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Abstract. In this work, we give a partial positive answer to the question concerning the set-valued quasi-
contraction proposed by Amini-Harandi (Appl. Math. Lett. 24:1791–1794 2011). By a useful lemma, we
prove a fixed point theorem for the set-valued quasi-contraction, which extends the range of contraction

constant in result of Amini-Harandi from
[
0, 1

2

)
to
[
0, 1

3√3

)
. Also, we give a new simple proof for the

result of quasi-contraction type proposed by Haghi et al. (Appl. Math. Lett. 25:843–846 2012). Finally,
a counterexample and a theorem concerning cyclic set-valued mapping are given, which improve some
recent results.

1. Introduction

In 1974, Ćirić [9] introduced a class of well known contraction, called Ćirić type contraction, and
established the corresponding fixed point theorem. Since then, many authors studied and extended Ćirić
type contraction in various distinct directions, see e.g. [2, 6, 16, 19]. We recall the notion of Ćirić type
contraction as follows.

Let (X, d) be a metric space. A mapping T : X → X is said to be a Ćirić type contraction (or called
quasi-contraction) if there exists λ ∈ [0, 1) such that

d(Tx,Ty) ≤ λmax{d(x, y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)}

for all x, y ∈ X.
In 1969, Nadler [18] generalized the Banach contraction principle to set-valued mappings by the Haus-

dorff metric. The theory of set-valued mappings has many applications and a lot of authors investigated
the fixed point theorem for set-valued contraction, see e.g. [3–5, 7, 8, 10, 13–15, 17, 20]. The relative concepts
are introduced as below.

Throughout this paper, letN andN+ denote the nonnegative integers, the positive integers, respectively.
Let (X, d) be a metric space. We denote by 2X and CB(X), the collection of all nonempty subsets of X, the
collection of all nonempty closed bounded subsets of (X, d), respectively. Let T : X→ 2X be a multi-valued
mapping. We say that x ∈ X is a fixed point of T if x ∈ Tx.
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Definition 1.1. Let (X, d) be a metric space. For any x ∈ X and A,B ∈ CB(X), denote

d(x,A) = inf
y∈A

d(x, y) and δ(A,B) = sup
a∈A

d(a,B).

We say that H(A,B) : CB(X) × CB(X)→ R+ is a Hausdorffmetric on CB(X) induced by d if

H(A,B) = max{δ(A,B), δ(B,A)}.

In what follows, the set-valued version of Ćirić type fixed point theorem is considered. Let (X, d) be
a metric space. A set-valued mapping T : X → CB(X) is called a set-valued quasi-contraction if there exists
λ ∈ [0, 1) such that

H(Tx,Ty) ≤ λM(x, y) (1)

for all x, y ∈ X, where M(x, y) = max{d(x, y), d(x,Tx), d(y,Ty), d(x,Ty),
d(y,Tx)}.

In 2011, Amini-Harandi [3] proved a set-valued quasi-contraction fixed point theorem as follows.

Theorem 1.2 ([3]). Let (X, d) be a complete metric space. Let T : X→ CB(X) be a set-valued quasi-contraction with
constant λ < 1

2 . Then T has a fixed point.

And then, a question was raised following the above theorem in [3].

Problem 1.3 ([3]). Does the conclusion of [3, Theorem 2.2] remain true for any 1
2 ≤ λ < 1?

In the last decade, many scholars devoted to investigating set-valued version of quasi-contraction
mappings and obtain some valuable results, see e.g. [11, 13, 17, 20]. In [11], Haghi et al. gave a similar
result called quasi-contraction type, but Mohammadi et al. [17] showed that a set-valued quasi-contraction
need not be quasi-contraction type. Up to now, the question above is still open.

On the other hand, the cyclic version of set-valued contraction fixed point theorem was studied by some
scholars in recent years. In 2018, Sridarat and Suantai [21] investigated and gave a theorem for nonlinear
cyclic set-valued mapping. In 2020, Ahmadi et al. [1] obtained some results on cyclic set-valued contraction
in metric spaces.

In this paper, we establish some results on set-valued mapping for quasi-contraction, quasi-contraction
type and weak contraction, as well as the corresponding cyclic version. In Section 3, we partially answer

Question 1.3 by extending the range of constant λ from
[
0, 1

2

)
to
[
0, 1

3√3

)
. To this end, we prove an essential

lemma and apply new technique for the proof of Cauchy sequence in our theorem. Also, we prove again
the result of quasi-contraction type in [11] by our new lemma and technique, and an example is given
to verify our results. In Section 4, we give a counterexample to show that cyclic set-valued mapping for
quasi-contraction and quasi-contraction type fail to hold with λ ≥ 1

2 . On the other hand, the result of cyclic
set-valued weak contraction is established, which extends the results proposed by Ahmadi et al. [1] and
Khojasteh et al. [13].

2. Preliminaries

In this section, we introduce some useful lemmas concerning Hausdorffmetric.

Lemma 2.1 ([18]). Let (X, d) be a metric space and A,B ∈ CB(X) be two nonempty sets. Then for any b ∈ B and any
α > 0, there exists a ∈ A such that

d(a, b) ≤ H(A,B) + α.

Lemma 2.2 ([18]). Let (X, d) be a metric space, a, b ∈ X be two points and A,B,C ∈ CB(X) be three sets. Then the
following hold:
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(1) d(a,A) ≤ d(a, b) + d(b,A);

(2) d(a,B) ≤ d(a,A) +H(A,B);

(3) H(A,C) ≤ H(A,B) +H(B,C).

Lemma 2.3 ([18]). Let (X, d) be a metric space, {An} ⊂ CB(X) be a sequence of set and A∗ ∈ CB(X). Let {an} ⊂ X be
a sequence such that an ∈ An for all n ∈N. If

lim
n→∞

H(An,A∗) = 0 (2)

and

lim
n→∞

d(an, a∗) = 0 (3)

for some a∗ ∈ X, then a∗ ∈ A∗.

3. Quasi-contraction and quasi-contraction type

In this section, we give a partial answer to Question 1.3 and give a new proof for set-valued quasi-
contraction type fixed point theorem. First, we prove a crucial lemma for our theorems.

Lemma 3.1. Let (X, d) be a metric space, {xn} ⊂ X be a sequence. If there exist α < 1 and a positive integer p such
that

d(xn, xn+1) ≤ αmax{d(xn−i, xn−i+1) : 1 ≤ i ≤ p} (4)

for all n ∈N with n ≥ p, then {xn} is a Cauchy sequence.

Proof. Let ⌊a⌋ = max{n ∈N : n ≤ a} for all a > 0. Denote that

Q = max{d(xi, xi+1) : 0 ≤ i ≤ p − 1}.

By (4), we can see that d(xp, xp+1) ≤ αQ. Note that d(xp, xp+1) ≤ Q. Then, applying (4) again, we have
d(xp+1, xp+2) ≤ αQ. Continuing inductively, we obtain that

d(xp+k, xp+k+1) ≤ αQ

for all 0 ≤ k ≤ p − 1. It follows that max{d(xp+k, xp+k+1) : 0 ≤ k ≤ p − 1} ≤ αQ. Similarly, we can obtain
d(x2p+k, x2p+k+1) ≤ α2Q for all 0 ≤ k < p.

Proceeding inductively, we deduce that

max{d(xmp+k, xmp+k+1) : 0 ≤ k ≤ p − 1} ≤ αmQ

for all m ∈N. Note that if mp + k = n, we have m = ⌊ n
p ⌋. Then, we can see that

d(xn, xn+1) ≤ α
⌊

n
p

⌋
Q

for all n ∈N. Hence, for any m,n ∈N and m < n, we have

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + · · · + d(xn−1, xn)

≤

n−1∑
i=m

α
⌊

i
p

⌋
Q

≤ p

⌊
n−1

p

⌋∑
k=
⌊

m
p

⌋αkQ

≤ p
∞∑

k=
⌊

m
p

⌋αkQ =
pα
⌊

m
p

⌋
Q

1 − α
.
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Since α < 1, letting m→∞, we can see that d(xm, xn)→ 0, which implies {xn} is a Cauchy sequence.

Remark 3.2. As shown in Lemma 3.1, the constant p should be independent of the index n in (4). If they are
correlative, the sequence {xn} could not be Cauchy. In fact, let X = [0,+∞) be a complete metric space with the
standard metric, {xn} ⊂ X be a sequence such that xn =

∑n
i=1

1
i for n ≥ 1 and x0 = 0. Suppose that p =

⌊
n
2

⌋
+ 1. Then,

we have

d(xn, xn+1) =
1

n + 1
≤

1
2

1⌊
n+1

2

⌋
≤

1
2

max
{
d(xi, xi+1) : n −

⌊n
2

⌋
− 1 ≤ i ≤ n − 1

}
for all n ≥ 1. However, it is clear that {xn} is not convergent in X and so it is not Cauchy.

Now, we give the following theorem to answer Question 1.3.

Theorem 3.3. Let (X, d) be a complete metric space and T : X → CB(X) be a set-valued quasi-contraction with
constant λ. If the constant λ satisfies λ < 1

3√3
, then T has a fixed point.

Proof. Since λ < 1
3√3

, there exists β ∈ R such that λ < β < 1
3√3

. Let x0 ∈ X and x1 ∈ Tx0. If x0 ∈ Tx0, then x0 is
the fixed point. So we assume that x0 < Tx0, which implies that x0 , x1 and d(x0,Tx0) > 0. From Lemma 2.1
and (1), there exists x2 ∈ Tx1 such that

d(x1, x2) ≤ H(Tx0,Tx1) + (β − λ)M(x0, x1)
≤ βM(x0, x1).

Similarly, assume that x1 < Tx1. Then there exists x3 ∈ Tx2 such that

d(x2, x3) ≤ βM(x1, x2).

Proceeding inductively, we can obtain a sequence {xn} such that xn+1 ∈ Txn, xn < Txn and

d(xn+1, xn+2) ≤ βM(xn, xn+1) (5)

for all n ∈N.
Next, we show that {xn} is a Cauchy sequence. Let n ∈ N be such that n ≥ 4. From (5) and xn+1 ∈ Txn,

we have

d(xn, xn+1) ≤ βM(xn−1, xn)
= βmax{d(xn−1, xn), d(xn−1,Txn−1), d(xn,Txn), d(xn−1,Txn), d(xn,Txn−1)}
≤ βmax{d(xn−1, xn), d(xn, xn+1), d(xn−1,Txn)}.

Note that if d(xn, xn+1) ≤ βd(xn, xn+1), we have xn = xn+1, which contradicts the fact xn+1 ∈ Txn and xn < Txn.
So, we obtain that

d(xn, xn+1) ≤ βmax{d(xn−1, xn), d(xn−1,Txn)}. (6)

Since d(xn−1,Txn) ≤ H(Txn−2,Txn), by (1), we deduce that

d(xn−1,Txn) ≤ λM(xn−2, xn)
≤ βM(xn−2, xn)
≤ βmax{d(xn−2, xn), d(xn−2, xn−1), d(xn, xn+1), d(xn−2,Txn), d(xn−1, xn)}. (7)
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Combining (6) and (7), we can see

d(xn, xn+1) ≤ max{βd(xn−1, xn), β2d(xn−2, xn), β2d(xn−2, xn−1), β2d(xn−2,Txn)}.

Similarly, we can obtain that

d(xn−2,Txn) ≤ βmax{d(xn−3, xn), d(xn−3, xn−2), d(xn, xn+1), d(xn−3,Txn), d(xn−2, xn)},

leading to that

d(xn, xn+1) ≤ max{βd(xn−1, xn), β2d(xn−2, xn), β2d(xn−2, xn−1),

β3d(xn−3, xn), β3d(xn−3, xn−2), β3d(xn−3,Txn)}. (8)

As in the proof of (7), we have

d(xn−3,Txn) ≤ βmax{d(xn−4, xn), d(xn−4, xn−3), d(xn, xn+1), d(xn−4,Txn), d(xn−3, xn)}.

If d(xn−3,Txn) ≤ βd(xn−4,Txn), then from the triangle inequality, we have

d(xn−3,Txn) ≤ β[d(xn−4, xn−3) + d(xn−3,Txn)],

which implies that d(xn−3,Txn) ≤ β
1−βd(xn−4, xn−3). So, we can see

d(xn−3,Txn) ≤ βmax
{
d(xn−4, xn), d(xn, xn+1),

1
1 − β

d(xn−4, xn−3), d(xn−3, xn)
}
. (9)

Therefore, by (8) and (9), we conclude that

d(xn, xn+1)

≤ max
{
βd(xn−1, xn), β2d(xn−2, xn), β2d(xn−2, xn−1),

β3d(xn−3, xn), β3d(xn−3, xn−2), β4d(xn−4, xn),

β4

1 − β
d(xn−4, xn−3)

}
≤ max

{
βd(xn−1, xn), 2β2 d(xn−2, xn−1) + d(xn−1, xn)

2
, β2d(xn−2, xn−1),

3β3 d(xn−3, xn−2) + d(xn−2, xn−1) + d(xn−1, xn)
3

, β3d(xn−3, xn−2),

4β4 d(xn−4, xn−3) + d(xn−3, xn−2) + d(xn−2, xn−1) + d(xn−1, xn)
4

,

β4

1 − β
d(xn−4, xn−3)

}
≤ max

{
β, 2β2, 3β3, 4β4,

β4

1 − β

}
max{d(xn−4, xn−3), d(xn−3, xn−2),

d(xn−2, xn−1), d(xn−1, xn)}.

Since β < 1
3√3

, we can see that

α = max
{
β, 2β2, 3β3, 4β4,

β4

1 − β

}
< 1.

Then, from lemma 3.1, {xn} is a Cauchy sequence in X.
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Since (X, d) is complete, there exists a x∗ ∈ X such that {xn} converges to x∗. Then we show that x∗ is a
fixed point of T. By (1), we have

H(Txn,Tx∗) ≤ λM(xn, x∗)
= λmax{d(xn, x∗), d(xn,Txn), d(x∗,Tx∗),

d(xn,Tx∗), d(Txn, x∗)}.

If M(xn, x∗) = d(x∗,Tx∗) for some n ∈N, then by Lemma 2.2 (2), we have

H(Txn,Tx∗) ≤ λd(x∗,Tx∗) ≤ λ[d(x∗,Txn) +H(Txn,Tx∗)],

which implies that

H(Txn,Tx∗) ≤
λ

1 − λ
d(x∗,Txn) ≤

λ
1 − λ

d(x∗, xn+1).

Similarly, if M(xn, x∗) = d(xn,Tx∗) for some n ∈N, then we obtain that

H(Txn,Tx∗) ≤
λ

1 − λ
d(xn,Txn) ≤

λ
1 − λ

d(xn, xn+1).

Thus, for every n ∈N, we can see that

H(Txn,Tx∗)

≤ λmax
{

d(xn, x∗), d(xn, xn+1),
d(x∗, xn+1)

1 − λ
,

d(xn, xn+1)
1 − λ

, d(xn+1, x∗)
}
.

Letting n → ∞, since {xn} converges to x∗, we conclude that H(Txn,Tx∗) → 0. Note that xn+1 ∈ Txn for all
n ∈N. Then, from Lemma 2.3 we can obtain that x∗ ∈ Tx∗. Therefore, x∗ is a fixed point of T.

Next, by Lemma 3.1, we give a new proof for set-valued quasi-contraction type fixed point theorem,
which is simpler than that of [11, Theorem 2.2]. For convenience, the notion of set-valued quasi-contraction
type is reviewed as follows.

A set-valued mapping T : X → CB(X) is called a set-valued quasi-contraction type if there exists λ ∈ [0, 1)
such that

H(Tx,Ty) ≤ λN(x, y), (10)

for all x, y ∈ X, where N(x, y) = max{d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)}.

Theorem 3.4. Let (X, d) be a complete metric space and T : X → CB(X) a set-valued quasi-contraction type. Then
T has a fixed point.

Proof. Since λ < 1, there exists β such that λ < β < 1. Let x0 ∈ X and x1 ∈ Tx0. From a similar argument in
the proof of Theorem 3.3, we can obtain a sequence {xn} such that xn+1 ∈ Txn, xn < Txn and

d(xn+1, xn+2) ≤ βN(xn, xn+1) (11)

for all n ∈N.
Next, we show that {xn} is a Cauchy sequence. Since β < 1, there exists ρ ∈N+ such that

βρ+1

1 − β
< 1. (12)

Let n ∈N be such that n ≥ ρ + 1. From (11) and xn+1 ∈ Txn, we have

d(xn, xn+1) ≤ βM(xn−1, xn)
= βmax{d(xn−1,Txn−1), d(xn,Txn), d(xn−1,Txn),

d(xn,Txn−1)}
= βmax{d(xn−1,Txn−1), d(xn,Txn), d(xn−1,Txn)}.
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If d(xn, xn+1) ≤ βd(xn,Txn) ≤ βd(xn, xn+1), then we have xn = xn+1, which contradicts the fact xn+1 ∈ Txn and
xn < Txn. So, we obtain that

d(xn, xn+1) ≤ max{βd(xn−1, xn), βd(xn−1,Txn)}. (13)

Since d(xn−1,Txn) ≤ H(Txn−2,Txn), by (10), we have

d(xn−1,Txn) ≤ λN(xn−2, xn) ≤ βN(xn−2, xn)
= βmax{d(xn−2,Txn−2), d(xn,Txn), d(xn−2,Txn),

d(xn,Txn−2)}
≤ βmax{d(xn−2, xn−1), d(xn, xn+1), d(xn−2,Txn),

d(xn, xn−1)}.

Combining (13), we obtain that

d(xn, xn+1) ≤ max{βd(xn−1, xn), βd(xn−2, xn−1), β2d(xn−2,Txn)}. (14)

Similarly, we can deduce

d(xn−2,Txn) ≤ H(Txn−3,Txn) ≤ βN(xn−3, xn)
= βmax{d(xn−3,Txn−3), d(xn,Txn), d(xn−3,Txn),

d(xn,Txn−3)}
≤ βmax{d(xn−3, xn−2), d(xn, xn+1), d(xn−3,Txn),

d(xn,Txn−3)},

which implies that

d(xn, xn+1) ≤ max{βd(xn−1, xn), βd(xn−2, xn−1), βd(xn−3, xn−2)

β3d(xn−3,Txn), β3d(xn,Txn−3)}.

Proceeding inductively, we can conclude that

d(xn, xn+1) ≤ max Cρ ∪Dρ, (15)

where
Cρ = {βd(xn−i, xn−i+1) : 1 ≤ i ≤ ρ}

and
Dρ = {β

ρd(xn−i,Txn− j) : 0 ≤ i, j ≤ ρ and i + 1 , j}.

Then, applying (10), we can see

d(xn−i,Txn− j) ≤ H(Txn−i−1,Txn− j) ≤ βN(xn−i−1, xn− j)
≤ βmax{d(xn−i−1, xn−i), d(xn− j, xn− j+1),

d(xn−i−1,Txn− j), d(xn− j,Txn−i−1)}.

If H(Txn−i−1,Txn− j) ≤ βd(xn−i−1,Txn− j), then from Lemma 2.2 (2), we have

H(Txn−i−1,Txn− j) ≤ β[d(xn−i−1,Txn−i−1) +H(Txn−i−1,Txn− j)],

which implies that

H(Txn−i−1,Txn− j) ≤
β

1 − β
d(xn−i−1,Txn−i−1) ≤

β

1 − β
d(xn−i−1, xn−i).
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If H(Txn−i−1,Txn− j) ≤ βd(xn− j,Txn−i−1), then by Lemma 2.2 (2), we can see that

H(Txn−i−1,Txn− j) ≤
β

1 − β
d(xn− j,Txn− j) ≤

β

1 − β
d(xn− j, xn− j+1).

Thus, from β <
β

1−β , we obtain that

d(xn−i,Txn− j) ≤ H(Txn−i−1,Txn− j)

≤
β

1 − β
max{d(xn−i−1, xn−i), d(xn− j, xn− j+1)}.

(16)

Combining (12), (15) and (16), we can deduce that

d(xn, xn+1) ≤ γmax{d(xn−i, xn−i+1) : 1 ≤ i ≤ ρ + 1},

where γ = max
{
β,

βρ+1

1−β

}
< 1. By Lemma 3.1 with p = ρ + 1, {xn} is a Cauchy sequence.

Since (X, d) is a complete metric space, there exists x∗ ∈ X such that xn → x∗. By (10), we have

H(Txn,Tx∗) ≤ λmax{d(xn,Txn), d(x∗,Tx∗), d(xn,Tx∗), d(Txn, x∗)}
≤ λmax{d(xn, xn+1), d(x∗,Tx∗), d(xn, x∗) + d(x∗,Tx∗),

d(xn+1, x∗)}.

Since the metric d is continuous, we deduce that

d(x∗,Tx∗) = lim
n→∞

d(xn+1,Tx∗) ≤ lim
n→∞

H(Txn,Tx∗) ≤ λd(x∗,Tx∗).

Thus, d(x∗,Tx∗) = 0 and so x∗ ∈ Tx∗.

Finally, an example is given to verify Theorem 3.3. Note that there are two existing results, quasi-
contraction type [11, Theorem 2.2] and weak contraction [13, Theorem 2.2], which are similar to this
theorem. In [17], Mohammadi et al. gave an example [17, Example 2.1], where the mapping T is a set-
valued quasi-contraction but not a quasi-contraction type. Next, we show that set-valued quasi-contraction
need not be a weak contraction in the following example.

Firstly, we review the notion of weak contraction. A mapping T : X → CB(X) is said to be a set-valued
weak contraction if there exists α ∈ [0, 1) such that for any x, y ∈ X,

H(Tx,Ty) ≤ αK(x, y), (17)

where K(x, y) = max
{
d(x, y), d(x,Tx), d(y,Ty), d(x,Ty)+d(y,Tx)

2

}
.

Example 3.5. Let X = R+ be equipped with the standard metric d(x, y) = |x− y| for all x, y ∈ X. Define a set-valued
mapping T : X→ CB(X) by

T(x) =


[

1
3 x, 2

3 x
]
, x ≥ 1;[

1
4 x, 1

2 x
]
, 0 < x < 1;

{0}, x = 0.

Then the following hold:

1. T is a set-valued quasi-contraction with λ = 2
3 ;

2. all the conditions in Theorem 3.3 are satisfied, and x = 0 is a fixed point for T;

3. T is not a set-valued weak contraction.
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Proof. (1) It is sufficient to prove that for any x, y ∈ X,

H(Tx,Ty) ≤
2
3

M(x, y)

=
2
3

max{d(x, y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)}. (18)

Indeed, let x, y ∈ X be arbitrarily given. Without loss of generality, we suppose that x > y. By the
construction of T, we consider the following two cases.
Case 1. Assume that x ≥ 1. Then, we have Tx =

[
1
3 x, 2

3 x
]
. If y ≥ 1, from the definition of Hausdorff metric

we obtain that

H(Tx,Ty) = H
([1

3
x,

2
3

x
]
,
[1
3

y,
2
3

y
])
=

2
3

(x − y)

=
2
3

d(x, y) ≤
2
3

M(x, y).

If 0 < y < 1, then we have

H(Tx,Ty) = H
([1

3
x,

2
3

x
]
,
[1
4

y,
1
2

y
])
=

2
3

x −
1
2

y

≤
2
3

(
x −

1
2

y
)
=

2
3

d(x,Ty) ≤
2
3

M(x, y).

If y = 0, it is easy to see that H(Tx,Ty) = H
([

1
3 x, 2

3 x
]
, {0}
)
= 2

3 d(x,Ty) ≤ 2
3 M(x, y).

Case 2. Assume that 0 ≤ x < 1. Since x > y and y ≥ 0, we have x > 0. Then, we obtain that

H(Tx,Ty) = H
([1

4
x,

1
2

x
]
,
[1
4

y,
1
2

y
])
=

1
2

(x − y)

=
1
2

d(x, y) ≤
2
3

M(x, y)

for any 0 < y < x and H(Tx,Ty) = H
([

1
4 x, 1

2 x
]
, {0}
)
= 1

2 d(x,Ty) ≤ 2
3 M(x, y) for y = 0.

Therefore, we completely prove that (18) holds for all x, y ∈ X.
(2) It is clear that (X, d) is a complete metric space and λ = 2

3 <
1
3√3

. Note that 0 ∈ T0 = {0}. Then x = 0 is
a fixed point for mapping T.

(3) Let x0 = 1 and y0 =
2
3 . Then ,we can see that

H(Tx0,Ty0) = H
([1

3
,

2
3

]
,
[1
6
,

1
3

])
=

1
3

and

max
{

d(x0, y0), d(x0,Tx0), d(y0,Ty0),
d(x0,Ty0) + d(y0,Tx0)

2

}
= max

1
3
,

1
3
,

1
3
,

2
3 + 0

2

 = 1
3
= H(Tx0,Ty0).

Therefore, we obtain that T is not a set-valued weak contraction.

4. Cyclic set-valued contraction

Let A1,A2, . . . ,Ar be nonempty sets of a metric space (X, d), where r is a given integer. A mapping
T :
⋃r

i=1 Ai → CB(X) is called to be a cyclic set-valued mapping if

T(Ai) ⊂ Ai+1
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for i = 1, 2, . . . , r with Ar+1 = A1, where T(Ai) =
⋃

a∈Ai
T(a).

In this section, we will use the following definitions of cyclic set-valued version of quasi-contraction,
quasi-contraction type and weak contraction.

Definition 4.1. Let (X, d) be a metric space and A1,A2, . . . ,Ar be nonempty sets of (X, d), where r is a given integer.
We call that T :

⋃r
i=1 Ai → CB(X) is

(i) a cyclic set-valued quasi-contraction if T is a cyclic set-valued mapping and there exists λ ∈ [0, 1) satisfying
(1) for all x ∈ Ai and y ∈ Ai+1 with i = 1, 2, . . . , r;

(ii) a cyclic set-valued quasi-contraction type if T is a cyclic set-valued mapping and there exists λ ∈ [0, 1)
satisfying (10) for all x ∈ Ai and y ∈ Ai+1 with i = 1, 2, . . . , r;

(iii) a cyclic set-valued weak contraction if T is a cyclic set-valued mapping and there exists α ∈ [0, 1) satisfying
(17) for all x ∈ Ai and y ∈ Ai+1 with i = 1, 2, . . . , r.

It is worth mentioning that the set of fixed points for cyclic mappings of quasi-contraction may be empty
in metric spaces. In [12, Example 2.1], He et al. gave a counterexample to show this fact. It is clear that this
fact can be extended to set-valued version. Note that every quasi-contraction type is a quasi-contraction.
Thus, we just need to give a counterexample, where the mapping T is a cyclic set-valued quasi-contraction
type but has no fixed point.

Example 4.2. Let X = {a1, a2, a3, b1, b2, b3} be a nonempty set, A = {a1, a2, a3} and B = {b1, b2, b3}. Let d : X × X→
R+ be such that

d(x, y) =


2, x, y ∈ A,
2, x, y ∈ B,
1, x ∈ A, y ∈ B or x ∈ B, y ∈ A.

Define a mapping T : A ∪ B→ CB(X) by

Ta1 = {b1}, Ta2 = {b2}, Tb1 = {a2}, Tb2 = {a1}

and
Ta3 = {b1, b2}, Tb3 = {a1, a2}.

Then the following hold:

1. (X, d) is a complete metric space and A,B are two nonempty closed sets of (X, d);

2. T is a cyclic set-valued quasi-contraction type with constant λ = 1
2 ;

3. T has no fixed point in X.

Proof. (1) First, we show that (X, d) is a metric space. It is sufficient to prove the triangle inequality for all
x, y, z ∈ X. Note that

min
x,y

d(x, y) = 1 and max
x,y

d(x, y) = 2.

Then, we have
d(x, y) ≤ 2 = 1 + 1 ≤ d(x, y) + d(z, y)

for all distinct points x, y, z ∈ X. If any two points of x, y, z are equal, the triangle inequality holds obviously.
Thus, (X, d) is a metric space. On the other hand, since (X, d) is discrete, we can see that it is complete, and
A,B are two nonempty closed sets of (X, d).

(2) It is clear that T(A) ⊂ B and T(B) ⊂ A, so T is a cyclic set-valued mapping. Next, we show that (10)
holds for all x ∈ A, y ∈ B or x ∈ B, y ∈ A, where λ = 1

2 . Without loss of generality, let x ∈ A, y ∈ B be given.
We consider the following three cases.
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Case 1. Assume that x = a1. Then, we have Tx = {b1}. If y = b1, then Ty = {a2} and d(x,Ty) = 2. It follows
that

H(Tx,Ty) = H({a2}, {b1}) = 1 =
1
2
· 2

=
1
2

d(x,Ty) ≤
1
2

N(x, y).

If y = b2, then we have d(y,Tx) = 2. It follows that

H(Tx,Ty) = H({a1}, {b1}) = 1 =
1
2
· 2

=
1
2

d(y,Tx) ≤
1
2

N(x, y).

If y = b3, then Ty = {a1, a2}. Note that d(y,Tx) = d(b1, b3) = 2. Then, we have

H(Tx,Ty) = H({a1, a2}, {b1}) = 1 =
1
2
· 2

=
1
2

d(y,Tx) ≤
1
2

N(x, y).

Case 2. Assume that x = a2. Then, we have Tx = {b2}. If y = b1 or y = b3, then we get d(y,Tx) = 2, leading
to that

H(Tx,Ty) = 1 =
1
2
· 2 =

1
2

d(y,Tx) ≤
1
2

N(x, y).

If y = b2, then Ty = a1 and d(x,Ty) = d(a1, a2) = 2. It follows that

H(Tx,Ty) = H({a1}, {b2}) = 1 =
1
2
· 2

=
1
2

d(x,Ty) ≤
1
2

N(x, y).

Case 3. Suppose that x = a3. Then, we get Tx = {b1, b2}. If y = b1, then we have Ty = {a2} and d(x,Ty) = 2. If
y = b2, then Ty = {b1} and d(x,Ty) = 2. In these cases, we can see that

H(Tx,Ty) = 1 =
1
2
· 2 =

1
2

d(x,Ty) ≤
1
2

N(x, y).

If y = b3, then Ty = {a1, a2}. Note that d(y,Tx) = d(b3, {b1, b2}) = 2. Then, we have

H(Tx,Ty) = H({a1, a2}, {b1, b2}) = 1 =
1
2
· 2

=
1
2

d(y,Tx) ≤
1
2

N(x, y).

From the above three cases, we obtain that (10) holds and so T is a cyclic set-valued quasi-contraction
type with constant λ = 1

2 .
(3) Note that T(A) ⊂ B, T(B) ⊂ A and A ∪ B = ∅. Then, it is clear that T has no fixed point in X.

On the other hand, the fixed point theorem for cyclic set-valued weak contraction is true in metric
spaces. We give the following theorem to show this result.

Theorem 4.3. Let (X, d) be a complete metric space, {Ai}
r
i=1 be nonempty sets of (X, d) and T :

⋃r
i=1 Ai → CB(X) be

a cyclic set-valued weak contraction. Suppose that there exists i0 ∈ {1, 2, . . . , r} such that Ai0 is closed. Then T has a
fixed point.



N. Lu et al. / Filomat 36:19 (2022), 6777–6790 6788

Proof. Since α < 1, there exists γ ∈ R such that α < γ < 1. Let x0 ∈
⋃r

i=1 Ai. Without loss of generality,
suppose that x0 ∈ A1. By the definition of T, we have Tx0 ⊂ A2. If x0 ∈ Tx0, then x0 is the fixed point. So we
assume that x0 < Tx0.

Take x1 ∈ Tx0. Then we have x0 , x1 and d(x0,Tx0) > 0. Since x1 ∈ A2, by Lemma 2.1 and (17), there
exists x2 ∈ Tx1 ⊂ A3 such that

d(x1, x2) ≤ H(Tx0,Tx1) + (γ − α)K(x0, x1)
≤ γK(x0, x1).

Similarly, assume that x1 < Tx1. Then there exists x3 ∈ Tx2 ⊂ A4 such that

d(x2, x3) ≤ γK(x1, x2).

Proceeding inductively, we can obtain a sequence {xn} such that xn ∈ Ai, xn+1 ∈ Txn ⊂ Ai+1, xn < Txn and

d(xn+1, xn+2) ≤ γK(xn, xn+1), (19)

for all n ∈N, where i ∈ {1, 2, . . . , r} satisfies i ≡ n + 1 (mod r).
Next, we show that {xn} is a Cauchy sequence. By (19), we have

d(xn, xn+1) ≤ γK(xn−1, xn)

= γmax
{
d(xn−1, xn), d(xn−1,Txn−1), d(xn,Txn),

d(xn−1,Txn) + d(xn,Txn−1)
2

}
≤ γmax

{
d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1)
2

}
.

Since d(xn−1, xn+1) ≤ d(xn−1xn) + d(xnxn+1), we obtain that

d(xn, xn+1) ≤ γmax
{

d(xn−1, xn), d(xn, xn+1),
d(xn−1xn) + d(xnxn+1)

2

}
= γmax {d(xn−1, xn), d(xn, xn+1)} .

If d(xn, xn+1) ≤ γd(xn, xn+1), then we have d(xn, xn+1) = 0 and so xn = xn+1, which contradict our assumption.
Thus, we deduce that

d(xn, xn+1) ≤ γd(xn−1, xn),

for all n ∈N. By Lemma 3.1 with p = 1, we conclude that {xn} is a Cauchy sequence.
Since (X, d) is a complete metric space, there exists x∗ ∈ X such that xn → x∗ as n → ∞. Note that

xrk+i0−1 ∈ Ai0 for all k ∈N. Let nk = rk+ i0 − 1, then we obtain a subsequence {xnk } of {xn} such that {xnk } ⊂ Ai0
and xnk → x∗ as k→∞. Since Ai0 is a closed set, we can see x∗ ∈ Ai0 . Note that xnk−1 ∈ Ai0−1 for k ∈N. Then,
from (17),

H(Txnk−1,Tx∗) ≤ αmax
{
d(xnk−1, x∗), d(xnk−1,Txnk−1), d(x∗,Tx∗),

d(xnk−1,Tx∗) + d(Txnk−1, x∗)
2

}
≤ αmax

{
d(xnk−1, x∗), d(xnk−1, xnk ), d(x∗,Tx∗),

d(xnk−1, x∗) + d(x∗,Tx∗) + d(xnk , x
∗)

2

}
.
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Remarking that the subsequence {xnk−1} converges to x∗, we obtain that

d(x∗,Tx∗) = lim
n→∞

d(xnk ,Tx∗) ≤ lim
n→∞

H(Txnk−1,Tx∗) ≤ αd(x∗,Tx∗).

Thus, d(x∗,Tx∗) = 0 and so x∗ ∈ Tx∗.

It is easy to see that every Banach contraction is a weak contraction. Then, we can obtain the following
result which is studied in [1].

Corollary 4.4 ([1]). Let (X, d) be a complete metric space, {Ai}
r
i=1 be nonempty sets of (X, d) such that at least one of

which is closed. Suppose that T :
⋃r

i=1 Ai → CB(X) be a cyclic set-valued contraction, that is, T is a cyclic set-valued
mapping and there exists α ∈ [0, 1) such that

H(Tx,Ty) ≤ αd(x, y)

for all x ∈ Ai and y ∈ Ai+1 with i = 1, 2, . . . , r. Then T has a fixed point.

Note that non-cyclic version is a special case of cyclic version. Then, we can obtain the following
corollary which extends the result [13, Theorem 3.1] to cyclic version.

Corollary 4.5. Let (X, d) be a complete metric space, {Ai}
r
i=1 be nonempty sets of (X, d) such that at least one of which

is closed. Suppose that T :
⋃r

i=1 Ai → CB(X) be a cyclic set-valued mapping. If there exist 1
2 ≤ c < 1 and 0 ≤ λ < 1

4c2

such that
H(Tx,Ty) ≤ λmax{d(x, y), d(x,Tx), d(y,Ty), cd(x,Ty), cd(y,Tx)}

for all x ∈ Ai and y ∈ Ai+1 with i = 1, 2, . . . , r, then T has a fixed point.

Proof. Since c ≥ 1
2 , we have λ < 1

4c2 ≤
1
2c ≤ 1, leading to that

2λc <
1
2c
· 2c = 1.

Let α = 2λc. Then, we get λ ≤ α < 1. It follows that

H(Tx,Ty) ≤ λmax{d(x, y), d(x,Tx), d(y,Ty), cd(x,Ty), cd(y,Tx)}

= max
{
λd(x, y), λd(x,Tx), λd(y,Ty),

α
2

d(x,Ty),
α
2

d(y,Tx)
}

≤ max
{
αd(x, y), αd(x,Tx), αd(y,Ty),

α
2

d(x,Ty),
α
2

d(y,Tx)
}

≤ αmax
{
d(x, y), d(x,Tx), d(y,Ty),

1
2

d(x,Ty),
1
2

d(y,Tx)
}

≤ αmax
{

d(x, y), d(x,Tx), d(y,Ty),
d(x,Ty) + d(y,Tx)

2

}
= αK(x, y).

Thus, T is a cyclic set-valued weak contraction and so the conclusion holds by applying Theorem 4.3.

Remark 4.6. Note that the conclusion of [13, Theorem 3.1] is that at least one of the following conditions holds:

(i) T has a fixed point,

(ii) T2 has a fixed point (that is, there exists z ∈ X such that z ∈ T2z, where T2z =
⋃
ω∈Tz Tω).

However, the conclusion of Corollary 4.5 can deduce all of (i) and (ii). That is, (i) implies (ii). In fact, if T has a fixed
point x∗ ∈ X, then x∗ ∈ Tx∗ and

Tx∗ ⊂
⋃
ω∈Tx∗

Tω = T2x∗,

which implies that x∗ is a fixed point for T2.
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