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Abstract. In this paper, we apply four-dimensional infinite matrices to newly constructed original ex-
tension of bivariate Bernstein-Kantorovich type operators based on multiple shape parameters. We also
use Bogel continuity to construct the GBS (Generalized Boolean Sum) operators for defined bivariate Kan-

torovich type. Moreover, we demonstrate certain illustrative graphs to show the applicability and validity
of proposed operators.

1. Introduction

A double sequence A = (A.,) is said to be convergent to M in Pringsheim sense (P-convergent), and it
is denoted by P — hCI}lAc,d = M if there exists T = T(c) € IN for all ¢ > 0, such that |)\C,d - M) < 0 whenever
c,d > T. The doubfe sequence A = (A.4) is called bounded if there exists a positive number D so that
|Acd| < D forall (c,d) e N2 = N x N.

Let F be a four-dimensional summability method. The F transform of double sequence A = (A,p)
(denoted by FA := ((FA),p)) is defined as

0o

(FA)ap = Z fapedtcds

c,d=1

and the given double series is P-convergent for any (a,b) € IN2.

A four-dimensional matrix F = (f,,4) is called RH—regular (shortly RHR, please see [4]) if it transforms
each bounded P—convergent sequence into a P—convergent sequence preserving the same P-limit. Four-
dimensional infinite matrices have been used in recent summability papers (please see, [1, 2]).
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Assume that F = (f,5,4) is a nonnegative RHR matrix, and A C IN?, then F —density of A is defined as

Or(A) := P —lim E faped (P —limit exists).
ab
(c,d)eA

The notion of statistical convergence for sequences of real and complex numbers was given and discussed
in the studies [3, 5-12]. A real double sequence A = (A.4) is called F—statistically convergent to M and denoted
by str — lir;v\ad = M if, for every o > 0,

C

Se({(c,d) € N? ¢ |Aey = M| 2 0}) = 0.

Constructing a novel extension of bivariate operators based on certain multiple shape parameters in the
next section, we obtain Korovkin type (see, [13]) theorems via the four-dimensional summability method
and statistical convergence. Using the notion of four-dimensional summability method, we obtain the rates
of convergence in Section 3. Moreover, we construct the GBS version of proposed operators and estimate
the rate of convergence for them. In the final section, we demonstrate certain computer graphics to see and
understand the convergence of our operators.

2. Construction of operators and Korovkin type theorems

Bernstein polynomials of degree r are defined [14] on [0,1] = 1 as follows:

r

B.(9;2) = 8(5) bo(2), 2.1
(%:2) ZO ) bs(2) 2.1)
where 8 € C[0,1] = C, bys(z) = ()z° (1 -2)"°, s=0,...,r,and b;5(z) =0,7 <0 ors > r.

Kantorovich [15] presented an approximation process for Lebesgue integrable real-dalued functions
defined on 7 by replacing sample values \9(3) with the mean values of 9 in the interval [f, %] It is well
known that these operators involving Lebesgue integrable functions on 7 can be expressed by means of
Bernstein basis functions b,(z),

s+l

K (8;2) = (r+1)Z bys(2) f "o dt.
s=0

s
r+1

A new class of Bernstein basis functions including adjustable shape parameters was proposed by Han

et al. [16] as follows: For r arbitrarily selected real values of y;, where r > 2,5 = 1,2,...,r, the following
polynomial functions inz € 7

aro(;2) = (1 —2)"(1 — 2),
as(1;2) = ((;) + Us — UsZ — p5+1z) Z(1-2)~°, s=12,...,[5]-1,
a5 (2) = () + ps — ez + penz) 2(1 -2y, s =[4], (22)

ars(2) = (() = s + ez + penaz) 21 =2, s=[51+1,...,r-1,

ary(U;2) = 2" (1 = py + prz)
are called the generalized Bernstein polynomials of degree r with shape parameters 5, s = 1,2,...,7 such

that
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{Hs e[-Q (Dl s=12...[5] where {[

if r is even,
1, if ris odd.

r
27
r—

2.3)

—
NI= NI

]
e[-(L) Q) s=[51+1...r, 1=

In particular, for s = 0 (s = 1,2,...,r), the generalized Bernstein basis functions defined by (2.2) are
reduced to the classical Bernstein basis functions in (2.1).

Hu et al. [17] obtained the following equations using the degree elevation formula for Bernstein basis
polynomials:

1@ + 9102, s=012..,[5]-1,
(15 )+ (15 ez
as(l4;2) = %bm,m@) ([m[ Ay a @), s =151,
2
b1 + D102, s=[g]+1..m,

where b, ;(z) are the classical Bernstein basis functions fors =0, ..., r.
In [18], the authors constructed following operators using (2.2):

s+l

Ko(852:40) = <r+1>2ays<u,z> [ swar 24

2
The moments and central moments of operators (2.4) are given below, respectively:
Lemma 1. [18, Lemma 1] The operators (2.4) satisfy

KLzu)=1;

o, 1 (1 —2)po(z)
KEzw =32 st 721

r2—r 2,2 1 (2-22)¢1(2)
T el el e Yl T Ay P
5., =D =2) 5 9r(r—1) , 7r 1 (1 = 2)(6p2(2) + @o(2))
K5z == % " aprpe T e apeap T 2r+ 17 /
(r—=1D(r—2)(r—3)r 8r(r—1)(r - 2) 15r(r — 1)
Ky(t4,-z; [.1) = 1) A4 T 1) S 4 1) 72
6r 1 (43(z) + 291(2))(1 — 2)
BRI T T (r+1)8 ’
where

7

[5]
pi(z) = Z m'z"(1—z) ™"ty — Z m'z" (1 —z)"™" uy, (i € INp).

m=1 m=[5]+1
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Lemma 2. [18, Lemma 2] Following identities hold true for K,:

Lz 1 A -2)¢o)
Kt-zzm =gt t 7e1

oo 1=r 5 -1 1 2(1 = 2)p1(2)  22(1 - 2)@o(2)
L e N P | E T | A P r+1

5r-1 , 15r-3 , 5r-2 3(1 - 2)p2(2)
TP 20 +1p. 2+ lp T 20 +1p
6z =2)pi(z) | (622(r + 1)* + 1)(1 - 2)o(2) |

K((t - 2%z 1) =

2 2(r+ 1P /
3r2 —20r + 1 6r> —4r+2 3r2 —25r+2 5r—1
Kt =2 z) = r+ 1) 2~ r+ 1) 2 r+ 1)t 2+ )t
L1 (-2 +2¢1(2)  42(1 - 2)(692(2) + Po(2))
5+ 1) r+ 1) 2+ 1)
12221 = 2)p1(z)  423(1 — 2)po(2)
r+1?2 r+1

where @i(z) is given for i = 0,1,2,3 in Lemma 1.

Let z, y € 7, we define following operators

m+1 n+l

¢ d o+l d+1
KJiz,y) =+ 1A +1) Z Zac,m(p; 2)a4n(q; Y) f , f - (t,s) dtds, (2.5)

m=0 n=0 o+l a+1

where shape parameters p,, and g, satisfy the conditions (2.3), and call them as generalized bivariate
Bernstein-Kantorovich operators. We refer to certain recent papers about approximation of functions by
positive linear operators [18-38].

Let A =[0,1] x [0,1] and C (A) = C throughout the paper.
We refer to certain recent papers about approximation of functions by positive linear operators [18-38].

Lemma 3. Let ey (z,y) = z°y*, ¢,d € N. The operators (2.5) satisfy

(Kz';(@oo;z/ =1

2cz+1+2(1 - 2)@o(2) 2dy +1+2(1 - y)po(y)

Kooz y) = 2c+ 1) ;K ez, ) = T ;
e = (i T S e

K (eo; 2, y) = (ZZ+_1)2 v+ e id1)2 v 5 1 = @ ;dzf)f);(y);

Kooz, = C(C(_Ci)(lc)s_ D Zétlg 2+ z<f1>sz e 1 " = Z)(26((52J£Z1)): Pl

dd-1)d-2) 5 9dd-1) 7d
S BT SV AE T I AT I
(1 = 692(Yy) + Po(y))

2(d + 17 '

7(5;](603;2, y) =
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va, B (c=1)c=2)(c—=3)c 4 8clc—=1)(c—2) 5 15c(c-1) ,
KeaCs0i2,y) = T TS R L
6¢ 1 (4p3(z) + 2¢1(2))(1 — z)
T T ser T c+ )P /
i @d-1d-2)d-3)d , 8dd-1)d-2) , 15dd-1) ,
Kea Cosiz,Y) = d+ 1) Y r—aryr YT arye
6v 1 (4ps(y) + 20:1(y)(1 - )
Tar )Y T sar T d+ 1y ’
where
[5] c '
0ilz) = Zmlzm(l 2) Dy — miz"(1 =2 "p, (i € Np),
m=[51+1
14 ‘ d ‘
Pi) =Y Wy A -y, - Y Wy -y, (j€N).
n=1 n:[%]-%—l

Proof. The proof is based on the linearity of operators V(f ;’ and Lemmal. O

Lemma 4. Following identities hold true for ‘ch j :

7(5;’(310 —nnY) = c i 17 2(cl+ 1) " . _chz(qO(Z);

Kl =) == + 2(d1+ O . _dylg?(y);

Heillen =252,9) = (1+_1€)222 * (cc T 11)22 N 1 " 2(1(c_ f)l(?;(Z) -2 = )1(p 9,
I o S

-1 5 15¢-3 , 5c-2  3(1-2)2(2)
(c+1) SR TP TR s TRNE &
6(z = 22)p1(z)  (62°(c+1)* + 1)(1 — 2)¢po(z)

T e T 2c+ 17 /
5d-1 5 15d-3 , 5d-2 31 = ye2(y)
@~y " 2a+1pY T2av ot T 2@y
_ 8- yIeiy) | 6@+ 1) + D - y)o(y)

K ((e30 —2)%2,y) =

(qu((eos -%zy) =

@+ 1) 2d+ 1) /
i, 32 =20c+1 , 6¢®—4c+2 5 3c>-25c+2 , 5c-1
Kalew =22 = =2 = Ty 2 e e
L1 (-90p@ 2@ 4 - 6pala) + o2)
5z + 1) (c+ 1) 2+ 1)

1222(1 - z)¢1(2) ~ 423(1 - 2)po(2)
(c+1)? c+1 ’
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d?2 —20d + 1 6d% —40d + 2 3d%2 — 254 +2 5d -1
vt - v+ v+ y
d+1)° @+ 1) @+ 1) d+1)°

3
K (eos = y)'2,y) =

1 0=96es) +201y) _ 4yA = »)6p2(y) + po(y)

TSyt d+ 1) 20y + 1)
2y - e1y) 4’0 - Ypo(y)
@+ 1y i+l

Proof. The proof is based on the linearity of operators V(f ;’ and Lemma 2. O

6756

Using this lemma we provide following theorem to give Korovkin type approximation for F-statistical

convergence.

Theorem 1. Let 9 € C, then

sty ~tim [ K77 (9) - 9| = 0.
Proof. Considering the criteria in [39, Theorem 2.1] we claim that
| CHOR

where 99 = 1,91 =z,9; = yand 93 = 22 + 2.
The following equality is satisfied by Lemma 3:

sty ~lim [ (30) = 8[| = 0.

And this result guarantees that (2.6) holds true for j = 0. By Lemma 3, we obtain

ool s
(z,y)€l0,1]x[0,1]

2cz +1+2(1 = 2)@o(z) '< 3
20c+1) I R

For a given €’ > 0, we choose a number € > 0 such that € < €’. Let us define the following sets:

S : = {(c,d) : ”7(5; (91) - ‘91“&71) z 6/}'

S

3
t——>e—€y.
{(C’d) c+1-°€ E}
We see that S C S;. Hence, 6r (S) < 6¢(S1) and one obtains
—1i P — =
str lg? H?(C,d (%) \91HC 0.

Similary we have

st — 116?”7(55 (92) - 92||C =0,

(2.6)
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that is (2.6) holds true for j = 2. Finally, since

K21 59 ]
< |7(f,,'j (e20) — eZOHC + | 7(5,? (e02) — 602”C
-3c-1 6c+1 4(c-1) 4 I
< + + +
(c+1)? 3(c+12 clc+1) clc+1)
L -1, A+l 4d-1) 4 ‘
@d+1)? 3d+1)2 dd+1) dd+1)

3c+2 N 4 N 3d+2 N 4
3c+1)2 c+1 3@d+1)?2 d+1

and taking F-statistical limit in both-sides of last inequality, we get

sl oo =0

that is (2.6) holds true for j = 3. Since 7(5;7 is a sequence of linear positive operators, we obtain the desired
result by [39, Theorem 2.1]. [

3. Rates of convergence via a summability method

In this section, we calculate rates of convergence via four-dimensional summability matrix.
We need the notion of modulus of continuity which is defined as

w($,p) = sup |S(s, ) —(z, y)| (p>0),9€C
,/(s—y)2+(t—z)ZSp
to obtain rate of convergence results. We know that, for any y > 0 and forall € C
w(9,7p) < L+ [yD (¥, p),

where [y] is greatest integer less than or equal to .
Using the concept of four-dimensional summability matrix F, we give a rate of convergence result by
following theorem.

Theorem 2. Let F be a nonnegative RHR matrix and (A.q) be a positive double sequence so that w(9,peq) =
stp —0(Agq), then

s © = || = ste =0 aca),

where 9 € C and

‘_{4(2c+2)+6(1—c)+1+4(2d+2)+6(1—d)+1};
Ped Ve D) " 3es1p | d@+D  3@+1p )

Proof. Assume that our hypotheses are satisfied, then the following inequalities are obtained because ‘Kf j
is positive /

AR EEICE]

IA

K (|96, 1) - 9z, v)

i2,Y)
— P (f—2)?
‘chj ([1 + (-v) PZ( 2) ]a)(S, 0);z, y]

‘9/
w(d, p) + a)(pz p)‘Kfj ((s — )+ (t-2)7%;z y).

IA
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Then, taking supremum over (z,y) € A, we have
P
ez ) o]

<0+ 25 e o )]+ s (- )

<w(8p)+a)(9,(3){4(2€+2) 6(l-c)+1  4(2d+2) 6(1_d)+1}

p? c(c+1) 3(c+1)? ad+1) 3(d+ 1)

Choosing p as

_{4(2c+2)+6(1—c)+1+4(2d+2)+6(1—d)+1}5
Ped e+ D) © 3wty | d@+D T 3@+1)

we obtain following inequality for any positive integers c, d
[xta ©) = 3] < 208, pa

Hence, we obtain

% Z faped < Z faped

y cd 9,0c4)22
K115)-9] 20 Pz

for any ¢ > 0 and from our hypothesis it follows that
||7<5;7 (9) - 9||C = str—0(Aeg).

O

4. Approximation degree via GBS operators

Continuous functions have been used in most approximation theorems. However, the considered
approximation processes are often meaningful for a bigger class of functions. This is why we consider Bogel
continuity (or, simply, B-continuity) in our approximation theorem, and we construct the GBS operators of
bivariate Bernstein-Kantorovich type and estimate the rate of convergence for these operators.

The B-continuity was introduced by Bogel (see [40—42]) and given as follows:

Let X = I x ] and I, ] be compact subsets of the real numbers. Then, a function 9 : X — R is called
B-continuous at a point (s, t) € X if, for every ¢ > 0, there exists a positive number 6 = 0 (¢) such that

A(S,t)S (Z, y) <E§g,

Y- t| < 6, where the the symbol A9 (z, y) denotes the mixed difference
of 9 defined by

Aspd(zy)=9(z,y) =9z t) =3, y) +9(s,1).

We denote the space of all B-continuous functions on X by Cy (X) . The function 9 : X — R is B-bounded
on X if there exists K > 0 such that A »9(z,y) < K for any (s,t),(z,y) € X. Here since X is a compact
subset, each B-continuous function is B-bounded on X. We denote the set of all B-bounded functions on X
equipped with the norm

ISls,c) = sup  [Awyd (2 )|
(s,1),(z,)eX
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by By (X). In order to get approximation degree of a B-continuous function, it is important to give the
mixed modulus of smoothness. Let 9 € C;(X), then mixed modulus of smoothness of 3, denoted by
Wpmixed(J; 01, 02), is defined to be

Wmixed(¥; 01,62) = sup {|A(s,t)\9 (Z, y)) tz—s| <6y, Y- tl < 62}

for 61,6, > 0. (for more information about modulus of smoothness see, [43-45]). To obtain our result, we
use of the elementary inequality

Wiied (95 T101, T202) < (T1 + 61) (T2 + 02) Wpnivea(S; 61, 02)

for 71,7, > 0.
Let L : Cy (X) — By (X) be a linear positive operator. The operator UL : C; (X) — By (X) defined for any
function 9 € Cp, (X) and (z,y) € X by

UL(S(s,8);z,y) =L (y,t)+9(s,2)—9(s,1);z,y)

are called GBS operators associated to the operator L.
Now, we define GBS operators of K"/ for any 9 € C(A) and ¢,d € N, by

TH(9(s,0);2,y) = K7 (8 (y, ) + 9(5,2) = 8(5,);2,v),

forall (z,y) € X.
More precisely for any 9 € C;, (A) , GBS operators of proposed bivariate type are given by

c d
TUEG6H;2y) = ©+DEA+1)) Y ten(p; (g )
m=0 n=0

m+1 n+l

s [ [T 8@+ 96 y) = 9, 0] dsdt.

_m_ n_
c+1 d+1

Here the operators 7'!’";’ are linear and positive.

Theorem 3. Let F = (fy4,04) be a nonnegative RHR summability matrix method. Also, let 9 € Cp (A) and (A.q) be
a positive double sequence such that Wuixed(S; Ve d, 0cd) = ste — 0 (Agq) , then

g ) - ‘9||C(ﬂ) =stp—0 (/\c,d) ’

c,d
where
C [42c+2) 6(1-0)+1)]
Ved 5 T eer ) T s 1)
S __{4(2d+2) 6(1—d)+1};
“ T ldd+1) T 3@ S

for any positive integers c,d € IN.
Proof. Let 9 € C(A) and (z, y) € A be fixed. Using the properties of wyixd, We get
y—t)) (4.1)
(1+ l|z—s|)(1+l| ~ ] (8361, 62)
51 62 y mixed\V, 01, 02

|A(s,t‘)‘9 (Z, ]/)| < Wnived(¥; 12 — 8],

IN

for any 61,0, > 0 and from the definition A 49 (z, y) , we can write
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O, ) =9z ) +9(z,y) =9(s,1) —Aspd(z,y). 4.2)

Now, using the positivity and monotonicity of 7(5; and in view of (4.1) and (4.2) we get

IA

K7 (1A,

12,Y)
K4 (14 5y =) (14 5 =l omseat9:81, 6202, )
g 61 52 mixe ’ 4 [dand

IN

1
= Wmnixed(9; 01, 02) {1 + 6_1(](5; (|]/ ¢

1
6_627(5,’:? (|y - f| lz—sl;z, y)}

By Cauchy-Schwarz inequality, we obtain

) qu(lz—slzy)

< Omived(S; 61,62){1 + = \/qu((y— t?;z, y) \/qu((z—s)z;z,y)

Y5 K (- 1P 52, 9) K (97 zy)}

Then, taking supremum over (z, y) € A, we get

777 () - ‘9”(:@ < 40 mixed(S; Veds Oca),
where

01

B {4(20+2) . 6(1—c)+1};
T = eer ) T 31y

o [4pd+2)  6(1-d)+1)°
2 s ‘3”"‘{d<d+1) " 3@y } |

Therefore, we have for any ¢ > 0 that

/\L Z fiked < /\L Z fiked

“7-;77 9)- SHC(_}[) e od Omived (9 e,d/0¢4)2 §

and from the hypothesis it follows that

Hence, we arrive at the desired result. [

( )—9” =str—0(Acq).

Defining the Lipschitz class Lipa (1, v) for B-continuous functions as
Lipw (1,v) = {8 € G (X) : [Aen® @ v)| S My =t [z = 5", for (5,8), (z, ) € X},

where 9 € C;(X) and u,v € (0,1] we give following theorem to obtain the degree of approximation for
operators 7'!’ ; by means of Lipschitz class of Bogel continuous functions.
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Theorem 4. Let O € Lipp (y,v), then
S /2
70 (92,y) - 8 (2, y)| < MO8},
where M >0, u,v € (0,1].

Proof. By linearity of the operators ‘Kp ! and definition of operators 7-Cp 1, we have

< 7(’” (A(s,t) ;Z, y)
< M‘qu(lz—sl“ |y ;z,y)
= 7(M(|Z—S|yry)7(pq< ;z).
Using the Holders’ inequality with a; = u’ b = # and a, = 2 by = 5=, we have

2 —u
|Tf;7 (%2,y)=9(z y)| < MK (@-97:2, y))y K" (12, Eok
><7<fj((y - t)z .z, ]/)«p '1(1 z, y)(z v)/2.

Considering Lemma 4 and choosing 6. () = V(Cp : ((z )z, y) and 64 (z) = 7(p q((y i‘)2 ;2,Y), we get

g 2y
‘7’5; (%z,y) - S(z,y)’ < Méf/ 6d/2

that implies the degree of local approximation for B-continuous functions belonging to Lipp (¢, v). O

5. Convergence of operators via graphics

In this part, we give some graphics which validate the convergence of the proposed operators to the
following functions

82(8 )

81(z,y) = |32 - 1| [3y* - 1]e
and
|z — 1| cos(mty)
y—2

on the interval (z, y) € A with following shape parameters:

‘92(2/ ]/) =

pi:_(j), z':1,2,...,[§, q]:—(c;), j=1,2,-~-/[§]/

pi:—(i_cl), i:[§]+1,...,c, q,-:—(],fl), j:[g]+1,...,d.

In Figures 1-3, we demonstrate convergence of proposed operators to the functions for ¢ = d = 10 and
c =d =5, respectively. In Figures 2-4, we demonstrate corresponding errors of approximations.

These graphics show that proposed bivariate operators are well defined and approximate complicated
functions even for small values of c and d.
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Figure 2: Error of approximation for function 9,
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Figure 4: Error of approximation for function 9,
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