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Abstract. The escaping set is the important object studied in dynamics of transcendental entire functions.
As exponential function is the most typical transcendental entire function, its escaping set has been deeply
studied. It is well known that if the function is slightly disturbed, the properties of its dynamical system
may vary greatly. We can’t easily study different functions in the same way. Contrasting exponential
function, we pay our main attention to the cosine function in this paper. We construct some escaping
subsets of cosine function by Devaney-Krych codes so that the Hausdorff dimension of the subsets is equal
to the given number in the interval (1, 2).

1. Introduction

Julia set (see [9]) is one of the main objects studied in complex dynamics. The escaping set (see [2]),
which is closely related to the Julia set, also draws people’s increasing interest. These two kinds of points
sets usually have very rich structures even for simple transcendental entire functions.

For example, about the exponential functions dynamics, Misiurewicz proved that the Julia set of ez is
the whole complex plane C (see [10]). Changing the coefficient slightly, Devaney and Krych proved the
Julia set of λez, which 0 < λ < 1

e , is a Cantor set of curves in C (see [1]). Later, Karpińska proved the
Cantor set of curves for λez with 0 < λ < 1

e has a peculiar phenomenon of ”dimension paradox”. That is
the Hausdorff dimension (see [3]) of the hairs without endpoints is 1, however, the Hausdorff dimension
of the set of endpoints is 2 (see [5, 6]). Schleicher and Zimmer turned to study the escaping set of λez

with λ , 0 and proved that the phenomenon of ”dimension paradox” also exists for exponential function
escaping set (see [16]). Further more, Schleiher, Forster, Rempe, Bailesteanu and Balan proved that the
escaping parameters set of exponential functions family also has the properties of Cantor bundle structure
and ”dimension paradox” (see [11, 14, 15, 17]). Such strange fractal structure has aroused the interest of
many people. For the escaping points set of an arbitrary exponential function, Karpińska and Urbański
investigated the finer fractal structure of the set of escaping points and even provided an exact formulas
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showing how sensitively the Hausdorff dimension depends on the rate of growth of Devaney-Krych codes
(see [1, 7]).

This paper mainly discusses the Hausdorff dimension of escaping subsets of cosine function aez + be−z,
where ab , 0. Cosine function is transcendental entire functions closely related to exponential function.
McMullen made an in-depth comparative study of them as early as 1986 (see [8]), which has triggered
ongoing research about cosine function. The Cantor bundle structure and ”dimension paradox” of escaping
set of cosine function and escaping parameters set of cosine functions family with single parameter are
proved respectively by papers [12, 13] and papers [4, 11, 18]. From these studies, we can see that the
different term between cosine function and exponential function often brings us some new phenomena and
difficulties in the iterative process. We often need some skills to apply the exponential function research
method to the study of cosine function dynamics. In this paper, the escaping subsets of cosine function will
be constructed with Devaney-Krych codes by using the method of Karpińska and Urbański for exponential
function so that the Hausdorff dimension of them is equal to the given number which is in (1,2) interval.

In the following Section 2, we show some notations and the main conclusion of this paper. In Section
3, we make some preparations for the proof of the main conclusion. In Section 4, we prove the main
conclusion of this paper.

2. Symbols and main result

The entire function S(z) := aez + be−z, where a, b ∈ C and ab , 0, is called cosine function. Denote Sn(z) as
its n-fold iterate, where n is positive integer. The escaping set of S(z) is denoted as I(S) or I, which is defined
below.

I(S) = I := {z : |Sn(z)| → ∞ as n→∞}.

For S(z) = aez + be−z, we have

|Sn(z)| ≤ |a| exp(ReSn−1(z)) + |b| exp(−ReSn−1(z)),

so the escaping set of S(z) has the following equivalent definition

I = {z : |Re(Sn(z))| → ∞ as n→∞}.

In addition, we denote

Iq := {z ∈ I : |Re(z)| ≥ q and |Re(Sn(z))| ≥ q for all n ≥ 1}.

From the above equivalent definition of escaping set, we infer that the set Iq will not be empty.
If we divide the plane C into infinitely many strips:

P j = {z ∈ C : (2 j − 1)π ≤ Imz < (2 j + 1)π} where j ∈ Z.

then every point z, under iteration of cosine function S(z) (Let S0(z) = z), has uniquely defined sequence of
integers s(z) = (s0, s1, · · ·) such that

sk = j if and only if Sk(z) ∈ P j.

The sequence s(z) is called the Devaney-Krych codes of the point z (see [1]).
We can choose some escaping subsets according to the growth characteristics of Devaney-krych codes

and to study the Hausdorff dimension of this sets. Therefore, we first give the function hϵ(x) as below.
For any given ϵ > 0, let hϵ(x) := x

(log x)ϵ (see [7]). Evidently, if x > q and q > 0 is large enough, then
(a) hϵ(x) be an increasing function such that lim

x→∞
hϵ(x) = +∞;

(b) 3π ≤ hϵ(x), 3hϵ(x) + 2π ≤ x
8eπ ;

(c) hϵ(2eπx) ≤ 2eπhϵ(x).
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Let
Dq(hϵ) := {z ∈ Iq : 2π|sn(z)| ≤ hϵ(|Sn(z)|) for all n ≥ 0}.

It is obvious that
Dq(hϵ) ⊆ Dq(2hϵ) ⊆ Dq(3hϵ).

Since the Hausdorff dimension is a good measure to describe complicated or irregular set and the paper
intends to discuss the Hausdorff dimension of the above set Dq(hϵ), we turn to briefly introduce the concept
of Hausdorff dimension (see [3]). For any set U, denote the diameter of U by

|U| := sup{|z − w| : z,w ∈ U}.

Let X be a set and s a positive real number. Define s-dimensional measure Hs(X) of X by

Hs(X) := lim
δ→0

inf
{ ∞∑

i=1

|Ui|
s : |Ui| < δ,X ⊆

⋃
i

Ui

}
,

and define the Hausdorff dimension HD(X) of X by

HD(X) := inf
{
s ≥ 0 : Hs(X) = 0

}
= sup

{
s ≥ 0 : Hs(X) = ∞

}
.

We claim that the Hausdorff dimension of the set Dq(hϵ) is sensitively depending on ϵ of function hϵ(x).
The following result holds.

Theorem 2.1. Let S(z) = aez + be−z, where a, b ∈ C and ab , 0. For any ϵ > 0, if q > 0 is a large enough number,
then the Hausdorff dimension

HD(Dq(hϵ)) = 1 +
1

1 + ϵ
,

where Dq(hϵ) is defined as above.

3. Preliminaries

3.1. Simple properties of cosine function

Lemma 3.1. Let S(z) = aez + be−z, where a, b ∈ C and ab , 0, m,n are nonnegative integers, if q > 0 is sufficiently
large and |Rez| ≥ q, then

(a) S(m)(z) , 0 , where S(m)(z) is the m-order derivative, S(0)(z) = S(z);
(b) the horizontal strip domain with width smaller than 2π and the real part no less than q (or no more than −q)

is the univalent domain of S(m)(z);
(c) e < 2

3 min{|a|, |b|}e|Rez| < |S(m)(z)| < 3
2 max{|a|, |b|}e|Rez|;

(d) 1
2eπ <

|S(m)(z1)|
|S(n)(z2)| < 2eπ, where |Rez1 − Rez2| < π and |Rezi| ≥ q,i = 1, 2.

Proof. (a) Obviously, S(m)(z) = aez
± be−z, If S(m)(z) = 0, then z = 1

2 log | ba | +
i
2 Ar1(± b

a ). Because |Rez| ≥ q >
|
1
2 log | ba ||, then S(m)(z) , 0.

(b) Note that S(m)(z) = aez
± be−z =

√
ab(

√ a
b ez
±

√
b
a e−z). If S(m)(z1) = S(m)(z2), then√

a
b

ez1 =

√
a
b

ez2 or |

√
a
b

ez1 ·

√
a
b

ez2 | = 1.

Since q is large enough such that |
√ a

b ez1 ·
√ a

b ez2 | , 1, we have
√ a

b ez1 =
√ a

b ez2 and then z2 = z1 (width of strip
< 2π).
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(c) Suppose Rez > q > 0, as q is large enough, then

|S(m)(z)| ≥ ||a|eRez
− |b|e−Rez

| > |a|eRez
−

1
3
|a|eRez

=
2
3
|a|eRez

≥
2
3

min{|a|, |b|}e|Rez| > e,

|S(m)(z)| ≤ |a|eRez + |b|e−Rez < |a|eRez +
1
2
|a|eRez

=
3
2
|a|e|Rez|

≤
3
2

max{|a|, |b|}e|Rez|.

The prove is completely similar when Rez < −q < 0.
(d)Without losing generality, suppose Rez > q > 0. It can be proved similarly when Rez < −q < 0.

||a|eRez1 − |b|e−Rez1 |

|a|eRez2 + |b|e−Rez2
≤
|S(m)(z1)|
|S(n)(z2)|

≤
|a|eRez1 + |b|e−Rez1

||a|eRez2 − |b|e−Rez2 |
.

As q > 0 is large enough and |Rez1 − Rez2| < π, then Rez1 and Rez2 are positive large enough. So

1
2

e−π <
|S(m)(z1)|
|S(n)(z2)|

≈ eRez1−Rez2 < 2eπ.

Lemma 3.2. If q is large enough, then |Re(Sn(z))| tends to infinity uniformly on Dq(3hϵ).

Proof. As q > 0 is large enough, we have that

2
3

min{|a|, |b|} exp(
√

3x/2) ≥ 2x for every x ≥ q.

For any given z ∈ Dq(3hϵ) and n ≥ 0, by the definition of Devaney-Krych codes and the properties of
function hϵ(x), we have

|Re(Sn(z))| =
√
|Sn(z)|2 − (|ImSn(z)|)2

≥

√
|Sn(z)|2 − (3hϵ(|Sn(z)|) + 2π)2

≥

√
|Sn(z)|2 − (

|Sn(z)|
2

)2

=

√
3

2
|Sn(z)|.

(1)

According to lemma 3.1 (c), we get

|Sn+1(z)| = |aeSn(z) + be−Sn(z)
|

≥
2
3

min{|a|, |b|}e|ReSn(z)|

≥
2
3

min{|a|, |b|} exp(
√

3|Sn(z)|/2)

≥ 2|Sn(z)|.

Hence,

|Re(Sn+1(z))| ≥

√
3

2
|Sn+1(z)| ≥

√
3

2
2|Sn(z)|

≥

√

3|Re(Sn(z))| ≥ · · · ≥ (
√

3)n+1q.
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Lemma 3.3. For any given α > 0 and T > 0, there exist K0 > 0 and n0 ≥ 0 such that for every n ≥ n0,

|(Sn+1)′(z)| ≥ K0|(Sn)′(z)|α

for all z ∈ Dq(3hϵ) ∩ B(0,T).

Proof. By lemma 3.2, for any given α > 0, there is n0 ≥ 0 such that

1
2eπ

2
3

min{|a|, |b|}e
√

3|Sn+1(z)|/2
≥ (2eπ)α|Sn+1(z)|α

for all z ∈ Dq(3hϵ) when n ≥ n0.
We claim that

inf
z∈Dq(3hϵ)

⋂
B(0,T)

|(Sn0+1)′(z)|
|(Sn0 )′(z)|α

, 0.

If there no exist j ∈ {0, 1, · · ·n0} and z0 ∈ Dq(3hϵ) ∩ B(0,T) such that S′(S j(z0)) = 0, |(S
n0+1)′(z)|
|(Sn0 )′(z)|α is a positive

continuous function on bounded closed sets, the claim holds. Suppose there exist j ∈ {0, 1, · · ·n0} and
z0 ∈ Dq(3hϵ) ∩ B(0,T) such that S′(S j(z0)) = 0, then exist {zn} ⊆ Dq(3hϵ) ∩ B(0,T) such that zn → z0 or zn ≡ z0.
By lemma 3.1 (d)

|S′(S j(z0))| ← |S′(S j(zn))| ≥
1

2eπ
|S j+1(zn)| ≥

1
2eπ

q,

which contradicts to S′(S j(z0)) = 0.
Let K0 be the infimum of the function z 7→ |(Sn0+1)′(z)||(Sn0 )′(z)|−α in Dq(3hϵ)∩B(0,T), then K0 is a positive

number. Proof by induction. According to the definition of K0, the lemma holds when n = n0. Suppose it
is true for n ≥ n0, so

|(Sn+2)′(z)| = |(S′(Sn+1(z))| · |(Sn+1)′(z)|

≥ K0|(S′(Sn+1(z))| · |(Sn)′(z)|α.

By lemma 3.1 (d) (c) and (1)

|(S′(Sn+1(z))| ≥
1

2eπ
|Sn+2(z)| ≥

1
2eπ

2
3

min{|a|, |b|}e|ReSn+1(z)|

≥
1

2eπ
2
3

min{|a|, |b|}e
√

3|Sn+1(z)|/2
≥ (2eπ)α|Sn+1(z)|α

≥ (2eπ)α · (
1

2eπ
)α|S′(Sn(z))|α = |S′(Sn(z))|α.

Therefore
|(Sn+2)′(z)| ≥ K0|S′(Sn(z))|α · |(Sn)′(z)|α = K0|(Sn+1)′(z)|α.

3.2. Construction of mass distribution and some supplementary symbols

Let HR
q := {z ∈ C : Rez ≥ q} and HL

q := {z ∈ C : Rez ≤ −q}. The following discussion is restricted on
Hq := HR

q ∪HL
q .

Divide Hq as follows

Hq = ∪
k=∞
k=−∞(SR

k ∪ SL
k ∪ S∗Rk ∪ S∗Lk ),
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where for every k ∈ Z

SR
k := {z ∈ HR

q : −
π
2
+ 2kπ − arg a ≤ Imz <

π
2
+ 2kπ − arg a},

SL
k := {z ∈ HL

q : −
π
2
+ 2kπ + arg b ≤ Imz <

π
2
+ 2kπ + arg b},

S∗Rk := {z ∈ HR
q :
π
2
+ 2kπ − arg a ≤ Imz <

3π
2
+ 2kπ − arg a},

S∗Lk := {z ∈ HL
q :
π
2
+ 2kπ + arg b ≤ Imz <

3π
2
+ 2kπ + arg b}.

Then divide SR
k , SL

k , S∗Rk and S∗Lk into squares,

SR
k := ∪ j=∞

j=0 B j,Rk

:= ∪ j=∞
j=0 {z ∈ SR

k : q + jπ ≤ Rez < q + ( j + 1)π},

SL
k := ∪ j=∞

j=0 B j,Lk

:= ∪ j=∞
j=0 {z ∈ SL

k : −q − ( j + 1)π < Rez ≤ −q − jπ},

S∗Rk := ∪ j=∞
j=0 B j,∗Rk

:= ∪ j=∞
j=0 {z ∈ S∗Rk : q + jπ ≤ Rez < q + ( j + 1)π},

S∗Lk := ∪ j=∞
j=0 B j,∗Lk

:= ∪ j=∞
j=0 {z ∈ S∗Lk : −q − ( j + 1)π < Rez ≤ −q − jπ}.

The family of all squares B j,Rk,B j,Lk,B j,∗RkB j,∗Lk, j = 0, 1, · · · ,∞ are denoted by B and the squares above
are sometimes denoted as B for convenience. See the following figure 1.

Figure 1. division of the complex plane

For any given small positive number θ, As long as q > 0 is large enough, we have that

max{|a|, |b|}e−|Rez| < θ. (2)

So we can observe that S(z) ≈ aez in HR
q and S(z) ≈ be−z in HL

q .
Take B = B j,Rk for example, S(B) contains a half-annulus with inner radius of |a|eq+ jπ +θ and outer radius

of |a|eq+( j+1)π
−θ. At the same time, S(B) included in a half-annulus with inner radius of |a|eq+ jπ

−θ and outer
radius of |a|eq+( j+1)π + θ. As the positive number θ is very small, S(B) can be viewed as ’approximate-half-
annulus’. Furthermore, the ’approximate-half-annulus’ S(B) lies in the half plane {z ∈ C : Rez > −θ}.
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Similarly, for any given B above, S(B) is a ’approximate-half-annulus’ centered at the origin. And
the ’approximate-half-annulus’ S(B) lies either in {z ∈ C : Rez > −θ} when B ⊆ ∪+∞k=−∞(SR

k ∪ SL
k ) or in

{z ∈ C : Rez < θ}when B ⊆ ∪+∞k=−∞(S∗Rk ∪ S∗Lk ).
Let

R(S(B)) := sup |S(B) ∩Hq|, r(S(B)) := inf |S(B) ∩Hq|.

and Ã(r(S(B)),R(S(B))) := S(B) ∩Hq.

Denote Ã(a0r(S(B))+ a1, b0R(S(B))+ b1) as the ’approximate-half-annulus’ in Hq, which is enclosed by the
image of inner and outer boundary of S(B) under linear transformation a0z + a1 and b0z + b1 respectively
along radial direction, where a0, a1, b0, b1 are real number.

When z ∈ Iq, then the whole orbit {z,S1(z),S2(z), · · ·} of z stays in Hq, so for every n ≥ 0 there exists a
unique square Bn(z) ∈ B such that Sn(z) ∈ Bn(z). If necessary, we can ask q to be sufficiently large that the
above conclusions hold when |Rez| > q

2 . It follows immediately from lemma 3.1 (c) that there exists a unique
holomorphic inverse branch S−n

z : Bn(z)→ Hq−π of Sn sending Sn(z) to z. Denote Kn(z) = S−n
z (Bn(z)).

In order to estimate the Hausdorff dimension of Dq(hϵ) by mass distribution principles, We need to
construct measure µ and its support set X∞ in two different ways, which comes from the ideas of [7, 8]. For
a given square B0 ∈ B, we shall construct inductively a sequence {Bn

}
∞

n=0 of subfamilies ofB. PutB0 = {B0}

and suppose that the family Bn has been constructed. We choose Bn+1 in two different ways. For any
B ∈ Bn,
the first construction:
select from B all of the squares Q that are contained in the approximate-half-annulus

Ã(2r(S(B)),
2
3

R(S(B))) (3)

with the property that

2π +max
z∈Q
{|Imz|} ≤ inf

z∈Q
{hϵ(|z|)}. (4)

the second construction:
select from B all of the squares Q that are contained in the approximate-half-annulus

Ã(r(S(B)),R(S(B))) (5)

with the property that

min
z∈Q
{|Imz|} ≤ sup

z∈Q
{2hϵ(|z|)} + 2π. (6)

These squares will be called the successors of B. The family Bn+1 consists of all successors of all squares
from Bn. See the following figure 2.

Figure 2. construction of the sequence {Bn
}
∞

n=0



X. J. Huang et al. / Filomat 36:19 (2022), 6553–6571 6560

By lemma 3.1 (c), if Bi ∈ B
i, 0 ≤ i ≤ n, and Bi+1 is a successor of Bi, then there exists a unique holomorphic

inverse branch S−n
∗ : Bn → B0 of Sn such that Si(S−n

∗ (Bn)) ⊆ Bi for all i = 0, 1, · · ·,n. Denote S−n(Bn) as the
family of all sets S−n

∗ (Bn), where Bn ∈ B
n. If Kn+1 ∈ S−(n+1)(Bn+1), then there exists a unique Kn ∈ S−n(Bn)

such that Kn+1 ⊆ Kn. We call the set Kn+1 be a child of Kn and denote ch(Kn) as the family of all children of
Kn.

Define Xn to be union of closures of all elements of S−n(Bn) for every n ≥ 0. It is clearly that Xn+1 ⊆ Xn.
We construct the sequence {µn}

∞

n=0 of Borel measures on the sets Xn as follows. Let µ0 be the normalized
Lebesgue measure on X0 = B0. Suppose now that the measure µn on Xn has been defined. The measure
µn+1 on Xn+1 is defined on each Kn+1 ∈ S−(n+1)(Bn+1) as follows:

µn+1|Kn+1 =
area(Kn+1)∑

K∈ch(Kn) area(K)
· µn|Kn , (7)

where Kn is the unique element of S−n(Bn) containing Kn+1. So µn+1(Kn ∩ Xn+1) = µn(Kn) and therefore,

µk(Kn) = µn(Kn)

for all k ≥ n and every Kn ∈ S−n(Bn). Then, it derives a unique measure µ on the set X∞ = ∩n≥0Xn = ∩n≥kXn.
Denote them by X1

∞ and X2
∞, respectively, corresponding to first and second construction, which all satisfy

µ(Kn) = µn(Kn) for every Kn ∈ S−n(Bn). (8)

In addition, we need to explain some symbols. Denote R(S(Bn−1(z))) and r(S(Bn−1(z))), i.e. R(Sn(Kn−1(z)))
and r(Sn(Kn−1(z))), respectively, by Rn(z) and rn(z). Denote the ball centered at z of radius r by B(z, r). For
real valued functions f (z), 1(z), the symbol f (z) ≍ 1(z) means that there exists C ≥ 1 such that C−11(z) ≤
f (z) ≤ C1(z) for all z. We go on to give the concept of ”edge points set” and call the below set,

∂∞ :=
{
z ∈ Iq : B j+1(z) ∩ ∂S(B j(z)) , ∅ for infinitely many j

}
,

”edge points set”. Correspondingly, let

∂n
∞ :=

{
z ∈ Iq : B j+1(z) ∩ ∂S(B j(z)) = ∅, for all j ≥ n

}
,

where j,n are nonnegative integers.

Lemma 3.4. If q is large enough, then Dq(hϵ) ⊇ X1
∞, Dq(2hϵ) = [Dq(2hϵ) ∩ ∂∞] ∪ [∪n≥0(Dq(2hϵ) ∩ ∂n

∞)] and
B0 ∩Dq(2hϵ) ∩ ∂0

∞ ⊆ X2
∞.

Proof. Assume z ∈ X1
∞, by (4),

2π|sn(z)| = 2π(|sn(z)| − 1) + 2π ≤ max
w∈Bn(z)

{|Imw|} + 2π

≤ inf
w∈Bn(z)

hϵ(|w|) ≤ hϵ(|Sn(z)|).

So, z ∈ Dq(hϵ).
It is obvious that ∂∞ = ∩n≥0(Iq

\ ∂n
∞) and Iq = ∂∞ ∪ (∪n≥0∂n

∞), so

Dq(2hϵ) = Dq(2hϵ) ∩ Iq = [Dq(2hϵ) ∩ ∂∞] ∪ [∪n≥0(Dq(2hϵ) ∩ ∂n
∞)].

If z ∈ B0 ∩ Dq(2hϵ) ∩ ∂0
∞, then z ∈ ∂0

∞ and Bn(z) does not intersect the boundary of S(Bn−1(z)). Since
z ∈ Dq(2hϵ), by the properties of function hϵ(x), which is bounded by a region with a small opening angle,
we get that Bn(z) ⊆ S(Bn−1(z)) ∩Hq and

min
w∈Bn(z)

{|Imw|} ≤ |ImSn(z)| ≤ 2π(|sn(z)| + 1)

≤ 2hϵ(|Sn(z)|) + 2π ≤ sup
w∈Bn(z)

2hϵ(|w|) + 2π.

By (6), and Bn(z) ∈ Bn for all n, consequently, z ∈ X2
∞.
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3.3. Distortion theorem and some estimates
Lemma 3.5. If q is large enough and z ∈ Iq, then

(a) Sk(Kn(z)) ⊆ {z ∈ C : |Rez| > q − π} for every 0 ≤ k ≤ n ;
(b) diam(Kn(z)) ≤

√
2πe−n ;

(c) there exists constants K1 and K2 independent on n and z such that

|(S−n
z )′(x)|

|(S−n
z )′(y)|

≤ K1

for all x, y ∈ Bn(z), and
|(Sn)′(x)|
|(Sn)′(y)|

≤ K2

for all x, y ∈ Kn−1(z) i.e. Sn−1(x),Sn−1(y) ∈ Bn−1(z).

Proof. (a)(b) are obvious.
(c) Denote B̃i(z) ⊃ Bi(z) as the open square of side length 2π with sides parallel to Bi(z) and center

coincident with Bi(z). By lemma 3.1 (b), we know that S(z) is univalent on B̃i(z) and the S(B̃i(z)) contains
B̃i+1(z) for i = 0, 1, 2, · · ·. See the following figure 3.

Figure 3. expanding property of S(z)

The module of B̃i(z) \ Bi(z) is constant, by distortion theorem, for all x, y ∈ Bn(z)

|(S−n
z )′(x)|

|(S−n
z )′(y)|

≤ K1.

By lemma 3.1 (d)
|(Sn)′(x)|
|(Sn)′(y)|

=
|S′(Sn−1(x))|
|S′(Sn−1(y))|

·
|(Sn−1)′(x)|
|(Sn−1)′(y)|

≤ 2eπK1 = K2.

Lemma 3.6. If q is large enough and z ∈ Iq, then for every n ∈N there exist K3,K4,K5 such that
(a) K−1

3 |S
′(Sn−1(z))| ≤ rn(z) ≤ Rn(z) ≤ K3|S′(Sn−1(z))|;

(b) K−n
3

∏n
j=1 r j(z) ≤ |(Sn)′(z)| ≤ Kn

3

∏n
j=1 r j(z);

(c) diamKn(z) ≤ Kn
4 (
∏n

j=1 r j(z))−1;
(d) exist B(z0, r) such that B(z0, r) ⊆ Kn(z) and

diamKn(z) > r ≥ K−n
5 (

n∏
j=1

r j(z))−1,

where z0 = S−n(w0), w0 is the center of Bn(z).
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Proof. (a) By lemma 3.1 (d), and Sn−1(z) ∈ Bn−1(z), we have

1 ≤
Rn(z)
rn(z)

≤ 2eπ,
1

2eπ
≤

rn(z)
S′(Sn−1(z))

≤ 2eπ,
1

2eπ
≤

Rn(z)
S′(Sn−1(z))

≤ 2eπ,

then
(2eπ)−1

|S′(Sn−1(z))| ≤ rn(z) ≤ Rn(z) ≤ 2eπ|S′(Sn−1(z))|.

(b) Note that |(Sn)′(z)| = |(S)′(Sn−1(z))||(S)′(Sn−2(z))| · · · |S′(z)|, so

(2eπ)−n
n∏

j=1

r j(z) ≤ |(Sn)′(z)| ≤ (2eπ)n
n∏

j=1

r j(z).

(c) For any z1, z1 ∈ Kn(z), corresponding w1,w2 ∈ Bn(z), by lemma 3.5 (c), we have

|z2 − z1| = |

∫ w2

w1

(S−n)′dw| ≤ K1|(S−n)′||w2 − w1|,

then

diamKn(z) ≤
√

2πK1(2eπ)n(
n∏

j=1

r j(z))−1.

(d) Let Sn(z0) is the center of Bn(z), z0 ∈ Kn(z), there exist z∗ ∈ ∂Kn(z) such that

min
t∈∂Kn(z)

|t − z0| = |z∗ − z0|.

Let r = |z∗ − z0|, then B(z0, r) ⊆ Kn(z).
Denote by l the straight line segment −−→z∗z0 , L is Sn(l), then

r = |z∗ − z0| =

∫
l
|dz| =

∫
L
|dS−n(w)|

=

∫
L
|(S−n(w))′||dw|

≥
1

K1
(2eπ)−n(

n∏
j=1

r j(z))−1π
2
.

Lemma 3.7. If q is large enough and z ∈ Iq, then there exist K6,K7 such that

µ(Kn(z)) = cn
1(z)(

n∏
j=1

r j(z))−2
n∏

i=1

r2
i (z)

hϵ(ri(z))ri(z)

= cn
1(z)(

n∏
j=1

r j(z))−(1+δ)
n∏

i=1

rδi (z)

hϵ(ri(z))

= cn
2(z)diam(Kn(z))1+δ

n∏
i=1

rδi (z)

hϵ(ri(z))
,

where c1(z) ∈ [K−1
6 ,K6], c2(z) ∈ [K−1

7 ,K7] .
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Proof. It follows from (7), (8) that

µ(Kn(z)) = µn(Kn) =
area(Kn)∑

K∈ch(Kn−1) area(K)
· µn−1(Kn−1)

= area(Kn(z)) ·
n∏

i=1

area(Ki−1(z))∑
K∈ch(Ki−1(z)) area(K)

.

and from lemma 3.6 (c) (d) that

π(K−n
5 (

n∏
j=1

r j(z))−1)2
≤ area(Kn(z)) ≤ π

(Kn
4 (
∏n

j=1 r j(z))−1

2

)2

,

then

µ(Kn(z)) = c(z)n(
n∏

j=1

r j(z))−2
n∏

i=1

area(Ki−1(z))∑
K∈ch(Ki−1(z)) area(K)

,

with c(z) ∈ [K−1
6 ,K6].

By (areaSi(Ki−1(z))) =
∫ ∫

Ki−1(z) |(S
i)′|2dxdy and lemma 3.5 (c), we have

area(Ki−1(z))∑
K∈ch(Ki−1(z)) area(K)

≍
areaSi(Ki−1(z))∑

K∈ch(Ki−1(z)) area(Si(K))
.

Note that Si(Ki−1(z)) ∩Hq is an approximate-half-annulus and Si(K) is square in Si(Ki−1(z)) ∩Hq satisfies
(4) or (6), then

areaSi(Ki−1(z))∑
K∈ch(Ki−1(z)) area(Si(K))

≍
r2

i (z)

hϵ(ri(z))ri(z)
.

Hence, according to lemma 3.6 (c) (d), there exists a constant K7 with c1(z) , c2(z) ∈ [K−1
7 ,K7] such that

µ(Kn(z)) = cn
1(z)(

n∏
j=1

r j(z))−2
n∏

i=1

r2
i (z)

hϵ(ri(z))ri(z)

= cn
1(z)(

n∏
j=1

r j(z))−(1+δ)
n∏

i=1

rδi (z)

hϵ(ri(z))

= cn
2(z)diam(Kn(z))1+δ

n∏
i=1

rδi (z)

hϵ(ri(z))
.

For convenient, let K > K j j = 1, 2, 3, 4, 5, 6, 7 and we can replace K j by the same K in all the above
inequalities.

Lemma 3.8. If q is large enough and z ∈ Dq(3hϵ), n ∈N, then rn(z) ≍ log rn+1(z)

Proof. By lemma 3.1 (d) (c) and (1)

rn+1(z) ≥
1

2eπ
|Sn+1(z)| ≥

1
2eπ

2
3

min{|a|, |b|} exp(|ReSn(z)|)

≥ C exp(
√

3|Sn(z)|/2) ≥ C exp(
√

3rn(z)/2),
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where C = 1
2eπ

2
3 min{|a|, |b|}. Then we have

log rn+1(z) ≥ log C exp(
√

3rn(z)/2)

≥ (log C +
√

3 − 1
2

rn(z)) +
1
2

rn(z)

≥
1

3eπ
rn(z)

and

log rn+1(z) ≤ log(|a|e|S
n(z)| + |b|e|−Sn(z)|)

≤ log(2 max{|a|, |b|}e2eπrn(z))
≤ 3eπrn(z).

Lemma 3.9. Let q is large enough and δ ∈ (0, 1), if z ∈ Dq(hϵ) and δ < 1/(1+ϵ), then the sequence {rn(z)}∞n=1 satisfies
that for every c > 0 there exists n0 such that for every n ≥ n0 the following inequality holds

cn
rδ1(z) · · · rδn−1(z)

hϵ(r1(z)) · · · hϵ(rn−1(z))
· (

rn(z)
hϵ(rn(z))

)δ ≤ 1. (9)

If z ∈ Dq(3hϵ) and δ > 1/(1 + ϵ), then the sequence {rn(z)}∞n=1 satisfies that for every c > 0 there exists n0 such that
for every n ≥ n0 the following inequality holds

cn
rδ1(z) · · · rδn−1(z)

3hϵ(r1(z)) · · · 3hϵ(rn−1(z))
· (

rn(z)
3hϵ(rn(z))

)δ > 1. (10)

Proof. The inequality (9) is equivalent to the following

r1−δ
1

c(log r1)ϵ
· · ·

r1−δ
n−2

c(log rn−2)ϵ
· {

r1−δ
n−1

c(log rn−1)ϵ
·

1
c(log rn)ϵδ

} ≥ 1.

Since 1 − δ − ϵδ > 0, it follows from lemma 3.2 and lemma 3.8 that

{
r1−δ

n−1

c(log rn−1)ϵ
·

1
c(log rn)ϵδ

} ≥
r1−δ−ϵδ

n−1

c2(3eπ)ϵδ(log rn−1)ϵ
→∞

as n→∞, and
r1−δ

n−2
c(log rn−2)ϵ →∞ as n→∞.

If δ > 1/(1 + ϵ), then 1 − δ − ϵ < 1 − δ − ϵδ < 0, therefore for n large enough

3δ

c(log r1)ϵ
3r1−δ−ϵ

1

c( 1
3eπ )ϵ

· · ·
3r1−δ−ϵ

n−2

c( 1
3eπ )ϵ

·
3r1−δ−ϵδ

n−1

c( 1
3eπ )ϵδ

< 1 ⇒

3δ

c(log r1)ϵ
3r1−δ

1

c( 1
3eπ r1)ϵ

· · ·
3r1−δ

n−2

c( 1
3eπ rn−2)ϵ

·
3r1−δ

n−1

c( 1
3eπ rn−1)ϵδ

< 1 ⇒

3δ

c(log r1)ϵ
3r1−δ

1

c(log r2)ϵ
· · ·

3r1−δ
n−2

c(log rn−1)ϵ
·

3r1−δ
n−1

c(log rn)ϵδ
< 1 ⇒ (10).

4. The proof of theorem

Based on the above preliminaries, we can begin to prove the main result of this paper.
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4.1. The lower bound of Hausdorff dimension

Claim 1: If z ∈ Dq(hϵ) and 0 < δ < 1/(1 + ϵ), then HD(Dq(hϵ)) ≥ 1 + δ.

Proof. By lemma 3.4, we only need to prove

HD(X1
∞) ≥ 1 + δ.

Take an arbitrary point z ∈ X1
∞. We should show that if r is small then µ(B(z, r)) ≤ constant · r1+δ.

Take the least n ≥ 1 such that

diamKn(z) ≤ r. (11)

If r > 0 is sufficiently small, then n ≥ 1 is large enough, and rn(z) is large enough. By (3), (4), we know that
the distance (less than

√
2π) between the boundary of square Sn(Kn(z)) and Sn(z) ≪ the distance(≍ rn(z))

between the boundary of approximate-half-annulus Sn(Kn−1(z)) ∩ Hq and Sn(z). Using lemma 3.5 (c), we

have r ≍
√

2π
|(Sn)′(z)| and dist(z, ∂Kn−1(z)) ≍ rn(z)

|(Sn)′(z)| , then B(z, r) ⊆ Kn−1(z). Note the construction of µ, computing
µ(B(z, r)), we only need to consider the Q ∈ S−n(Bn) such that Q ∩ B(z, r) , ∅, denote by F(z, r) the family of
all sets Q ∈ S−n(Bn) intersecting B(z, r), consequently, Q ⊆ Kn−1(z).

By the construction of µ, lemma 3.5 (c) and areaQ =
∫ ∫
|(S−n(z))′|2dxdy, we have

areaQ
areaKn(z)

≤ K4, then µ(Q) ≤ K4µ(Kn(z)).

It follows from lemma 3.7 and (9) that

µ(Q) ≤ K4cn
2(z)

n∏
i=1

rδi (z)

hϵ(ri(z))
(diamKn(z))1+δ

≤ K6+2δcn
2(z)

n−1∏
i=1

rδi (z)

hϵ(ri(z))
(

rn(z)
hϵ(rn(z))

)δ(diamQ)1+δ

≤ (diamQ)1+δ. (12)

In addition, by lemma 3.5 (c) and (11), we have

K−2diamKn(z) ≤ diamQ ≤ K2diamKn(z) ≤ K2r. (13)

Applying (12) and (13), we get that

µ(Q) ≤ (diamQ)1+δ
≤ K2(1+δ)(diamKn(z))1+δ

≤ K2(1+δ)r1+δ. (14)

Then the estimation of F(z, r) is critical for computing µ(B(z, r)). We shall consider several cases. Fix a
constant D ≥ 2.

Case 1: r ≤ DdiamKn(z).
Since z ∈ X1

∞ and diamKn(z) ≤ K|(S−n)′(z)|−1
√

2π (lemma 3.5 (c) and |z1 − z2| = |
∫ w2

w1
(S−n)′(w)dw|), we get

Kn−1(z) ⊇ S−n
z (Ã(rn(z),Rn(z))) ⊇ S−n

z (B(Sn(z), rn(z)))

⊇ B(z,
1
4

K−1
|(Sn)′(z)|−1rn(z)) Koebe −

1
4

theorem

⊇ B(z,
1
4

(
√

2πK2)−1rn(z)diamKn(z))

⊇ B(z,D(K2 + 1)diamKn(z)) ⊇ B(z, (K2 + 1)r). (15)
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The rn(z) could be larger than 4
√

2πK2(K2 + 1)D as n is sufficiently large. By (13) and (15), if Q ∈ F(z, r), then
Q ⊂ B(z, (K2 + 1)r) ⊂ Kn−1(z). Since diam(Sn(B(z, (K2 + 1)r)) is less than 2K(K2 + 1)r|(Sn)′(z)|, the number of
squares Sn(Q), Q ∈ F(z, r) is smaller than K2(K2 + 1)2π−1r2

|(Sn)′(z)|2. Since

r ≤ DdiamKn(z) ≤ DK
√

2π|(Sn)′(z)|−1,

we get
♯{Sn(Q) : Q ∈ F(z, r)} ≤ 2K4D2π(K2 + 1)2.

However, ♯{Sn(Q) : Q ∈ F(z, r)} = ♯F(z, r). Then by (14) we get that

µ(B(z, r)) ≤
∑

Q∈F(z,r)

µ(Q) ≤
∑

Q∈F(z,r)

K2(1+δ)r1+δ

≤ 2πK6+2δ(K2 + 1)2D2r1+δ.

Case 2: DdiamKn(z) ≤ r ≤ D−1diam(Kn−1(z)).
Take D ≥ 4

√
2πK3(K2 + 1) large enough, since z ∈ X1

∞, using lemma 3.6 (a), we get that

Kn−1(z) ⊇ B(z,
1
4

K−1
|(Sn)′(z)|−1rn(z))

⊇ B(z,
1
4

K−2
|(Sn−1)′(z)|−1)

⊇ B(z,
1
4

(
√

2πK3)−1diamKn−1(z))

⊇ B(z, (K2 + 1)r). (16)

By (13) and (16), if Q ∈ F(z, r), then Q ⊆ B(z, (K2 + 1)r) ⊆ Kn−1(z). Hence, using lemma 3.7, we get that

µ(B(z, r)) ≤

∑
Q∈F(z,r)

µ(Q)

≤

∑
Q∈F(z,r)

K4cn
1(z)(

n∏
i=1

ri(z))−(1+δ)
n∏

i=1

rδi (z)

hϵ(ri(z))

= ♯F(z, r)K4
· cn

1(z)
n∏

i=1

r−1
i (z)

hϵ(ri(z))
. (17)

It will be discussed in two subcases.
Case 2a: diam(Sn(B(z, (K2 + 1)r))) ≤ 2hϵ(rn(z)). Since

♯F(z, r) ≤
area(Sn(B(z, (K2 + 1)r)))

π2 ,

by lemma 3.6 (b), the (17) could be as follows:

µ(B(z, r)) ≤
K4

π2 cn
1(z)area(Sn(B(z, (K2 + 1)r))

n∏
i=1

r−1
i (z)

hϵ(ri(z))

≤ K4π−1K2n+2(K2 + 1)2cn
1(z)r2

n∏
i=1

r2
i (z)

n∏
i=1

r−1
i (z)

hϵ(ri(z))

≤ K4π−1K2n+2(K2 + 1)2Knr2
n∏

i=1

ri(z)
hϵ(ri(z))

= K4π−1K2n+2(K2 + 1)2Knr1+δr1−δ
n∏

i=1

ri(z)
hϵ(ri(z))

.
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However, diam(Sn(B(z, (K2 + 1)r))) ≤ 2hϵ(rn(z)), so using lemma 3.6 (b) again, we get that

r ·
n∏

i=1

ri(z) ≤
Kn+1

K2 + 1
hϵ(rn(z)).

Therefore, by (9), we get

µ(B(z, r))

≤ K4π−1K2n+2(K2 + 1)2Knr1+δ(
Kn+1

K2 + 1
hϵ(rn(z))

r1(z) · · · rn(z)
)1−δ
·

n∏
i=1

ri(z)
hϵ(ri(z))

= r1+δπ−1K7−δ(K2 + 1)1+δ(K4−δ)n
n−1∏
i=1

ri(z)δ

hϵ(ri(z))
· (

rn(z)
hϵ(rn(z))

)δ

≤ r1+δ.

and the claim 1 holds in this case.
Case 2b: diam(Sn(B(z, (K2 + 1)r))) > 2hϵ(rn(z)). It need to estimate the cardinality of F(z, r) in a different

way in this case.
By (4), lemma 3.6 (b) and the properties of function hϵ(x), we get

♯F(z, r) ≤
area(Sn(B(z, (K2 + 1)r)) ∩ {w : |Imw| ≤ hϵ(Rn(z))})

π2

≤
2diam(Sn(B(z, (K2 + 1)r))hϵ(Rn(z))

π2

≤ 4π−2eπhϵ(rn(z)) · 2rKn+1(K2 + 1) ·
n∏

i=1

ri(z).

Hence, the (17) could be as follows:

µ(B(z, r)) ≤ K48π−2eπKn+1(K2 + 1)(c1(z))nr
hϵ(rn(z))

hϵ(r1(z)) · · · hϵ(rn(z))

≤ 8π−2eπ(K2 + 1)K5(K2)nr1+δr−δ
n−1∏
i=1

(hϵ(ri(z)))−1.

Since diam(Sn(B(z, (K2 + 1)r))) > 2hϵ(rn(z)), by lemma 3.6 (b), we get that

r · r1(z) · · · rn(z) ≥
1

(K2 + 1)Kn+1 hϵ(rn(z)).

Thus,

µ(B(z, r)) ≤ 8π−2eπK5+δ(K2 + 1)1+δ(K2+δ)nr1+δ
·

n−1∏
i=1

ri(z)δ

hϵ(ri(z))
· (

rn(z)
hϵ(rn(z))

)δ.

By (9), we get

µ(B(z, r)) ≤ r1+δ.

Case 3: r > D−1diam(Kn−1(z)). That is diam(Kn−1(z)) < Dr. However, by our choice of n, diam(Kn−1(z)) > r =
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D−1(Dr). As discussed above

Kn−2(z) ⊇ S−(n−1)
z (Ã(rn−1(z),Rn−1(z))) ⊇ S−(n−1)

z (B(Sn−1(z), rn−1(z)))

⊇ B(z,
1
4

K−1
|(Sn−1)′(z)|−1rn−1(z))

⊇ B(z,
1
4

(
√

2πK2)−1rn−1(z)diamKn−1(z))

⊇ B(z,DdiamKn−1(z))
⊇ B(z,Dr).

This means that diam(Kn−2(z)) > Dr. So, n− 1 is the number ascribed to the radius Dr as in the beginning of
the proof and Case 1 holds. Therefore,

µ(B(z, r)) ≤ µ(B(z,Dr)) ≤ 2πK6+2δ(K2 + 1)2D2(Dr)1+δ.

4.2. The Hausdorff dimension of edge points set
Claim 2: Let ∂∞ be the edge points set, then HD(∂∞ ∩Dq(3hϵ)) ≤ 1.

Proof. Let
∂n := ∪z∈Iq S−n

z (Ã(rn(z), rn(z) + 2π) ∪ Ã(Rn(z) − 2π,Rn(z))).

Then ∂∞ can be covered by the set ∪n≥k∂n for every k ≥ 0 and the approximate-half-annuli Ã(rn(z), rn(z)+
2π) ∪ Ã(Rn(z) − 2π,Rn(z)) can be covered by M1rn(z) squares with diameters less than 1, where M1 is a
constant. Therefore, according to lemma 3.5 (c), Kn−1(z)∩ ∂n can be covered with no more than M1rn(z) sets
Ji,n(z) of diameters less than K|(Sn)′(z)|−1. Let T ≥ 2q. Note that any two sets Kn−1(z) and Kn−1(z′) are either
disjoint or equal, so we can find a set Zn ⊂ Iq such that Kn−1(z) and Kn−1(z′) are disjoint for z, z′ ∈ Zn, z , z′

and
∂n ∩ B(0,T) ⊂ ∪z∈Zn Kn−1(z) ⊂ B(0, 2T).

For the given ϵ > 0, let n be large enough such that lemma 3.3 is satisfied for α = 2/ϵ and 2T. Using lemma
3.1 (d), lemma 3.3 and (2), we get∑

z∈Zn

∑
Ji,n

(diamJi,n(z))1+ϵ
≤

∑
z∈Zn

M1K1+ϵrn(z)|(Sn)′(z)|−(1+ϵ)

≤ 2eπM1K1+ϵ
∑
z∈Zn

|S′(Sn−1(z))||(Sn)′(z)|−(1+ϵ)

≤ 2eπM1K1+ϵ
∑
z∈Zn

|S′(Sn−1(z))||S′(Sn−1(z))|−(1+ϵ)
|(Sn−1)′(z)|−(1+ϵ)

≤ 2eπM1K1+ϵ
∑
z∈Zn

|S′(Sn−1(z))|−ϵ|(Sn−1)′(z)|−ϵ|(Sn−1)′(z)|−1

≤ 2eπM1K1+ϵ
∑
z∈Zn

|(Sn)′(z)|−ϵ|(Sn−1)′(z))|−1

≤ 2eπM1K1+ϵ
∑
z∈Zn

L−ϵ|(Sn−1)′(z)|−2
|(Sn−1)′(z))|−1

≤ 2eπL−ϵM1K1+ϵe−(n−1)
∑
z∈Zn

|(Sn−1)′(z)|−2.

Because Kn−1(z) and Kn−1(z′) are disjoint and the Lebesgue measure of each set of the form Kn−1(z) is
proportional to |(Sn−1)′(z)|−2, we get that there exists a constant M2 > 0 such that the last term in the above
inequality is no more than M2e−(n−1)

· area(B(0, 2T)) .
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Hence,

∞∑
n=k

∑
z∈Zn

∑
Ji,n

(diamJi,n(z))1+ϵ
≤M2 · area(B(0, 2T))

∞∑
n=k

e−(n−1)

= 4πT2M2
e−k+2

e − 1
.

Let k → ∞, then 4πT2M2
e−k+2

e−1 → 0. That is, for any given ϵ > 0, the (1 + ϵ)-dimensional Hausdorff
measure of ∂∞ ∩Dq(3hϵ) ∩ B(0,T) is equal to zero. Hence,

HD(∂∞ ∩Dq(3hϵ)) ≤ 1.

4.3. The upper bound of Hausdorff dimension
Claim 3: If z ∈ Dq(2hϵ) and δ > 1/(1 + ϵ), then HD(Dq(2hϵ)) ≤ 1 + δ.

Proof. By lemma 3.4, Dq(2hϵ) = [Dq(2hϵ)∩∂∞]∪[∪n≥0(Dq(2hϵ)∩∂n
∞)].Using Claim 2, we get HD(Dq(2hϵ)∩∂∞) ≤

1. We only need to show that HD(Dq(2hϵ)∩∂n
∞) ≤ 1+δ for every n ≥ 1 and as Sn(Dq(2hϵ)∩∂n

∞) ⊆ Dq(2hϵ)∩∂0
∞,

it is sufficient to prove that HD(B0 ∩Dq(2hϵ) ∩ ∂0
∞) ≤ 1 + δ.

By lemma 3.4, in fact, it suffices to demonstrate that

HD(X2
∞) ≤ 1 + δ.

Let µ be the measure on X2
∞ constructed above. Cover X2

∞ by countably many mutually disjoint sets Kn−1(z j)
such that z j ∈ X2

∞ for all j. Fix z j = z.
For an arbitrary set F ⊆ S(Bn−1(z)) = Sn(Kn−1(z)). Then by lemma 3.6 (b) and lemma 3.5 (c), we have that

diam(S−n
z (F)) ≤ Kn+1(

n∏
k=1

rk(z))−1
· diamF (18)

where S−n
z : S(Bn−1(z))→ Kn−1(z) is the unique holomorphic inverse branch of Sn defined on S(Bn−1(z)) and

sending Sn(z) to z. Let Gn
z is the covering of S(Bn−1(z)) ∩ {w : |Imw| ≤ 3hϵ(Rn(z))}, which consists of squares

G with the following properties. See the following figure 4:

• the length of each edge of G is equal to 3hϵ(Rn(z));

• one of the horizontal edges of G is contained in the real axis;

• at least two of the edges of G are contained in S(Bn−1(z)) ∩Hq.

Figure 4. the covering of S(Bn−1(z)) ∩ {w : |Imw| ≤ 3hϵ(Rn(z))}
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Using lemma 3.7 we have

µ(Kn(z)) = cn
1(z)(

n∏
j=1

r j(z))−(1+δ)
n∏

i=1

rδi (z)

hϵ(ri(z))
. (19)

Let G̃ = G∩S(Bn−1(z)) and denote G̃n
z := {G∩S(Bn−1(z)) : G ∈ Gn

z }. Let n is large enough such that h(Rn(z))
is as large as the necessary. Look at figure 3, it’s obvious there exists a universal constant κ ∈ (0, 1) such that
G̃ contains at least 9κ

π2 h2
ϵ(Rn(z)) ≥ 9κ

π2 h2
ϵ(rn(z)) squares from Bn. Since

diamG̃ ≤ 3
√

2hϵ(Rn(z)) ≤ 6eπ
√

2hϵ(rn(z)),

using (19) and (18) we therefore get

µ(S−n
z (G̃)) ≥

9κ
π2 h2

ϵ(rn(z))cn
1(z)(

n∏
j=1

r j(z))−(1+δ)
n∏

i=1

rδi (z)

hϵ(ri(z))

≥
9κ
π2 (6eπ

√

2)−(1+δ)cn
1(z)3n−1+δ

(
6eπ
√

2hϵ(rn(z))∏n
i=1 ri(z)

)1+δ(
rn(z)

3hϵ(rn(z))
)δ ·

n−1∏
i=1

rδi (z)

3hϵ(ri(z))

≥
9κ3δ

3π2(4eπ
√

2K)1+δ
(

3
K2+δ

)n

(diam(S−n
z (G̃)))1+δ(

rn(z)
3hϵ(rn(z))

)δ ·
n−1∏
i=1

rδi (z)

3hϵ(ri(z))
.

The last inequality is because

(diam(S−n
z (G̃)))1+δ

≤ K(n+1)(1+δ)(
n∏

j=1

r j(z))−(1+δ)(diam(G̃))1+δ

≤ K(n+1)(1+δ)(
n∏

j=1

r j(z))−(1+δ)(6eπ
√

2hϵ(rn))1+δ.

By (10), we thus get that

µ(S−n
z (G̃)) ≥ (diam(S−n

z (G̃)))1+δ. (20)

The squares G may overlap, but we can choose the covering Gn
z so that its multiplicity does not exceed

2. By (6), it is easy to know that the union of all squares G̃ ∈ G̃n
z covers all the successors of Sn−1(Kn−1(z)), so

the set S−n
z (∪G̃∈G̃n

z
G̃) covers all the children of Kn−1(z), and then covers Kn−1(z) ∩ X2

∞. Therefore

∪ j ∪G̃∈G̃n
zj

S−n
z j

(G̃) ⊇ X2
∞.

By (20)∑
j

∑
G̃∈G̃n

zj

(diam(S−n
z j

(G̃)))1+δ
≤

∑
j

∑
G̃∈G̃n

zj

µ(S−n
z j

(G̃))

≤

∑
j

2µ(Kn−1(z j)) ≤ 2µ(B0).
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According to lemma 3.2, the diameters of the sets S−n
z j

(G̃), j ≥ 1 ,G̃ ∈ G̃n
z j

converge uniformly to zero
as n → ∞. so the (1 + δ)-dimensional Hausdorff measure of the set X2

∞ is less than or equal to 2. Hence,
HD(X2

∞) ≤ 1 + δ.

Therefore, we have

HD(Dq(hϵ)) ≤ HD(2Dq(hϵ) ≤ 1 + δ,when δ > 1
1+ϵ .

As well as, we have

HD(Dq(hϵ)) ≥ 1 + δ, when 0 < δ < 1
1+ϵ .

Let δ tends to 1
1+ϵ , we obtain

HD(Dq(hϵ)) = 1 + 1
1+ϵ .
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