not be quasi-contraction type. Up to now, the question above is still open.

On the other hand, the cyclic version of set-valued contraction fixed point theorem was studied by some
scholars in recent years. In 2018, Sridarat and Suantai [21] investigated and gave a theorem for nonlinear
cyclic set-valued mapping. In 2020, Ahmadi et al. [1] obtained some results on cyclic set-valued contraction
in metric spaces.

In this paper, we establish some results on set-valued mapping for quasi-contraction, quasi-contraction
type and weak contraction, as well as the corresponding cyclic version. In Section 3, we partially answer
Question 1.3 by extending the range of constant A from [0, %) to [0, 3%6) To this end, we prove an essential

lemma and apply new technique for the proof of Cauchy sequence in our theorem. Also, we prove again
the result of quasi-contraction type in [11] by our new lemma and technique, and an example is given
to verify our results. In Section 4, we give a counterexample to show that cyclic set-valued mapping for
quasi-contraction and quasi-contraction type fail to hold with A > 1. On the other hand, the result of cyclic
set-valued weak contraction is established, which extends the results proposed by Ahmadi et al. [1] and
Khojasteh et al. [13].

2. Preliminaries

In this section, we introduce some useful lemmas concerning Hausdorff metric.

Lemma 2.1 ([18]). Let (X, d) be a metric space and A, B € CB(X) be two nonempty sets. Then for any b € B and any
a > 0, there exists a € A such that
d(a,b) <H(A,B) + a.

Lemma 2.2 ([18]). Let (X, d) be a metric space, a,b € X be two points and A, B, C € CB(X) be three sets. Then the
following hold:
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(1) d(a, A) <d(a,b) +d(b, A);
(2) d(a,B) <d(a,A) + H(A, B);
(3) H(A,C) < H(A,B) + H(B, C).

Lemma 2.3 ([18]). Let (X, d) be a metric space, {A,} C CB(X) be a sequence of set and A* € CB(X). Let {a,} C X be
a sequence such that a, € A, for alln € N. If

lim H(A,,A") =0 (2)
and
lim d(a,,,a’) =0 3)

for some a* € X, then a* € A”.

3. Quasi-contraction and quasi-contraction type

In this section, we give a partial answer to Question 1.3 and give a new proof for set-valued quasi-
contraction type fixed point theorem. First, we prove a crucial lemma for our theorems.

Lemma 3.1. Let (X, d) be a metric space, {x,} C X be a sequence. If there exist a < 1 and a positive integer p such
that

d(xn, Xpe1) < amaxid(Xp—i, Xp-ix1) : 1 <1 < p} 4)
foralln € N with n > p, then {x,} is a Cauchy sequence.
Proof. Let |a] = max{n € N : n < g} for all 2 > 0. Denote that
Q =max{d(x, xi+1) : 0<i<p -1}

By (4), we can see that d(x,, xp41) < @Q. Note that d(x,,x,+1) < Q. Then, applying (4) again, we have
d(xp+1, Xp+2) < @Q. Continuing inductively, we obtain that

d(xp+kr xp+k+1) <aQ

forall 0 < k < p— 1. It follows that max{d(xyx, Xpx+1) : 0 < k < p — 1} < aQ. Similarly, we can obtain
A(Xopsk, Xopska1) < @*Q forall 0 < k < p.
Proceeding inductively, we deduce that

max{d(xmp+kr xmp+k+l) :0<k< p- 1} < amQ

for all m € IN. Note that if mp + k = n, we have m = I_;%J. Then, we can see that

d(xn/ xn+1) < a[%JQ
for all n € N. Hence, for any m,n € N and m < n, we have

A, Xn) < A, Ximr1) + AXmr1, Xma2) + -+ d(X0-1, X5)
n—1
<

Q

o
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Since ar < 1, letting m — oo, we can see that d(x,,, x,) — 0, which implies {x,} is a Cauchy sequence. [

Remark 3.2. As shown in Lemma 3.1, the constant p should be independent of the index n in (4). If they are
correlative, the sequence {x,} could not be Cauchy. In fact, let X = [0,+00) be a complete metric space with the

standard metric, {x,} C X be a sequence such that x, = Y,i_; % forn > 1 and xo = 0. Suppose that p = [%J +1. Then,
we have

1
+1

]

max{d(xi,xm) n— EJ -1<i<n- 1}

<

d(xn/ xn+l) =

=
N~

<

NI~

forall n > 1. However, it is clear that {x,} is not convergent in X and so it is not Cauchy.
Now, we give the following theorem to answer Question 1.3.

Theorem 3.3. Let (X,d) be a complete metric space and T : X — CB(X) be a set-valued quasi-contraction with
constant A. If the constant A satisfies A < 3%6’ then T has a fixed point.

Proof. Since A < %, there exists f € Rsuch that A < < %/ig Let xp € X and x1 € Txg. If xg € Txp, then xg is

the fixed point. So we assume that xg ¢ Txo, which implies that xo # x; and d(xo, Txp) > 0. From Lemma 2.1
and (1), there exists x; € Tx1 such that

d(x1,x2) < H(Txo, Tx1) + (B — A)M(x0, x1)
< BM(xo, x1).

Similarly, assume that x1 ¢ Tx;. Then there exists x3 € Tx, such that
d(x2, x3) < BM(x1, Xx2).
Proceeding inductively, we can obtain a sequence {x,} such that x,,1 € Tx,, x, € Tx, and
A(Xns1, Xn42) < PM (X, Xp1) ()

for alln € N.
Next, we show that {x,} is a Cauchy sequence. Let n € IN be such that n > 4. From (5) and x,,+1 € Tx,,
we have

d(xﬂ/ x?’l+1) S ,BM(xn—ll xl’l)
= ,8 max{d(xn—lz xn)/ d(xn—lz Txn—l)/ d(xnr Txn)r d(xn—lr Txn)/ d(xn/ Txn—l)}
<B max{d(x,—1, Xu), d(Xn, Xn41), d(Xn-1, Tx,)}.

Note that if d(x,, xn+1) < Bd(xy, Xn4+1), we have x,, = x,41, which contradicts the fact x,+1 € Tx, and x,, ¢ Tx;,.
So, we obtain that

A(xp, Xp41) < B max{d(x,-1, Xu), d(xn-1, Tx,)}. (6)
Since d(x,-1, Tx,) < H(Tx,-2, Tx,), by (1), we deduce that

d(xn—ll Txn) < AM(xn—Z/ xn)
< PM(x4-2, 1)
< Bmax{d(xy—2, Xn), d(Xn-2, Xn-1), A(Xn, Xps1), A(Xn-2, Txp), d(xp-1, Xn)}. (7)
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Combining (6) and (7), we can see
A(x, Xns1) < max{BA(xy-1, %), BA(Xn-2, %n), (X2, Xu1), B (xn2, Txn)}.
Similarly, we can obtain that
d(xn-2, Txn) < pmax{d(xy-3, xn), d(xXn-3, Xn-2), A(Xn, Xn41), d(Xn—-3, Txtn), d(xn-2, Xn)},

leading to that
A, Xpe1) < max{Bd(xu_1, x4), B2d(Xn—2, Xn), B*A(Xn-2, Xn-1),
BPd(xn-3,Xn), B2A(Xn-3, Xu-2), B3, Txy)). (8)
As in the proof of (7), we have
d(xp-3, Txxy) < pmax{d(xu-4, Xn), d(Xn-4, Xn-3), A(Xn, Xn+1), A(Xn-1, Txy), d(xn-3, xn)}-
If d(xy—3, Tx,) < Bd(xp-4, Txy), then from the triangle inequality, we have
Ad(xu-3, Txy) < Bld(xn-4, xp-3) + d(xn-3, Tx,)],
which implies that d(x,_3, Tx,) < %d(xn,zl, Xn—3)- SO, we can see
d(xp—3, Txy) < B maX{d(xn_4, Xn), A(Xn, Xn41), ﬁd(xn—& Xn-3), d(xXn-3, xn)}- ©)
Therefore, by (8) and (9), we conclude that
d(xp, Xn41)
< max{ (-1, %), 67402, %), B2, ),
B3, %), BA(Xn3, Xn-2), B*d(Xn-a, %),

4
s v

1-p
< max{ﬁd(xn—ll xn)/ 252 d(xniz, xﬂ71)2+ d(xl’lflr xn)

3‘83 d(xn—3r xn—Z) + d(x‘rl—:;/ xn—l) + d(x‘rl—ll xn) , ﬁBd(xnfii, -Xn72),

4‘64 d(xn—4r xn—3) + d(x‘rl—Sl xn—2) + d(xn—Zl xn—l) + d(xn—ll xn)
4 7

7 ﬁzd(xn—Zr xn—l )/

4

fTﬁd(xn—ﬁll xn—S)}
ﬁ4

< max {,3/ 267, 3%, 4%, 1-p

d(xn—ZI xn—l)/ d(xn—l/ xn)}-

} max{d(xn—4/ xn—S)/ d(xn—3/ xn—Z)r

Since f < %3, we can see that

a = max {ﬁ, 282,36°,4p%, 15_4 ﬁ} <1

Then, from lemma 3.1, {x,} is a Cauchy sequence in X.
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Since (X, d) is complete, there exists a x* € X such that {x,} converges to x*. Then we show that x* is a
fixed point of T. By (1), we have

H(Tx,, Tx") < AM(xy, x")
= Amax{d(x,, x*), d(x,, Tx,),d(x*, Tx"),
d(xn, Tx"), d(Tx, x°)}.

If M(x,, x*) = d(x*, Tx*) for some n € N, then by Lemma 2.2 (2), we have
H(Tx,, Tx") < Ad(x*, Tx") < Ald(x*, Tx,,) + H(Tx,,, Tx")],

which implies that

H(Tx,, Tx") < d(x*, Tx,) < a(x", xu41).

1-A 1-A
Similarly, if M(x,, x*) = d(x,, Tx") for some n € IN, then we obtain that

H(Tx,, Tx") < i\/\d(xn,Txn) < 1Ld(xn,xnﬂ).

1 -A

Thus, for every n € N, we can see that
H(Tx,, Tx")

(", Xp41) d(Xn, Xpr1)
1-A4 7 1-4

d
< /\max {d(xHIX*)I d(xn/xn+1)r Id('xn‘f-llx*)} .
Letting n — oo, since {x,} converges to x*, we conclude that H(Tx,, Tx*) — 0. Note that x,+1 € Tx, for all
n € IN. Then, from Lemma 2.3 we can obtain that x* € Tx". Therefore, x* is a fixed pointof T. O

Next, by Lemma 3.1, we give a new proof for set-valued quasi-contraction type fixed point theorem,
which is simpler than that of [11, Theorem 2.2]. For convenience, the notion of set-valued quasi-contraction
type is reviewed as follows.

A set-valued mapping T : X — CB(X) is called a set-valued quasi-contraction type if there exists A € [0, 1)
such that

H(Tx, Ty) < AN(x,y), (10)
for all x, y € X, where N(x, y) = max{d(x, Tx), d(y, Ty),d(x, Ty),d(y, Tx)}.

Theorem 3.4. Let (X, d) be a complete metric space and T : X — CB(X) a set-valued quasi-contraction type. Then
T has a fixed point.

Proof. Since A < 1, there exists § such that A < f < 1. Let xg € X and x; € Txp. From a similar argument in
the proof of Theorem 3.3, we can obtain a sequence {x,} such that x,,.1 € Tx,, x, ¢ Tx, and

A(Xp41, Xp42) < ,BN(xn/ Xn+1) (11)
for all n € IN.
Next, we show that {x,} is a Cauchy sequence. Since < 1, there exists p € N* such that
ﬁp+1

Let n € N be such that n > p + 1. From (11) and x,,+1 € Tx,,, we have

A(xp, Xp41) < ‘BM(X,,,L Xn)
= Bmax{d(xy-1, Txn-1), d(xn, Txy), d(xn-1, Txy),

d(xn, Txn-1)}
=B max{d(xy-1, Txn-1), d(xn, Txy), d(xn-1, Txy)}.
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If d(x, xp41) < Pd(xn, Txy) < Pd(xy, X441), then we have x,, = x,,41, which contradicts the fact x,.1 € Tx, and

x, ¢ Tx,. So, we obtain that
A(xn, Xnt1) < max{Bd(x,-1, x,), fd(xn-1, Txy)}.
Since d(xy,-1, Tx,) < H(Tx,—, Tx,), by (10), we have

A(xn-1, Txy) < AN(x-2, %) < BN(X4-2, %)
= Bmax{d(xy-2, Txn-2), d(xXn, Txn), d(Xn-2, Txy),
d(xy, Txy-2)}
<B max{d(x,-2, Xu-1), d(Xn, Xn41), d(Xn-2, Txy),
d(xu, Xn-1)}-

Combining (13), we obtain that

A(xn, Xp1) < max{Bd(xn-1, %), Bd(xn-2, Xu-1), B2 (X2, Tx)}.

Similarly, we can deduce

d(xy—2, Txp) < H(Txy-3, Txy) < BN(X4-3, X1)
= pmax{d(x,-3, Txy-3), d(xn, Txn), d(xn-3, Txn),
d(x,, Txy-3)}
<p max{d(x,-3, Xu-2), d(Xn, Xn+1), d(Xn-3, Txy),
d(xy, Txp-3)},

which implies that

d(xn/ xn+1) < max{ﬁd(xn—ll xn)/ ﬁd(-xn—z/ xn—l)/ ﬁd(xn—Bz xn—Z)

,83d(xn—3/ Txy, )/ ,B3d(xnr Txn—3)}-
Proceeding inductively, we can conclude that
A(x, Xp+1) < maxCy U D,

where

CP = {.Bd(xnfirxn—zﬁr]) :1<i< p}

and

D, = {Bfd(xy-i, Txy-j): 0<i,j<pandi+1#j}.

Then, applying (10), we can see

a(x,—i, Txn—j) < H(Txy-i-1, Txn—j) < ﬁN(xn—i—lr xn—j)
< Bmax{d(xy—i-1, Xn-i), d(xn—j/ xn—j+1)/
d(xn—i—ll Txn—j)/ d(xn—jr Txn—i—l)}‘

If H(Txy-i-1, Txp—j) < pd(xy-i-1, Txy—j), then from Lemma 2.2 (2), we have

H(Txy-i-1, Txn—j) < Bld(xp-i-1, Txp—i-1) + H(Txp—i-1, Txn—j)]/

which implies that

H(Txp-i-1, Txn-j) < Ld(ﬂfn—i—l,Txn—i—l) < id(xn—i—l;xn—i)-

1-p

(13)

(14)

(15)
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If H(Txp—i-1, Txp—j) < d(xp-j, Txy-i-1), then by Lemma 2.2 (2), we can see that
H(T-T-<ﬁd-T-<ﬁd-~
Xn—i-1, TXn-j) < T-p (xn—j, Txyp—j) < T-p (Xn—j, Xn—j+1)-

Thus, from g < F_, we obtain that

QI

a(xn—i, Txnfj) < H(Txy-i-1, Txnfj)

16
< 1L max{d(X,—i-1, Xu—i), A(Xn—j, Xn—js1)}- 16)

Combining (12), (15) and (16), we can deduce that
A(Xn, Xni1) <y max{d(x—i, Xp-iv1) : 1 <i<p+ 1},

where y = max {/3, ?;1} < 1. By Lemma 3.1 with p = p + 1, {x,,} is a Cauchy sequence.

Since (X, d) is a complete metric space, there exists x* € X such that x, — x*. By (10), we have
H(Tx,, Tx") < Amax{d(x,, Tx,),d(x", Tx"),d(x,, Tx"),d(Tx,, x)}
< Amax{d(xy, x41), d(x*, Tx"), d(x,, x*) + d(x*, Tx"),

A(xy41, X))

Since the metric d is continuous, we deduce that

d(x*, Tx*) = lim d(x,.1, Tx*) < lim H(Tx,, Tx") < Ad(x*, Tx").
n—oo n—co

Thus, d(x*, Tx") =0and sox* € Tx*. O

Finally, an example is given to verify Theorem 3.3. Note that there are two existing results, quasi-
contraction type [11, Theorem 2.2] and weak contraction [13, Theorem 2.2], which are similar to this
theorem. In [17], Mohammadi et al. gave an example [17, Example 2.1], where the mapping T is a set-
valued quasi-contraction but not a quasi-contraction type. Next, we show that set-valued quasi-contraction
need not be a weak contraction in the following example.

Firstly, we review the notion of weak contraction. A mapping T : X — CB(X) is said to be a set-valued
weak contraction if there exists a € [0, 1) such that for any x, y € X,

H(Tx, Ty) < aK(x, y), a7
where K(x, y) = max {d(x, y),d(x, Tx), d(y, Ty), d(x,Ty);—d(y,Tx) }

Example 3.5. Let X = R* be equipped with the standard metric d(x,y) = |x — y| for all x, y € X. Define a set-valued
mapping T : X — CB(X) by

[%x, %x], x>1;
T(x) = [}lx, %x], 0O<x<1;
{0}, x=0.

Then the following hold:
1. T is a set-valued quasi-contraction with A = % ;
2. all the conditions in Theorem 3.3 are satisfied, and x = 0 is a fixed point for T;

3. T is not a set-valued weak contraction.



N. Lu et al. / Filomat 36:19 (2022), 6777-6790 6785

Proof. (1) Itis sufficient to prove that for any x,y € X,
H(Tx, Ty) < %M(x, y)
= % max{d(x, y),d(x, Tx),d(y, Ty),d(x, Ty), d(y, Tx)}. (18)

Indeed, let x,y € X be arbitrarily given. Without loss of generality, we suppose that x > y. By the
construction of T, we consider the following two cases.

Case 1. Assume that x > 1. Then, we have Tx = [%x, %x] If y > 1, from the definition of Hausdorff metric
we obtain that

1 2 1 2 2
H(Tx, Ty) = H( §x’ §x] , [g]/, 5]/]) = g(x -Y)
= 2dte,y) < M ).

If 0 < y < 1, then we have
1 2 1 1 2 1
H(Tx Ty) = H([éx’ 5"]'[1% zy]) =3 5Y

2 1 2 2
< = - = = = < = .
<3 (x 2y) 3d(x, Ty) < 3M(x, Y)
If y = 0, it is easy to see that H(Tx, Ty) = H([%x, %x] , {0}) = 2d(x, Ty) < 3M(x, y).

Case 2. Assume that 0 < x < 1. Since x > y and y > 0, we have x > 0. Then, we obtain that

H(Tx, Ty) = H([}Ix, %x] , [iy, %y]) = %(x )

1 2
= Ed(x, y) < gM(x, y)

for any 0 < y < x and H(Tx, Ty) = H([}lx, %x] , {0}) = 1d(x, Ty) < 3M(x, y) for y = 0.

Therefore, we completely prove that (18) holds for all x, y € X.

(2) Itis clear that (X, d) is a complete metric space and A = % < Note that 0 € TO = {0}. Then x = 0is

1
"
a fixed point for mapping T.

(3) Letxp=1and yp = % Then ,we can see that

127711 1
H(Txo Tyo) = H([é' 5]'[5' 5]) =3
and
d X /T + d ,Tx
max{d(xf)'VO)rd(xolTxo),d(yo,Tyo), (o %)2 (vo 0>}

WIN
+
o

111 1
= maX{g, 73 3 } =3= H(Txo, Tyo).
Therefore, we obtain that T is not a set-valued weak contraction. []

4. Cyclic set-valued contraction

Let A1, A, ..., A, be nonempty sets of a metric space (X,d), where r is a given integer. A mapping
T : Ui_; Ai = CB(X) is called to be a cyclic set-valued mapping if

T(A;) C Ainq
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fori=1,2,...,r with A;41 = Ay, where T(A;) = Ueq, T(@).
In this section, we will use the following definitions of cyclic set-valued version of quasi-contraction,
quasi-contraction type and weak contraction.

Definition 4.1. Let (X, d) be a metric space and A1, A,, ..., A, be nonempty sets of (X, d), where r is a given integer.
We call that T : | J_; Ai —» CB(X) is

(i) a cyclic set-valued quasi-contraction if T is a cyclic set-valued mapping and there exists A € [0, 1) satisfying
(1) forallx e Ajand y € Ajq withi=1,2,...,1;

(ii) a cyclic set-valued quasi-contraction type if T is a cyclic set-valued mapping and there exists A € [0, 1)
satisfying (10) for all x € Ajand y € Ajq withi=1,2,...,1;

(iii) a cyclic set-valued weak contraction if T is a cyclic set-valued mapping and there exists o € [0, 1) satisfying
(17)forallx e Ajand y € Ajq withi=1,2,...,1.

It is worth mentioning that the set of fixed points for cyclic mappings of quasi-contraction may be empty
in metric spaces. In [12, Example 2.1], He et al. gave a counterexample to show this fact. It is clear that this
fact can be extended to set-valued version. Note that every quasi-contraction type is a quasi-contraction.
Thus, we just need to give a counterexample, where the mapping T is a cyclic set-valued quasi-contraction
type but has no fixed point.

Example 4.2. Let X = {a1,az,a3,b1, by, b3} be a nonempty set, A = {a1,az,a3} and B = {by, by, b3}. Letd : X X X —
IR* be such that
2, x,y€A,
dix,y)={ 2, x,y€B,
1, xeA,yeBorxeB,ye€A.

Define a mapping T : AU B — CB(X) by
Tay = {b1}, Taz = {ba}, Tby ={az}, Thy = {ar}
and
Taz = {b1, bz}, Tbs = {a1,a}.
Then the following hold:
1. (X, d) is a complete metric space and A, B are two nonempty closed sets of (X, d);

2. T is a cyclic set-valued quasi-contraction type with constant A = 1;

3. T has no fixed point in X.

Proof. (1) First, we show that (X, d) is a metric space. It is sufficient to prove the triangle inequality for all
x, Y,z € X. Note that
r)r{%\ dix,y)=1 and n;fyx d(x,y) = 2.

Then, we have
dx,y) <2=1+1<d(x,y) +d(zv)

for all distinct points x, y, z € X. If any two points of x, y, z are equal, the triangle inequality holds obviously.
Thus, (X, d) is a metric space. On the other hand, since (X, d) is discrete, we can see that it is complete, and
A, B are two nonempty closed sets of (X, d).

(2) Itis clear that T(A) € B and T(B) C A, so T is a cyclic set-valued mapping. Next, we show that (10)
holds forallx € A,y € Borx € B, y € A, where A = % Without loss of generality, let x € A, y € B be given.
We consider the following three cases.
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Case 1. Assume that x = a;. Then, we have Tx = {b1}. If y = by, then Ty = {2} and d(x, Ty) = 2. It follows
that

H(Tx, Ty) = H({az}, () =1= -2

Q NI»—‘

=%d(x,Ty)< =N(x, y).

If y = by, then we have d(y, Tx) = 2. It follows that

H(Tx,Ty) = H({a1}, {b:1}) =1= 5 -2

N~

1
= 2d(y,T) < ING, ).
If y = b3, then Ty = {a1,a,}. Note that d(y, Tx) = d(b1, b3) = 2. Then, we have

-2

H(Tx, Ty) = H(ar,a2), b)) = 1 = 3

1 1
= Ed(y, Tx) < EN(X’ ).

Case 2. Assume that x = 4. Then, we have Tx = {b,}. If y = b; or y = b3, then we get d(y, Tx) = 2, leading
to that

H(Tx,Ty)=1= = %d(y, Tx) < %N(x, Y).

NI>—‘

If y = by, then Ty = a; and d(x, Ty) = d(a1,a2) = 2. It follows that

H(Tx, Ty) = H({a1}, {b2}) =1 = 5 -2

NIP—‘

= 24, Ty) < NG ).

Case 3. Suppose that x = a3. Then, we get Tx = {by, b,}. If y = by, then we have Ty = {a,} and d(x, Ty) = 2. If
y = by, then Ty = {b1} and d(x, Ty) = 2. In these cases, we can see that

H(Tx,Ty)=1= = %d(x, Ty) < %N(x, ).

NI>—‘

If y = b3, then Ty = {a1,a,}. Note that d(y, Tx) = d(bs, {b1, b2}) = 2. Then, we have

H(Tx,Ty) = H({a1, a2}, {b1,b2}) = 1= - -2

I\)I'-‘

= %d(y, Tx) < %N(x, Y).

From the above three cases, we obtain that (10) holds and so T is a cyclic set-valued quasi-contraction
type with constant A = 3
(3) Note that T(A) € B, T(B) € Aand AU B = (. Then, it is clear that T has no fixed pointin X. O

On the other hand, the fixed point theorem for cyclic set-valued weak contraction is true in metric
spaces. We give the following theorem to show this result.

Theorem 4.3. Let (X, d) be a complete metric space, {A;}_, be nonempty sets of (X, d) and T : | Ji_, Ai = CB(X) be
a cyclic set-valued weak contraction. Suppose that there exlsts io €{1,2,...,r} such that A;, is closed. Then T has a
fixed point.
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Proof. Since a < 1, there exists ¥ € R such that @ < y < 1. Let xy € J_; A;. Without loss of generality,
suppose that xy € A;. By the definition of T, we have Txy C A,. If xo € Txg, then xo is the fixed point. So we
assume that xy ¢ Txo.

Take x; € Txp. Then we have xo # x1 and d(xo, Txp) > 0. Since x; € A, by Lemma 2.1 and (17), there
exists x, € Tx; C Az such that

d(xy,x2) < H(Txo, Tx1) + (y — a)K(xo, x1)
< yK(xo, x1).

Similarly, assume that x; ¢ Tx;. Then there exists x3 € Tx, C A4 such that
d(x2,x3) < yK(x1, x2).
Proceeding inductively, we can obtain a sequence {x,} such that x, € A;, x,41 € Tx,, C Ajy1, Xn & Tx, and
A(Xps1, Xn42) < YK(Xn, Xps1), (19)

forall n € N, wherei € {1,2,...,r} satisfiesi = n + 1 (mod r).
Next, we show that {x,} is a Cauchy sequence. By (19), we have

d(xn/ x‘rl+1) < VK(x‘/l—ll xn)

= ymax {du-1, 350, doct, Thocn), d, T,

A(xu-1, Txp) + d(x, Txn—l)}
2

d(xn—ll xn+1)
—2 .

< y max {d(xnl, Xn), A(Xn, Xp+1),

Since d(x;,-1, Xp+1) < d(Xp-1x,) + d(x,X11), We obtain that

A(xu-1%,) + d(xnxn+1)}
2

A(xy, Xpe1) < Y Max {d(xn—l/ Xn), A(Xpn, Xns1),
=7y maXx {d(xn—ll xn)/ d(xn/ xn+l)} .

If d(xp, xp41) < yd(xy, Xp11), then we have d(x,, x,4+1) = 0 and so x,, = x,4+1, which contradict our assumption.
Thus, we deduce that

d(xn, xn+1) S yd(xn—lr xn)/

for all n € N. By Lemma 3.1 with p = 1, we conclude that {x,} is a Cauchy sequence.

Since (X, d) is a complete metric space, there exists x* € X such that x, — x* as n — oco. Note that
Xrk+ip—1 € Aj, for all k € N. Let ny = rk +ip — 1, then we obtain a subsequence {x,,} of {x,,} such that {x,,} C A;,
and x,, — x* as k — co. Since A;, is a closed set, we can see x* € A;,. Note that x,,,_; € Aj,—1 for k € N. Then,
from (17),

H(Txy,_1, Tx") < ' max {d(xnk_l, 3, A1, T 1), (", TX),

d(xp—1, Tx*) + d(Txnk_l,x*)}
2

< amax {d(xnk_l, ), -1, ), (67, TX),

A(xp—1,x%) +d(x*, Tx*) + d(xnk,x*)}
> .
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Remarking that the subsequence {x,,—1} converges to x*, we obtain that
d(x*, Tx") = ;}1_1}010 d(xp, Tx") < @H(Txnrl, Tx") < ad(x*, Tx").
Thus, d(x*, Tx*) =0and sox* € Tx*. O

It is easy to see that every Banach contraction is a weak contraction. Then, we can obtain the following
result which is studied in [1].

Corollary 4.4 ([1]). Let (X, d) be a complete metric space, {A;},_; be nonempty sets of (X, d) such that at least one of
which is closed. Suppose that T : | Ji_; Ai = CB(X) be a cyclic set-valued contraction, that is, T is a cyclic set-valued
mapping and there exists o € [0, 1) such that

H(Tx, Ty) < ad(x, y)
forallx e Ajand y € Ay withi=1,2,...,r. Then T has a fixed point.

Note that non-cyclic version is a special case of cyclic version. Then, we can obtain the following
corollary which extends the result [13, Theorem 3.1] to cyclic version.

Corollary 4.5. Let (X, d) be a complete metric space, {A;},_, be nonempty sets of (X, d) such that at least one of which

is closed. Suppose that T : \Ji_, A; — CB(X) be a cyclic set-valued mapping. If there exist 3 < ¢ < 1and 0 < A < g5
such that
H(Tx, Ty) < Amax{d(x, y), d(x, Tx),d(y, Ty), cd(x, Ty), cd(y, Tx)}

forallx € Ajand y € Ajq withi=1,2,...,r, then T has a fixed point.
Proof. Since ¢ > 1, wehave A < 75 < 2 <1, leading to that
2Ac < l ‘2c=1.
2c
Let a = 2Ac. Then, we get A < a < 1. It follows that
H(Tx, Ty) < Amax{d(x, y),d(x, Tx),d(y, Ty), cd(x, Ty), cd(y, Tx)}

= max {Ad(x, ), Ad, T2), Ad(y, Ty), S, Ty), Sy, )}
< max {ad(x, ), ad(e, T), ad(y, Ty), 5, Ty), 5 d(y, Tx)}

< amax {d(x, y),d(x, Tx),d(y, Ty), %d(x, Ty), %d(y, Tx)}

d(x, Ty) + d(y, Tx)}
2

< amax {d(x, y),d(x, Tx),d(y, Ty),
= aK(x, y).
Thus, T is a cyclic set-valued weak contraction and so the conclusion holds by applying Theorem 4.3. [
Remark 4.6. Note that the conclusion of [13, Theorem 3.1] is that at least one of the following conditions holds:
(i) T has a fixed point,
(ii) T? has a fixed point (that is, there exists z € X such that z € T?z, where T?>z = | yer, Tw).

Howewver, the conclusion of Corollary 4.5 can deduce all of (i) and (ii). That is, (i) implies (ii). In fact, if T has a fixed
point x* € X, then x* € Tx" and
Tx* C U Tw = T2x",
w€eTx*

which implies that x* is a fixed point for T?.
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