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Abstract. The aim of the present article is to analyze three-dimensional quasi-Sasakian manifolds admitting
Riemann solitons and Ricci Bourguignon solitons.

1. Introduction

A non-linear pseudo parabolic evolution equation given by

J
Eg(x, t) = -25(g(x,t)), te€[0,T), g(x,0)=g0

)
is called Ricci flow [11] satisfied by the metric g(x, ). In harmonic local coordinates around a point p, the
Ricci tensor takes the form S;; = —2A(gi;)(p). gij is local expression of the metric tensor g. Thus Ricci flow is

analogous to heat flow.

It is well known that a fixed solution of a Ricci flow, upto diffeomorphisms and scaling, is known as a
Ricci soliton given by the following formulation

S(g) + %Exg +Ag =0, (2)

where A is a real number. The initial metric g(x, 0) = go is called the profile of the solution. The solution is
called shrinking, steady or expanding accordingas A <0,A = 0,A > 0.If A is a C* function on the manifold,
the Ricci soliton is called Ricci almost soliton.

The theory of Ricci soliton have become a topic of growing interest due to the fundamental work of
Perelman [16] to solve Poincare conjecture. The geometric aspects of Ricci solitons and other properties
have been critically analyzed by a large number of authors in the context of several types of geometric
structures. For instance, we refer [17] to [23] and [28-31]. Some remarks on Kinematical aspects of Ricci
flow and Ricci solitons have been added in the literature by Hiraca and Udriste [12].
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In [26] and [27] Udriste analyzed the Kinematical aspects of Riemann flow after its successful intro-
duction. It was further studied in [24]. In [10], the authors studied Riemann solitons on K-contact and
Sasakian manifolds. On a Riemannian manifold M with a Riemann metric g and a smooth vector field V,
the Riemann soliton is given by

2R+ AP g+gP®Eyg =0, (©)

where R is the Riemann curvature tensor field of type (0,4), g is Riemann metric, A is a real number, £ is Lie
derivative operator and @ is Kulkarni-Nomizu product [1] defined by

PO®PX, Y, UV) = pX, W)Y, W)+ p(Y, U)q(X, W)
- p(X, U)gq(Y, W) = p(Y, W)q(X, U).

It is evident that a Riemann soliton is a kind of generalization of manifolds of constant curvatures. Likewise
Ricci solitons, a Riemann soliton is a fixed solution, upto diffeomorphisms and scaling, of Riemann flow
[26, 27] given by

d
Ec(t)ijkl = —2R;ju(t), te[0,e), 4)

with the initial condition g(0) = go. Here G = ¢ ® g and R;jy denote components of Riemann curvature
tensor of type (0,4). A Riemann soliton expressed by (3) is called shrinking, steady or expanding according
as A <0,A =0,or A > 0.If the vector field V is gradient of a C* function on M, then the Riemann soliton is
called gradient Riemann soliton given by

2R+ Ag® g+29@® Hessf =0. )

Hessf denotes Hessain of f. If in the above formulation A is taken as a C* function on M, instead of a real
number, then a Riemann soliton is called an almost Riemann soliton and a gradient Riemann soliton is
called a gradient almost Riemann soliton.

Another important generalization of Ricci flow is Ricci Bourguignon flow and a soliton associated with
Ricci Bourguignon flow is known as a Ricci Bourguignon soliton [7, 8].

The theory of quasi-Sasakian structures bears its own importance due to its association with string
theory [2—4]. In 1967, D. E. Blair [5] introduced the theory of quasi-Sasakian structures in order to gen-
eralize Sasakian and co-symplectic structures. The theory was further rectified and developed by Tanno
[25]. He gave example of a proper quasi-Sasakian structure which is neither Sasakian nor cosymplectic. In
[15], Olszak characterized three-dimensional quasi-Sasakian structures. Three-dimensional quasi-Sasakian
manifolds, i.e., three-dimensional Riemannian manifolds admitting quasi-Sasakian structures have also
been studied in [9, 15]. In [10], Riemann solitons on K-contact and Sasakian manifolds have been stud-
ied. Since a quasi-Sasakian manifold is not necessarily Sasakian or K-contact, we naturally motivate to
analyze some aspects of quasi-Sasakian manifolds admitting Riemann solitons. We also go through Ricci
Bourguignon solitons on such manifolds. We consider three-dimensional manifolds due to some strikingly
interesting properties possessed by three-dimensional manifolds which are not found in higher dimensions,
in general.

The present paper is organized as follows: In Section 2, we recall some known results that will be
required in subsequent sections. In Section 3, we study Riemann solitons on three-dimensional quasi-
Sasakian manifolds by considering some specific vector fields and provide relevant examples. The last
section is devoted to study Ricci Bourguignon solitons.

2. Preliminaries

A C* manifold M of dimension (2n + 1) is called an almost contact manifold [6] if there exist a (1,1)
tensor field ¢, a vector field £ and a 1-form 7 satisfying

P*X = -X+nX)E nE) =1, (6)
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where X € x(M), x(M) being the set of all vector fields on M. The manifold is called almost contact metric
manifold if there exists a Riemannian metric g on M such that

9(PX, 9Y) = g(X, Y) = n(X)n(Y), 7)
where X, Y € x(M). For such a manifold we also have
$E=0, n@X)=0, g(X &) =n(X), (8)

where X, Y € x(M). The fundamental 2-form of an almost contact metric manifold is given by
O(X,Y) = g(X,¢Y), XY € xM).

If dn(X,Y) = O(X,Y), the almost contact metric manifold is called contact metric manifold. An almost
contact metric structure is called normal if

[¢, P1(X,Y) +dn(X, Y)E = 0.

A normal almost contact metric structure is called quasi-Sasakian if the fundamental 2-form ® is closed.
The rank of a quasi-Sasakian structure is always odd. Itis 1 if the structure is cosymplectic and 27 + 1 when
the structure is Sasakian. The Reeb vector field £ of a quasi-Sasakian structure is always Killing.

For a three-dimensional quasi-Sasakian manifold, we always have[15]

vXé = _,B(PX/ Xe X(M)/ (9)

B being a C* function on M and V is Levi-Civita connection. As a consequence of (9) one obtains

cp=0. (10)
Again on a three-dimensional quasi-Sasakian manifold

(Vx@)Y = Be(X, )& - n(Y)X), X, Y € x(M), (11)

(VxnY = g(Vx¢&, Y) = —pg(9X,Y), (12)

(Vxn)é = =pn(¢X) = 0. (13)

The Ricci tensor S of a three-dimensional quasi-Sasakian manifold is given by

S(%,2) = (5 = 905, 2) + B3> = HNE) = nABGZ) = nZ)AB(PY) (14)

for X, Y, Z € x(M) and r is the scalar curvature of the manifold. As a consequence of (14) we have the Ricci
operator Q as follows:

QY = (5 - B)Y + (362 — HE + n(Y)pgradp - glgradp, $Y)E. (1s)
By a straightforward consequence of (9) one gets the (0, 3) type Riemann curvature as
R(X, V)& = (V)X = n(X)Y) = (XB)pY + (YP)pX. (16)

Now we conclude the preliminary section by citing the following example of a three-dimensional quasi-
Sasakian manifold which is not Sasakian.
Example 2.1.[25] Consider the three-dimensional Euclidean space E3 with (x, y, z) as coordinates, and define

the structure tensors (¢, &, 1, g) by
010
¢ = [ -1 0 0 ]
0 y O
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£=1(0,0,2),
2n=(-y.0,1)
and
1+y> 0 -y
4g = 010 |
-y 01

Then it is well known that (¢, &, 17, g) is a three-dimensional Sasakian structure. Suppose f is a non-constant
positive function of x and y. Define the metric g* by

g =pg+(1-pmen.

Then (¢, &, 1, 9°) is a normal almost contact metric structure and
. 1 1
Q" =P = Eﬁdﬂ = Zﬁdx/\ dy.

Since dp is a function of x and y, from above it follows that d®* = 0, and E3(¢, &, 1, ") is a quasi-Sasakian
manifold of rank 3, which is not Sasakian.

3. Riemann solitons on three-dimensional quasi-Sasakian manifolds

In this section we intend to study Riemann solitons on three-dimensional quasi-Sasakian manifolds.
Lemma 3.1. In a three-dimensional quasi-Sasakian manifold admitting a Riemann soliton the relation
(Evo)Y = 2n(Y)¢pgradp holds.

Proof. Suppose a three-dimensional quasi-Sasakian manifold admits a Riemann soliton. Then from (3) one
obtains

RX Y, UW) + 2A(g(X, W)g(¥, U) - g(X, U)g(Y, W)
+ (906 WYEVG)(Y, W) + g(Y, L)(Evg) (X, W)
- gX UEvg(Y, W) = g(Y, W)(Evg)(X, U)). (17)
Contracting X and W we infer that
(Evg) (X, U) +25(Y, U) + 2Q2A + divV)g(Y, U) = 0. (18)
In (18), putting U = ¢Y and using (14) one obtains
(Evg)(Y, §Y) = 2n(V)dB(Y) = 0.

The above equation yields
9(Y, (Ev)Y) + 2n(Y)dB(¢Y) = 0.
Consequently, we have

(Evg)Y = 2n(Y)pgradp.
This completes the proof. [J

Lemma 3.2. A Riemann soliton on a three-dimensional quasi-Sasakian manifold reduces to a Ricci almost
soliton.
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Proof. In the equation (18), set (2A +divV) = u. Obviously u is a C* function on the manifold. Consequently
(18) reduces to
(Evg)(Y, U) +25(Y, U) + 2ug(Y, U) = 0.

Clearly, the above equation represents Ricci almost soliton. [J

In [18], Sarkar studied Ricci almost solitons on three-dimensional quasi-Sasakian manifolds. In view of
Lemma 4.1 and Lemma 4.2 of [18] we state the following:
Lemma 3.3. If a three-dimensional quasi-Sasakian manifold admits a Riemann soliton, then its structure
function f is constant.
Lemma 3.4. The scalar curvature r of a three-dimensional quasi-Sasakian manifold admitting a Riemann
soliton is given by r = 6f2.
Theorem 3.1. A three-dimensional quasi-Sasakian manifold admitting a Riemann soliton is a manifold of
constant curvature 2.

Proof. Inview of equation (14) and Lemma 3.4, we have S(X, Y) = 2%g(X, Y). Hence the manifold is Einstein.
Since every three dimensional Einstein manifold is manifold of constant curvature, we easily conclude that
the manifold is of constant curvature 2. [J

Theorem 3.2. If a three-dimensional quasi-Sasakian manifold admits Riemann soliton, then the soliton is
shrinking and the soliton vector field is Killing.

Proof. Since § is a constant, from (16), we have

R(X, &)& = (X = n(X)&). (19)
Now, contracting (18), we have
divv = -~ +46A.
Combining (18) and (14), one obtains
482 —r—2A )
(Evg) (X, L) = (F———)g(¥, L) — (6% = nin(Nn(Ll) = 0. 0)

Using Lemma 3.3 in the above equation, we see that
Evg)(y,U) = =(A+ B2)g(Y, ). (21)
Differentiating the above equation with respect to X, we have
(VxEvg)(Y, U) = 0. (22)
From Yano [32], it is well known that
29((EvV)(X, Y), U) = (VxEvg)(Y, U) + (VyEvg) (U, X) = (VuEvg)(X, Y). (23)

By virtue of (22) and (23)
g(EvV)(X, Y), U) = 0.

The above equation gives
(EvV)(X,Y) = 0. (24)
Differentiating (24), we have

(VZzEyV)(X,Y) = 0. (25)
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Again from Yano [32], it is well known that
(EvR)(X, Y)Z = (VxEvV)(Y, Z) = (VYEvV)(X, 2). (26)
By virtue of (25) and (26)

(EvR)(X, &)E = 0. (27)
In view of (19)
EVRI(X, & = —BMX)EVE + (Ev)(X)E)
~R(X, £v&)E — R(X, E)EvE. (28)

By virtue of (27) and (28) we have

JR(X, &EVE, &) = B ((X)g(EvE, &) — (EvX).

Applying (19) in the above equation we have

9(X, £vE) = 2n(X)g(EvE, &) = —(Evn)X.
For X = &, the above equation gives
NEve) = —n(Eve).
Consequently,
nEve) = 0. (29)
But for Y = U = &, (21) gives
A+ p?

nEvé) = — >

(30)

On the basis of (29) and (30), we conclude A = —p%. Hence, the soliton is shrinking. Consequently, by the
Lemma 3.4 and the equation (20), we infer (Eyg)(Y, U) = 0. This completes the proof. O

By Corollary 4.6 of the paper [5], we know that a quasi-Sasakian manifold of strictly positive constant
curvature is Sasakian. Hence, by Theorem 3.1, we obtain the following;:
Corollary 3.1. A three-dimensional quasi-Sasakian manifold admitting Riemann soliton is a Sasakian
manifold.

A consequence of the above result is:
Corollary 3.2. A non-Sasakian quasi-Sasakian manifold of dimension three does not admit Riemann soliton.

The above corollary is an important tool to verify whether a three-dimensional quasi-Sasakian manifold
admits a Riemann soliton or not. Let us now mention some examples of three-dimensional quasi-Sasakian
manifolds which does not admit Riemann soliton

In Example 2.1, we cited a non-Sasakian three-dimensional quasi-Sasakian manifold. Such a manifold
does not admit Riemann soliton by Corollary 3.2.
Example 3.1. Consider the three-dimensional manifold M = {(x,y,z) € R3,z # 0}, where (x, y,z) are the
standard coordinates in R® . The vector fields

d d d d

1= 5 T Ezzw, 63225

e

are linearly independent at each point of M. Let g be the Riemannian metric defined by

gle,e3) = glez,e3) = gler,e2) =0,  gley, e1) = glea, e2) = gles, e3) = 1.
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Let i be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M). Let ¢ be the (1,1) tensor field defined by
Ple1) = —ez, plez) = e1, P(e3) = 0. Then following [13] it is easy to show that the manifold is quasi-Sasakian
for B = ;. Obviously, the manifold is not Sasakian and so by Corollary 3.2, it does not admit Riemann
soliton.

Now we shall present an example of a manifold from [10] which will admit a Riemann soliton.
Example 3.2. It is known that [6] the unit sphere S*'*! C R?'*! admits a standard Sasakian structure.
Keeping in mind the well known Obatta’s theorem [14], let us take a non-trivial smooth function ¢ such
that VVy = —1)g. Take

V =-Dy +cg, (31)
where c is a constant. Since for a Sasakian manifold Vx& = —¢X, we have from (31)
VxV = ¢g - cpX,

which yields £yg = 2¢g. This reveals that (5>**, g, V, A) is an almost Riemann soliton for A = 2(1 — ¢). For
Y = 3, it gives an example of a Riemann soliton. For ¢ = 0 and ¢ = 1, it gives an example of gradient
Riemann soliton.

Let us consider the situation when the soliton vector field is a gradient vector field. Let us go to prove
the following:
Theorem 3.3. A non-cosymplectic three-dimensional quasi-Sasakian manifold does not admit proper
gradient Riemann soliton.

Proof. For a gradient Riemann soliton (18) yields
(VyDf) = =((2A + divDf)Y + QY).
As a consequence of the above equation
RX, Y)Df = (VyQ)X — (VxQ)Y + Vy(divDf)X — Vx(divDf)Y. (32)
The above expression leads us to

JRX, Df)EY) = g((VeQ)Y, X) - g(VvQ)E, X)
+ g(Ve(divDf), X) — g(Vy(divDf), X). (33)

Since, by Lemma 3.3, f is constant, by virtue of (15) and (16), it follows that
B((Dg(X,Y) = n(X)g(Df,Y)) = 0. (34)
Contracting X and Y, we get

F(Df) = 0.
Considering g # 0, we find n(Df) = 0. So, in (34) putting X = &, one obtains
9(Df,Y) =0.

Since Y is arbitrary, Df = 0. For § = 0, the manifold is cosymplectic. Thus, the theorem follows. [

Stepanov [24] studied Riemann soliton considering the soliton vector field as an infinitesimal con-
tact transformation or simply as a contact transformation on a contact manifold and obtained interesting
geometric consequences. Since the contact form 7 is called almost contact form in almost contact mani-
folds, we shall call the analogue of contact transformations in almost contact manifolds as almost contact
transformations.

Definition 3.1. A vector field V on an almost contact metric manifold is called almost contact transformation
if it satisfies

£vn = pn (35)
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for a smooth function p on the manifold. In the following, we shall prove
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Theorem 3.4. If the soliton vector field V of a Riemann soliton on a three-dimensional quasi-Sasakian
manifold is an almost contact transformation, then it leaves the almost contact form 7 invariant, upto

scaling.

Proof. Suppose the soliton vector field of a Riemann soliton on a three-dimensional quasi-Sasakian manifold

is an almost contact transformation.
Now, from (13), we have
an(X,Y) = 2Bg(X, ¢Y).
Taking Lie derivative in both sides of the above equation
(Evdn)(X, Y) = 28((Evg)(X, V) + 9(X, Ev)Y)) + 24B(V)g(X, $Y).
Using equation (18) and Lemma 3.1 in the above equation one can establish

Evdn)(X,Y)= - Zﬁ(S(X,qu) +2(24 + divV)g(X, pY)
- 20(V)g(X, pgradp)) + dB(V)g(X, $Y).

By virtue of (35) and (13) one gets
(Evdn)(X, Y) = 2089(X,§Y) + 5 (Ap(X)(Y) ~ dp(VIn(X).

For Y = ¢, (36) and (37) jointly yields

4B9(X, pgradp) = 3(dp(X) -~ dp(EIn().

Since f3 is a constant
g(gradp, X) = g(X, (£p)E).

Hence

Dp = (cp)e.
As a consequence of the above equation, one obtains

VxDp = X(cp)E = B(Ep)pX.
Taking inner product in the above equation, we have
9(VxDp,Y) = X(Ep)n(Y) = B(EP)g(PX, Y).
Antisymmetrizing the above equation and using g(VxDp, Y) = g(VyDp, X) one can deduce
(X(&p) = Y(cp)(n(Y) —n(X)) - 2B(cp)g(¢X, ¥) = 0.
Replacing X by X and Y by ¢Y in the above equation we obtain
(Ep)g(X, ¢Y) = 0.

Let {e1, 2, £} be a ¢ basis. Then putting X = e; and Y = ¢; in the above, we infer

Ep=0.

(36)

(37)

(38)

(39)

(40)

By virtue of (39) and (40) we conclude that p is constant. Hence 7 is invariant, upto scaling, under Lie

derivative with respect to V. This completes the proof. [
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4. Ricci Bourguignon solitons on three-dimensional quasi-Sasakian manifolds

The Ricci Bourguignon flow [7]

%!]ij = —25,‘]‘ + 211’!],']' (41)
was introduced by Jean-Pierre Bourguignon in 1981 taking / as a real number. Here r being the scalar
curvature of the manifold. Equation (41) represents a family of geometric flows of which one is Ricci flow
for I = 0. Again, by a suitable rescaling in time, when [ is non-positive, the flows can be interpreted as an
interpolation between the Ricci flow and the Yamabe flow. It is to be observed that for special values of
the constant /, the tensor S;; — Irg;; in the right hand side of (41) is of special interest. It is noted that on a
manifold of dimension d the tensor S;; — Irg;; is

e Einstein for [ = J.

e Trace less Ricci tensor for [ = 1.

e The Schouten tensor when I = 7.

For d = 2, the tensor S;; — Irg;; is zero. Hence, the flow is static.

In 2017, Catino et al [8] proved the short time existence and uniqueness for solution of the flow in the
time interval [0, T). A constant solution of Ricci Bourguignon flow, upto diffeomorphisms and scaling, is
known as Ricci Bourguignon soliton. In the following, we study three-dimensional quasi-Sasakian manifold
admitting a Ricci Bourguignon soliton.

In view of (41), we obtain Ricci Bourguignon soliton as a metric satisfying the following equation:

EvXY)+25(X,Y)+2(A - Ir)g(X,Y) =0, (42)

where A and [ are constants. A Ricci Bourguignon soliton expressed by (42) is called shrinking, steady or
expanding according as A <0,A =0, or A > 0. If V is a gradient of a smooth function f, then

V2f+S=(A-1Iryg, (43)

where V?f is the Hessain of f. Suppose a three dimensional quasi-Sasakian manifold admits a Ricci Bour-
guignon soliton. Since we take A and [ as constants, (42) yields that the Ricci Bourguignon soliton becomes
an almost Ricci soliton. Hence, we have
Lemma 4.1. A Ricci Bourguignon soliton on a three-dimensional quasi-Sasakian manifold reduces to a Ricci
almost soliton.

In view of the above lemma, the Lemma 4.1 and Lemma 4.2 of the paper [18], as the previous section,
we obtain the following:
Lemma 4.2. The structure function of a three-dimensional quasi-Sasakian manifold admitting a Ricci
Bourguignon soliton is constant.
Lemma 4.3. The scalar curvature r and the structure function  of a three-dimensional quasi-Sasakian
manifold admitting a Ricci Bourguignon soliton are related by r = 642.
Theorem 4.1. A three-dimensional quasi-Sasakian manifold admitting Ricci Bourguignon soliton is a
manifold of constant curvature f2.

Proof. In view of equation (14) and Lemma 4.3, we have S(X,Y) = 28%¢(X, Y). Hence the manifold is
Einstein. Since every three dimensional Einstein manifold is manifold of constant curvature, we infer that
the manifold is of constant curvature 2. This completes the proof. [

By Corollary 4.6 of the paper [5], we know that a quasi-Sasakian manifold of strictly positive constant
curvature is Sasakian. Hence, by Theorem 4.1, we obtain the following;:
Corollary 4.1. A three-dimensional quasi-Sasakian manifold admitting a Ricci Bourguignon soliton is a
Sasakian manifold.

A consequence of the above result is:
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Corollary 4.2. A non-Sasakian quasi-Sasakian manifold of dimension three does not admit a Ricci Bour-

guignon soliton.
Let us now prove the following:

Theorem 4.2. The soliton vector field of a Ricci Bourguignon soliton in a three-dimensional quasi-Sasakian

manifold is Killing.

Proof. From (42) and (14), one obtains

(Evg) (Y, U) +2(26% + A = Ir)g(Y, U) = 0.

By Lemma 4.3, r is constant. So, by covariant differentiation of the above equation, we infer

(VxEvg)(Y, U) = 0.

From Yano [32], it is well known that

29((EvV)(X, Y), U) = (VxEvg)(Y, U) + (VyEvg) (U, X) = (VuEvg)(X, Y).

By virtue of (45) and (46)

g(EvV)(X, Y), U) = 0.

The above equation gives
EVVXY) =0.

Differentiating (47), we have
(VzEvV)(X, Y) = 0.

Again from Yano [32], it is well known that

(EvR)(X, Y)Z = (VxEvV)(Y, Z) — (VyEvV)(X, Z).

By virtue of (48) and (49)
(EvR)(X, €)E = 0.
In view of (16)

EVR(X,E = —pX)EvE + (Ev(X)E)
_R(X/ £V'£)5 - R(Xr E)EVE
By virtue of (50) and (51) we have

JR(X, EEVE, &) = =P (N(X)g(EvE, &) — (Ev)X).

Applying (16) in the above equation we have

9(X, £vE) — 2n(X)g(Eve, &) = —(Evm)X.

For X = &, the above equation gives

NEve) = —n(Eve).

Consequently,

n(Eve) = 0.

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)
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But for Y = U = &, (44) gives

nEvé) = 2%+ A = 1r. (53)
Hence,
28>+ A—1Ir=0. (54)

Hence from (42) (£vg)(Y, U) = 0. Thus, V is Killing. This completes the proof. [
From (54)
A=28231-1). (55)

So, ! = % if and only if A = 0, provided B is non-zero. If the flow is steady, then [ = 1 and the right hand side

of (41) is trace less Ricci tensor. Thus, A steady Ricci Bourguignon soliton reduces to traceless Ricci soliton.
In view of (55), we obtain the following:

Corollary 4.3. A Ricci Bourguignon soliton on a three-dimensional quasi-Sasakian manifold is shrinking,

steady or expanding according as [ < 1,1 = 1,1> 1, and if it is steady, it is a trace less Ricci soliton.

Remark 4.1. By the above corollary, we see that on a three-dimensional quasi-Sasakian manifold, the

solitons corresponding to Einstein flow and Schouten flow are expanding since in these cases | = 1, while

the soliton for traceless Ricci flow is steady. For the Ricci flow I = 0. So the soliton for Ricci flow is shrinking.
Now, we prove the following:

Theorem 4.3. A non-cosymplectic three-dimensional quasi-Sasakian manifold does not admit proper

gradient Ricci Bourguignon soliton.

Proof. If the soliton is gradient
VyDf = (A =Ir)Y — QY.

Since A, I and r are constants, as a consequence of the above equation
RX, Y)Df = (VyQ)X - (VxQ)Y.
Putting X = £, we have from above
R(E Y)Df = (VyQ)E - (VeQ)Y).
Using (15),
R(,Y)Df =0. (56)

Contracting Y, we have

S(Df, &) =0.
By virtue of (15), the above equation gives
n(Df) =0. (57)
Now, in view of (16)
g(R(X, Y)Df, &) = =B*((V)g(X, Df) = n(X)g(Y, Df)). (58)
Putting X = £ in (58) and using (56) and (57) we have for § # 0
g(Y,Df) =0.

Since Y is arbitrary, it follows that Df = 0. Hence the result follows. [J
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